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Abstract. A consistent analytical approach for calculation of the guasi-classical radial dipole
matrix elements in the momentum and coordinate representations is presented. Very simple but
relatively precise expressions for the matrix elements are derived in both representations, All
analytical expressions contaifi only one special function—the Anger function and its derivative,
They generalize and increase the accuracy of some known quasi-classical expressions. The small
difference between the two forms of the expressions for the dipole matrix elements indicates the
applicability of the simple expressions given by the consistent quasi-classical approach even for
low atomic states.

1. Introduction

Calculation of transition probabilities, oscillator strengths and dipole matrix elements for
atomic transitions is stimulated by investigations in spectroscopy, plasma physics, chaotic
dynamics of non-linear systems and other fundamental and applied fields. Accurate
calculation of these atomic characteristics are very time consuming and in some cases
involve certain difficulties, especially for transitions between high states. Therefore, recent
attention has been paid to quasi-classical calculations of the dipole matrix elements and
oscillator strengths for atomic nl — n'l’ transitions (Heim e af 1989, Delone et al 1989,
1994, Kaulakys 1991, D¥yachkov and Pankratov 1991, 1994, Pankratov and Meyer-ter
Vehn 1992, Nana er al 1995), In the review paper by Delone ef al (1994) the set of
analytical formulae for the dipole matrix elements between quasi-classical states is presented.
However, this review paper does not reflect the results from the last five-year period by
Heim et af (1989), Kaulakys (1991), D’yachkov and Pankratov (1991, 1994) Pankratov and
Meyer-ter Vehn (1992) and others, and contains some inconsistencies. As a result, the main
formulae of the paper contain terms with erroneous sign and do not agree with the exact
results, e.g. when s = V' — v is an integer number and when § — O with v and v being
the effective principal quantum numbers of the initial and final states, respectively.

Here, a consistent analytical approach for the quasi-classical dipole coupling of the
electron with the electromagnetic field is presented, taking into account a peculiarity of the
radial quasi-classical matrix elements: radial wavefunctions of the initial and final states
for transitions with Al 5 O correspond to different effective Hamiltonians and, therefore,
we cannot use the usual correspondence between the quasi-classical matrix elements and
the Fourier components of the appropriate classical variable (see e.g. Landan and Lifshitz
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1985). So, we should start from the definition of the quantum matrix elements using the
quasi-classical radial wavefunctions. '

The direct way of coupling a radiation field to the electron Hamiltonian is through the
A .- p interaction (see, e.g. Bethe and Salpeter 1957, Landau and Lifshitz 1985) where A is
the vector potential of the electromagnetic field and p = —iA'V is the momentum operator.
When the radiation wavelength is long compared with the atomic dimension, as is the case
for optical or microwave transitions, the variation of the vector potential within the atom can
be neglected. In this case the electric field is also uniform over the extent of the atom. So
the electric dipole moment is the only atomic muliipole coupled to the field in the multipolar
approximation to the interaction operator and the interaction of the electron with the field
may also be expressed through the E - r term, where E is the electric field strength and » is
the electron’s coordinate. As a matter of fact, the two forms of the interaction Hamiltonian
in the dipole approximation are equivalent due to the gauge invariance of the field.

Usually one calculates the radial dipole matrix elements in the coordinate form (see
Heim er af 1989, Delone ef af 1989, 1994, Kautakys 1991, D’yachkov and Pankratov 1991,
1994, Pankratov and Meyer-ter Vehn 1992, Nana et al 1995 and references therein). For
precise wavefunctions of the |a} and | b} states the relation between the matrix elements of
P and T operators

