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Abstract
We study the influence of two resonant laser beams (to be referred to as the
control and probe beams) on the centre-of-mass motion of ultra-cold atoms
characterized by three energy levels of the �-type. The laser beams being
in the electromagnetically induced transparency (EIT) configuration drive the
atoms to their dark states. We impose the adiabatic approximation and obtain
an effective equation of motion for the dark state atoms. The equation contains
a vector potential type interaction as well as an effective trapping potential.
We concentrate on the situation where the control and probe beams are co-
propagating and have orbital angular momenta (OAM). The effective magnetic
field is then oriented along the propagation direction of the control and probe
beams. Its spatial profile can be shaped by choosing proper laser beams. We
analyse several situations where the effective magnetic field exhibits a radial
dependence. In particular, we study effective magnetic fields induced by Bessel
beams, and demonstrate how to generate a constant effective magnetic field for
a ring geometry of the atomic trap. We also discuss a possibility of creating an
effective field of a magnetic monopole.

1. Introduction

Recent experimental advances in trapping and cooling atoms have made it possible to
produce atomic Bose–Einstein condensates (BECs) [1–4] and degenerate Fermi gases [5–7]
at temperatures in the microkelvin range. The atomic BECs and degenerate Fermi gases
are the systems where an atomic physicist often meets physical phenomena encountered in
condensed matter physics. For instance, atoms in optical lattices are often studied using the
Hubbard model [8] familiar from solid-state physics.
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Ultra-cold atomic gases have turned out to be a remarkably good medium for
studying a wide range of physical phenomena. This is mainly due to the fact that it
is relatively easy to experimentally manipulate parameters of the system, such as the
strength of interaction between the atoms, properties of a lattice in which the atoms are
trapped, the geometry of an external trap, etc. Such a freedom of manipulating parameters
is usually not possible in other systems known from condensed matter or solid-state
physics.

Atoms forming quantum gases are electrically neutral particles and there is no vector-
potential-type coupling of the atoms with a magnetic field. Therefore, a direct analogy
between the magnetic properties of degenerate atomic gases and solid-state phenomena is not
necessarily straightforward. It is possible to produce an effective magnetic field in a cloud
of electrically neutral atoms by rotating the system such that the vector potential will appear
in the rotating frame of [9–11]. This would correspond to a situation where the atoms feel a
uniform magnetic field. Yet stirring an ultra-cold cloud of atoms in a controlled manner is a
rather demanding task.

There have also been suggestions to take advantage of a discrete periodic structure of an
optical lattice to introduce asymmetric atomic transitions between the lattice sites [12–15].
Using this approach one can induce a nonvanishing phase for the atoms moving along a closed
path on the lattice, i.e. one can simulate a magnetic flux [12–15]. However such a way of
creating the effective magnetic field is inapplicable to an atomic gas that does not constitute a
lattice.

A significant experimental advantage would be gained if a more direct way could be
used to induce an effective magnetic field. In previous papers [16, 17], we have shown how
this can be done using two light beams in an electromagnetically induced transparency (EIT)
configuration. Here we present a more detailed analysis of the phenomenon for various spatial
distributions of the laser fields. We demonstrate that if at least one of these beams contains
an orbital angular momentum (OAM), an effective magnetic field appears, which acts on the
electrically neutral atoms. In other words, the coupling between the light and the atoms will
provide an effective vector potential in the atomic equations of motion. Compared to the
rotating atomic gas, where only a constant effective magnetic field is created [9–11], using
optical means will be advantageous since the effective magnetic field can now be shaped by
choosing proper control and probe beams. The appearance of the effective vector potential
is a manifestation of the Berry connection which is encountered in many different areas of
physics [18–20].