Pup = _imwb‘ara.b (N

holds. Here m and ey, = (Ep— E, )} /% are the electron mass and the angular frequency of the
corresponding transition, respectively. However, when one uses approximate wavefunctions
in the evaluation of the matrix elements, the length and velocity forms in general yield
different results and the relattonship (1) holds only roughly or even fails (see, e.g., Crossley
1969), If asymptotically correct wavefunctions are used, the r-form of the dipole matrix
elements is preferable as it stresses the contributions to the integral from the large r region.
On the other hand, for wavefunctions correct at small and medium r the velocity form should
be used as it puts more weight on the integral at small and medium r, The quasi-classical
wavefunctions in the classically allowed region of motion are not correct asymptotically
as well as for very small r but are relatively accurate for the medium r between the two
turning points of the classical orbit. Therefore, it is likely that the velocity form of the
quasi-classical matrix elements is as much (or, maybe, even more) accurate as the length
form.,

2. Radial dipole matrix elements for any spherical potential

Calculation of the angular part of the matrix elements is a simple problem and, therefore,
we restrict ourselves to the radial part. The radial dipole matrix element in the momentum
representation is given byt

’ ] dPn' Pﬂ’ r
D:[fil = ; f Par (1) (_—'iil 2 il‘l'anax—'——'H‘_:l ( )) dr (2)

where Py{r) = r Ry{r) is the solution of the radial Schrodinger equation, w = Epp — Ey
is the transition frequency and !« = max(/, ! £ 1). The quasi-classical radial wavefunction
P can be expressed as

Ppy = cos Py (r) (3

2
VT (r)

t Further in the paper we will use the atomic units, i =m=e¢ = 1.
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in the classically allowed region of motion and some exponentially decreasing function
outside this region. Here, T is the period of classical rotation, the radial velocity of the
electron, v,, is given by

41y 12
v (r) = (zEm —2U() - 572—)—) )
and the phase ©,; is defined as
D7) = f by dr ~ Lo (5)
r

with U(r} being the effective potential which defines the motion of the Rydberg electron
and the roots of the radial velocity v,.{r), r1 and r, are the two classical turning points
given by v,.{r)) = v{r:} = Q.

Further calculations of the matrix elements (2) are similar to those by Heim et af (1989)
and Kaulakys (1991}, Substituting equation (3} into equation (2) and neglecting the rapidly
oscillating sine and cosine of the sum of the phases &,; and &, one finally finds that

T./2

. 2 f ) .
'l ;
= —Fsin AD{t) £ repcos AP()) dt
nf T ) ( B xrp )
2 /2
= [—% sinwt £ ycoswr]ds 6)
w/TT ] Y (

where ¢ is the polar angle while x and y are Cartesian coordinates of the electron, dots
denote the derivatives with respect to time and T is some mean period to be defined
later, In the derivation of equation (6) we have used the fact that r ey = r=1(J + §) =
r 0+ +1)/2 = ' (r%9) = r¢ and that, according to equations (4) and (5), linear
expansion of the difference of the phases in powers of @ and Al =1’ — [ is

AD = Qpp — by et — Alp+--- (7)

Integration of equation (6) by parts yields to the r-form of the radial dipole matrix
element

7./2
' 2
Ry =(nlir (W2 D) = - / r (1) cos Ad(r) dt
o
) T./2
= —= x(¢tYcoswt == y(f) sinewt] dt. )
ﬁof[ ® y@®)siner] @®

Here we have used the quasi-classical quantization conditions (see Kaulakys 1991 for details)
and facts, such that

AP =0 AD(T./2) = An, T oT, /2 = Anx
r(0)=x0)=r y(0) = y(T/2) =0 Q) =0 p(T/2y=m &)

where #, = n—1— is the radial quantum number and Az and An, are integers. Note, that
equation (8) may also be derived from the definition of the radial dipole matrix element in the
coordinate representation and using expression (3) for the quasi-classical radial wavefunction
(see Kaulakys 1991).
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It follows from equations (6)—(8) that only for Al = 0 the quasi-classical matrix elements
of the medule of the radius vector, », coincide with the Fourier components of the classical
variable (¢} and may be expressed through the Fourier components of the classical variable
F(t), Le.

T/2
1 .
i e |nl) = — r{tycosawrdr = r{e)e i dp
‘VTT" ,/TT.'
0
T./2 ‘
--—2 f“”“"‘“’dm — f]gf(l‘)e'j“"dr. (10)
wTT’ . avTT

For the dipole transitions with Al = -1 the radial wavefunctions P, and Pypr of
the initial and final states are solutions of the radial Schrédinger equation with different
effective potentials Veyr(r) = U(r) + ( + $)%/2r% and V};,(r) = UGr) + (' + 3)*/27,
respectively. This results in the additional term in the phase difference (7) and the second
termt in equations (6) and (8).

Note, that the radial dipole matrix elements Dg;"*l and R:;Iﬁ] according to equations
(6) and (8) may also be expressed as

Dt = m;% 56 (@) =y e dr a1
and
wizl _ 1 X it
Rm! = ﬁ]T’ (x(t) £ y(t))e de. (12)

1t is of interest to note the connection between the expressions for the dipole matrix
elements (6)-(10) and the energy change of the classical atom in a monochromatic field
(see Gontis and Kaulakys 1987, Kaulakys 1991), The mapping equations of motion for the
classical hydrogen atom in an oscillating electric field derived on the basis of the velocity
form of interaction are suitable for investigation of the transition to chaotic behaviour and
ionization of Rydberg atoms even in the low frequency field when the strength of the external
field is comparable with the Coulomb field of the atom (Kaulakys and Vilntis 1995).

Until now we did not use the explicit form of the potential L/ (r). Therefore, equations
(1}—(12) are valid for any spherical potential. Further we will apply this theory for non-
hydrogenic atoms,

3. The non-hydrogenic atom

The potential U (r) which defines the motion of the Rydberg electron of a non-hydrogenic
atom or ion may be expressed as a sum of two terms—the Coulomb potential —Z/r of
the ion core with charge Z = Z;,r 4 | and the perturbation potential AU {r) due to the
deviation from the Coulomb approximation, i.e.

Ur) = —=2/r + AU{r). (13)

For the non-hydrogenic atom, the perturbation potential AL(r) is short-range and results in
the non-Coulomb scattering phase, §;, related to the quantum defect, g, by the relationship
8; = m ;. The energy, Eqy, of the | nl} state is related to the effective principal quantum
number, v, and the quantum defect, g, in the usual way

Ey =222 V=n— . (14)
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Significant contributions to the integrals (6} and (8) arise from the regions with
relatively large » where the potential U (r} is well represented by the Coulomb potential
V{r) = —Z/r. The additional potential AU(r) results mainly from the non-Coulomb
scattering phaseshift, § (see Kaulakys 1991). Thus, the phase (3) and the phase difference
(7) in the region of the main contribution to the dipole matrix element may be represented
as

Gu(r) = f vi(rydr + 6 — ix (15)

c

I

and
AD >~ wr — Alp = A + wt, — Alg, (16)

where v¢ is the radial velocity for the Coulomb potential, A = §p — & and it is convenient
to introduce the parametric equations of motion for the Coulomb potential

r =(u§/2)(l—ecos.§) tc=(vc3/22)(’g‘——esin1§)
= (v¥/Z) (cosk —e)  y={v2/Z) (1 - ) sing

X
1/2
cosE — e I+ +1\? !
Py = ArCCOS | mmom—— e=|{l-| ——u .
I —ecosE PATA
Here, ¢ denotes the eccentricity of the classical orbit with the period T, = Zarvf /Z* and
the turning points rj, = (v2/Z) (1 Fe). The centred effective principal quantum number

V. is defined from the requirement that the phase difference (16) at the turning point r; has
to be consistent with the quasi-classical quantization conditions, i.e.