The outline of the paper is as follows. In section 2, we define a system of three level
atoms in the �-configuration interacting with the control and probe beams. We allow the
two beams to have orbital angular momenta along the propagation axis z. In section 3,
we present a general treatment of the adiabatic motion of multilevel atoms and apply it to
derive the equation of motion for the atom driven to the dark state by the control and probe
beams of light. The resulting effective equation of motion contains the effective trapping and
vector potentials. In sections 4 and 5, we analyse the effective magnetic field and effective
trapping potential in the case where at least one of the laser beams contains an orbital angular
momentum. We show that the spatial profile of the effective magnetic field can be controlled
by applying proper control and probe beams. We analyse several situations where the effective
magnetic field exhibits a radial dependence. In particular we study effective magnetic fields
induced by Bessel beams, and demonstrate how to generate a constant effective magnetic
field for ring geometry of the atomic trap. We also discuss a possibility of creating an
effective field of a magnetic monopole. Finally in the concluding section 6, we summarise the
findings.
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Figure 1. (a) The level scheme for the �-type atoms interacting with the resonant probe beam �p
and control beam �c. (b) Schematic representation of the experimental set-up with the two light
beams incident on the cloud of atoms. The probe field is of the form �p ∼ ei�φ , where each probe
photon carry an orbital angular momentum h̄� along the propagation axis z.

(This figure is in colour only in the electronic version)

2. Formulation

2.1. The atomic system

We shall consider an ensemble of atoms characterized by two hyper-fine ground levels 1 and
2, as well as an electronic excited level 3. The atoms interact with two resonant laser beams
in the EIT configuration (see figure 1). The first beam (to be referred to as the control beam)
drives the transition |2〉 → |3〉, whereas the second beam (the probe beam) is coupled with
the transition |1〉 → |3〉, as shown in figure 1(a). The control laser has a frequency ωc, a
wave-vector kc and a Rabi frequency �c. The probe field, on the other hand, is characterized
by a central frequency ωp = ckp, a wave-vector kp, and a Rabi frequency �p. Of special
interest is the case where the probe and control beams can carry OAM along the propagation
axis z. In that case, the spatial distribution of the beams is given by [21, 22]

�p = �(0)
p ei(kpz+lpφ) (1)

and

�c = �(0)
c ei(kcz+lcφ), (2)

where �(0)
p and �(0)

c are slowly varying amplitudes for the probe and control fields, h̄�p and
h̄�c are the corresponding orbital angular momenta per photon along the propagation axis z

and φ is the azimuthal angle.

2.2. Hamiltonian for the electronic degrees of freedom of an atom

Adopting the rotating wave approximation, the Hamiltonian for the electronic degrees of
freedom of an atom interacting with the control and probe fields is in the rotating frame:

Ĥ 0(r) = ε21|2〉〈2| + ε31|3〉〈3| − h̄(�p|3〉〈1| + �c|3〉〈2| + h.c.) (3)
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where ε21 = h̄(ω2 −ω1 +ωc −ωp) and ε31 = h̄(ω3 −ω1 −ωp) are, respectively, the energies of
the detuning from the two- and single-photon resonances, with h̄ωj being the electronic energy
of the atomic level j . Note that the spatial dependence of the Hamiltonian Ĥ 0(r) emerges
through the spatial dependence of the Rabi frequencies �p ≡ �p (r) and �c ≡ �c (r).

In what follows the control and probe fields are assumed to be tuned to the two-photon
resonance: ε21 = 0. The remaining two-photon mismatch (if any) can be accommodated
within the trapping potential

V̂ (r) = V1(r)|1〉〈1| + V2(r)|2〉〈2| + V3(r)|3〉〈3|, (4)

where Vj (r) is the trapping potential for an atom in the electronic state j , with j = 1, 2, 3.
Neglecting the two-photon detuning, the Hamiltonian (3) has the eigenstate

|D〉 ≡ |D(r)〉 = 1√
1 + |ζ |2

(|1〉 − ζ |2〉) (5)

characterized by the zero eigenenergy: Ĥ 0(r)|D〉 = 0. Here

ζ = �p

�c
(6)

is the ratio of the amplitudes of the probe and control fields.
The state |D〉 is known as the dark state [23–26]. We shall be interested in a situation

where the atoms are driven to their dark states. If an atom is in the dark state |D〉, the resonant
control and probe beams induce the absorption paths |2〉 → |3〉 and |1〉 → |3〉 which interfere
destructively, resulting in the electromagnetically induced transparency [23–26]. In such a
situation, the transitions to the upper atomic level 3 are suppressed, so the atomic level 3 is
weakly populated. This justifies neglection of losses due to spontaneous emission by excited
atoms in the Hamiltonian (3).