A®(5) = A+ Lol — Alx = Anyr e

which, together with the relationship An,m = Avw + A — Alw, results in the expression
(see also D’yachkov and Pankratov 1991, 1994)

(7

Z:Av 2 (lu'v')2
- . (19)

w v+
More precisely, the non-Coulomb phase shifts, 4, and dy, and, consequently the phase
difference, A = &y — 4§, are some functions of r and time, ¢ (see Kaulakys 1991). However,
for non-hydrogenic atoms, the phase difference A (r) increases in the region r =~ ry = r{
from A =0 to A = & — §; =const in the very narrow interval of the coordinate r, while
the main contributions to the radial integrals (6) and (8) occur at large distances, r ~ v2,
Thus, in equations (6) and (8) the phase wt may be replaced by the expression A + wt,,
while p = @.. Keeping this in mind and substituting equations (16)-(19) into equations (6}

and (8) we have

3 _
Ul =

S
= (=1t Z(u‘,)m 7 (e 9) 20)

Df = % (.Jr’_s (es) £ Ve 2 — 1 (J_,\ (es) — S’;:S)) @

5

U
Rn EJ — (_])&fl z( ’)3/2Dﬂ: (e S) (22)
D,*=Df+ — simrs s=Av=1v —y, {23)
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Here, J_; (z) and J' (z) are the Anger function defined as

J_s (@)= -71; _/: cos (s& +zsin§)d§ (24)

and its derivative with respect to the argument z, respectively. Note the properties of the
Anger function: J_; (z) = J; (—z) and J'_s (r) = —-—J; (—z) which result in the symmetry
of the matrix elements (21} and (23)

D¥(e, —s) = D¥ (e, 5). (23"

To the best of our knowledge, equations (20) and (21) are derived for the first time, while
equations (22) and (23} within the accuracy of factor (uc/m )* coincide with equation
{16) in the paper by Kaulakys (1991) and are close to the corresponding expressions given
by D’yachkov and Pankratov (1991) and by Pankratov and Meyer-ter-Vehn (1992) (see also
Nana et af 1995). Note, that for the first time the dipole matrix elements in the coordinate
representation have been expressed through the Anger function and its derivative (however,
with some erroneous signs) by Davydkin and Zon (1981).

In the derivation of equations (22) and (23) one integrates equation (3) by parts using
the approximate expression wf >~ A +wf.. This yields equation (6) with the additional term

. : 2rr V(1 —e)sinms
R;:{H:l _ D:tH:l - _ ] 3in A = (_I)Arz C‘( )

v TT Z ('Y s
Thus, the difference between the quasi-classical dipole matrix elements in the - and p-forms,
the second term in equation (23), results from the replacement of the electron’s motion in the
effective potential U {r) by the motion in the Coulomb potential with the additional phase &;.
Therefore, the quasi-classical radial dipole matrix element in the coordinate representation
(22)-(23) may contain some additional inaccuracy. On the other hand, the difference (25)
between two forms of the dipole matrix elements may be a criterion of the exactness of the
guasi-classical approximation. As a rule, the additional term (25) is small because of the
small factor (1 — ) for states with low [ and of the smali factor, sin 7 s, for states with larger
! but small quantum defects and, consequently, with s = Av = An close to the integer. In
expansion of the dipole matrix elements in terms of o = /T —e? = (I +1' + 1) /2v, (see
Kaulakys 1991 for analogy)

(25)

2

pp =1 (7 @2a (1w T2+ 5 (1 0+ 22 oo
3 : TS 2 : s

2.

a’sinmws
Df=DF 4 —
4 £ 2 ms

27

this additional term makes up less than half of the third, proportional to @2, expansion
term. This points to the relatively high (up to several per cent) accuracy of the very
simple quasi-classical approximation (20)—(23) for the dipole matrix elements even for the
low atomic states. The extensive analysis of such an approach and comparison with the
numerical Hartree-Fock calculations will be presented elsewhere. Here we will present only
the limiting forms of the dipole matrix elements.