3. Equations of the atomic motion

3.1. Translational motion for a multilevel atom

Let us now consider translational motion of an atom taking into account its internal degrees
of freedom. The full atomic Hamiltonian is given by

Ĥ = p̂2

2M
+ Ĥ 0(r) + V̂ (r), (7)

where p̂ ≡ −ih̄∇ is the momentum operator for the atom positioned at r, and M is the atomic
mass. The Hamiltonian for the electronic degrees of freedom Ĥ 0(r) and the external trapping
potential V̂ (r) featured in equation (7) are defined by equations (3) and (4).

For fixed r the electronic Hamiltonian Ĥ 0(r) can be diagonalized to give a set of
eigenvectors |X(r)〉 and eigenvalues εX(r), where X = D, +,−. The state with X = D is the
dark atomic state given by equation (5) and characterized by zero eigenenergy: εD(r) = 0. If
the single and two photon detuning is zero, the remaining eigenstates are

|±(r)〉 = 1√
2
(|B〉 ± |3〉), (8)

corresponding eigenenergies being

ε±(r) = ±�. (9)

Here � =
√

�2
p + �2

c is the total Rabi frequency and

|B〉 ≡ |B(r)〉 = 1√
1 + |ζ |2

(ζ ∗|1〉 + |2〉) (10)

is the atomic bright state.
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The full atomic wavefunction 	 can then be expanded as

|	(r)〉 =
∑

X=D,+,−

X(r)|X(r)〉, (11)

where a composite wavefunction 
X(r) describes the translational motion of an atom in the
electronic state X, with X = D, +,−.

Substituting equation (11) into the Schrödinger equation ih̄∂	/∂t = Ĥ	, one arrives
at a set of coupled equations for the components 
X. Introducing the column 
 =
(
D,
+, 
−)T , it is convenient to represent these equations in a matrix form

ih̄
∂

∂t

 =

[
1

2M
(−ih̄∇ − A)2 + U

]

, (12)

where A and U are the 3 × 3 matrices with the following elements:

AX,X′ = ih̄〈X|∇X′〉, (13)

UX,X′ = εX(r)δX,X′ + 〈X|V̂ (r)|X′〉, (14)

i.e. the matrix U includes contributions from both the internal atomic energies and also the
external trapping potential.

Since the atomic internal motion is much faster than the external (translational) one, the
difference in the atomic energies UX,X − UX′,X′ is normally much larger than the energies
of non-adiabatic coupling between these states. In such a situation, the translational motion
of atoms in different internal levels can be considered to be independent. This leads to the
adiabatic approximation.

3.2. Effective equation of motion for a dark-state atom

Specifically, let us suppose that the atomic dark state |D〉 is well separated from the remaining
atomic states |±〉. Neglecting transitions to the latter states, equation (12) provides an effective
equation for the translational motion of an atom in the electronic dark state |D〉:

ih̄∂
D/∂t = Ĥ eff
D (15)

where the effective Hamiltonian

Ĥ eff = 1

2M
(−ih̄∇ − Aeff)

2 + Veff (16)

is characterized by the effective vector and trapping potentials:

Aeff ≡ AD,D = ih̄〈D|∇D〉 (17)

and

Veff = U + φ, (18)

with U ≡ UD,D being defined by equation (14). An additional scalar potential φ appears due
to the exclusion of the electronic states with X = ± in the effective equation of motion (15).
In particular, we have

φ = 1

2M

∑
X=±

AD,XAX,D

= h̄2

2M
(〈∇D|∇D〉 + 〈D|∇D〉〈D|∇D〉) (19)
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and

U = V1(r) + |ζ |2V2(r)

1 + |ζ |2 . (20)

Since V1(r) and V2(r) are trapping potentials for an atom in electronic states 1 and 2,
respectively, U represents the external trapping potential for the atom in the dark state.