4, Special cases of the parameters

Using the expansions of the functions J. (es) and J. (es) in powers of s (Kaulakys 1991)

J_g(es)=1— (%7!’2 +e+ %ez) 52
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Jlesy—(1+1e)s, s« 1 (28)
we have from equations (200—(23)
2
D = (-1 — (14 fe) 29)
Al o 1yAnt 30 0
Rni' m(—- } -Z-'Ee s K 1. 3 )
For hydrogenic atoms with »' = n, equation {30) results in the exact expression
wli 3n :
erl = —E -Ee. (31)

Substitution of the asymptotic, § >3 1, forms of functions J_; (s} and J' (s) {(Kaulakys
1991)

2
J_s(s) = 7_;—1/3 cos (s — ¢m), a =~ 0447
5
r b 1
I (s) = WCET cos (s + g} b~ 0.411 (32)
5
into equations (26) and (27) yields
2b 2eea
D7, =~ T ke (rs+gm) = s o (s = Lx). (33)

From equation (33), the Bethe rule can be seen: principal and orbital quantum numbers
change prevailing in the same direction but only when o and ! are not small and
cos (s + -’511') and cos {7rs — %n) are of the same sign, e.g. when s is close to the integer.
In the latter case (s = An) we have the improved result of Goreslavsky et al (1982) for the
removed states

. , 3 b aa
DUIEL A~ pUIEL Ve ( + )
" T Ze)¥E\(AnYB T (any's

= Z'3 (b aa (An)'?) f®? (uv’)m An 3 1. (34)

On the other hand, for large s = An, the Anger function and its derivative may be expressed
through the Airy function and its derivative or through the McDonald functions, As a result
we have from equations (20)-(23)’

B (1 - e?)

DE = (—1)2n Kan (25898 = K| (25037 35
= (=1) o K (55077) = Kips (35£°7)) (35)
where
S = a2
2632 = In IL_Q.I__"_ _J1i-& (36)

and K, (z) are the McDonald functions.
For | —e? = o « 1 it yields from equations (35) and (36)
2
o

DE = (—1)%" —— (Ky;3 (37 An) £ K13 (1aPAn)) . 37
pr e 3enn (Kays (30°An) £ K3 (30° An)) (37)

In the limit %oﬁﬁm < 1, equation (37) results in the expression (34).
The dipole matrix elements for transitions between states with large, ! ~ n, orbital
quantum numbers, as follows from equations (203—23) or (33} and (36) when ¢ — 0, are
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exporentially small. Moreover, the Bethe rule in this case is enhanced: transitions with
the change of principal and orbital quantum numbers in opposite directions are strongly
suppressed in comparison with transitions when # and ! change in the same direction.
Thus, the very simple expressions (20)—23) cover all known quasi-classical non-
relativistic results for the dipole matrix elements. They generalize and increase the accuracy
of some earlier derived expressions. Extension of the present approach to the continuum
states is rather straightforward (see Kaulakys 1991 for analysis in the r-representation).

5. Conclusions

A consistent analytical approach for calculation of the quasi-classical radial dipole matrix
elements in the momentum and coordinate representations is presented and very simple but
relatively precise expressions for the matrix elements are derived in both representations. All
analytical expressions for the quasi-classical radial matrix elements in both representations
contain only one special function—the Anger function and its derivative. They generalize
and increase accuracy of some known quasi-classical expressions. The small difference
between the two forms of the expressions for the dipole matrix elements indicates the
applicability of the simple expressions given by the consistent quasi-classical approach
even for low atomic states.

It is important to note that the dipole matrix elements as the analytical functions (even for
the hydrogenic atom} are expressed through the Anger but not through the Bessel functions,
It is another thing that the Anger functions .J, (z) of the integer order v = m coincide with
the Bessel functions Jn(z), i.e. Jy (2) = (—1)*J., {2) = Ju(2). Expression of the dipole
matrix elements through the Besset function J.(es) or through the Anger function of the
positive order and positive argument J {es) (see, e.g. Delone et al 1994) results in the
erroneous limit when s — 0 and to another inaccuracies.
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