In this way, the full effective trapping potential Veff is composed of the external trapping
potential U and the geometric scalar potential φ. The former U is determined by the shape of
the trapping potentials V1(r) and V2(r), as well as the intensity ratio |ζ |2. The latter geometric
potential φ is determined exclusively by the spatial dependence of the dark state |D〉 emerging
through the spatial dependence of the ratio between the Rabi frequencies ζ = �p/�c. Note
that the effective vector potential Aeff (known as a Berry connection [18]) has a geometric
nature as well, because it also originates from the spatial dependence of the atomic dark state
|D〉 ≡ |D(r)〉.

3.3. Adiabatic condition

The energy difference between the dark state and the remaining atomic states |±(r)〉 is
characterized by the total Rabi frequency � =

√
�2

p + �2
c . Assuming that the control and

probe fields are tuned to the one- and two-photon resonances (ε31, ε21 
 h̄�), the adiabatic
approach holds if the non-diagonal matrix elements in equation (12) are much smaller than
the total Rabi frequency �. This leads to the following condition

F 
 � (21)

where the velocity-dependent term,

F = 1

1 + |ζ |2 |∇ζ · v| , (22)

reflects the two-photon Doppler detuning [17]. Note that condition (21) does not accommodate
effects due to the decay of the excited atoms. The dissipation effects can be included replacing
the energy of the one-photon detuning ε31 by ε31 − ih̄γ3, where γ3 is the excited-state decay
rate. In such a situation, the dark state can be shown to acquire a finite lifetime

τD ∼ γ −1
3 �2/F 2 (23)

which should be large compared to other characteristic time scales of the system.
Condition (21) implies that the inverse Rabi frequency �−1 should be smaller than the

time an atom travels a characteristic length over which the amplitude or the phase of the ratio
ζ = �p/�c changes considerably. The latter length exceeds the optical wavelength, and the
Rabi frequency can be of the order of 107 to 108 s−1 [27]. Therefore the adiabatic condition
(21) should hold for atomic velocities up to tens of meters per second, i.e. up to extremely large
velocities in the context of ultra-cold atomic gases. The allowed atomic velocities become
lower if the spontaneous decay of the excited atoms is taken into account. The atomic dark
state acquires then a finite lifetime τD equal to γ −1

3 times the ratio �2/F 2; see equation (23).
The atomic decay rate γ3 is typically of the order 107 s−1. Therefore if the atomic velocities
are of the order of a centimetre per second (a typical speed of sound in an atomic BEC), the
atoms should survive in their dark states up to a few seconds. This is comparable to a typical
lifetime of an atomic BEC.
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4. Analysis of the effective vector and trapping potentials

Substituting expression (5) for the dark state into equation (17) for the effective vector potential,
the latter takes the form,

Aeff = ih̄
ζ ∗∇ζ − ζ∇ζ ∗

2(1 + |ζ |2) . (24)

The effective magnetic field then reads

Beff = ∇ × Aeff = ih̄
∇ζ ∗ × ∇ζ

(1 + |ζ |2)2
(25)

and the geometric scalar potential is

φ = h̄2

2M

∇ζ ∗∇ζ

(1 + |ζ |2)2
. (26)

4.1. Separation into the amplitude and phase

Let us express the ratio of Rabi frequencies ζ in terms of the amplitude and phase:

ζ = �p

�c
= |ζ | eiS. (27)

The effective vector potential, the effective magnetic field and the effective scalar potential
then read

Aeff = −h̄
|ζ |2

1 + |ζ |2 ∇S, (28)

Beff = h̄
∇S × ∇|ζ |2
(1 + |ζ |2)2

, (29)

φ = h̄2

2M

(∇|ζ |)2 + |ζ |2(∇S)2

(1 + |ζ |2)2
. (30)

4.2. Representation in terms of the mixing angle

It is convenient to introduce the mixing angle α via the following relationships:

sin α = 1√
1 + |ζ |2

, cos α = |ζ |√
1 + |ζ |2

. (31)

If the intensity ratio |ζ |2 is much larger than the unity, the mixing angle is α ≈ 1/ζ . On the
other hand, if |ζ |2 
 1, we have α ≈ π/2 − |ζ |.

The dark state can now be represented as

|D〉 = sin α|1〉 − cos α eiS |2〉. (32)

The effective vector and scalar potentials can also be rewritten in terms of the mixing angle:

Aeff = −h̄ cos2 α∇S = −h̄

2
(1 + cos(2α)) ∇S (33)

and

φ = h̄2

2M

[(
1

2
sin(2α)∇S

)2

+ (∇α)2

]

= h̄2

8M

[
(1 − cos2(2α))(∇S)2 +

(∇ cos(2α))2

1 − cos2(2α)

]
, (34)
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i.e. both potentials can be expressed through the quantity

cos(2α) = |ζ |2 − 1

|ζ |2 + 1
. (35)

The same applies to the effective magnetic field:

Beff = ∇ × Aeff = h̄

2
∇S × ∇ cos(2α). (36)

4.3. Co-propagating control and probe beams with OAM

If the co-propagating probe and control fields carry OAM, their amplitudes �p and �c are
given by equations (1) and (2). The phase of the ratio ζ = �p/�c then reads

S = lφ, (37)

where l = lp − lc. Note that although both the control and probe fields are generally allowed
to have nonzero OAM by equations (1) and (2), it is desirable for the OAM to be zero for
one of these beams. In fact, if both lp and lc were nonzero, the amplitudes �p and �c should
simultaneously go to zero along the z-axis. In such a situation, the total Rabi frequency
� =

√
�2

p + �2
c would also vanish, leading to the violation of the adiabatic condition (21)

along the z-axis.
Substituting equation (37) into equations (33), (34) and (36), one has

Aeff = −h̄ cos2 α
l

ρ
eϕ, (38)

φ = h̄2

2M

[(
1

2
sin(2α)

l

ρ

)2

+ (∇α)2

]
, (39)

and

Beff = h̄

2

l

ρ
eϕ × ∇ cos(2α) (40)

where eϕ is the unit vector in the azimuthal direction and ρ is the cylindrical radius.
In what follows the intensity ratio |ζ |2 is considered to depend on the cylindrical radius

ρ only (unless stated otherwise). In that case the effective scalar potential and magnetic field
reduce to

φ = h̄2

2M

[(
1

2
sin(2α)

l

ρ

)2

+

(
∂α

∂ρ

)2
]

(41)

and

Beff = −h̄

2

l

ρ

∂

∂ρ
cos(2α)ez. (42)

In such a situation the effective magnetic field is directed along the z-axis.

5. Specific cases

5.1. Polynomial case

If we take

|ζ | = aρ + bρ2, (43)
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then

cos(2α) = (aρ + bρ2)2 − 1

(aρ + bρ2)2 + 1
.

Consequently one has

Aeff = −h̄l
ρ(a + bρ)2

1 + ρ2(a + bρ)2
eϕ, (44)

φ = h̄2

2M

(l2 + 1)a2 + 2(l2 + 2)abρ + (l2 + 4)b2ρ2

(1 + ρ2(a + bρ)2)2
. (45)

In this case the effective magnetic field

Beff = −h̄l
2(a + bρ)(a + 2bρ)

(1 + ρ2(a + bρ)2)2
ez (46)

exhibits a radial dependence.

5.2. Bessel beam

Suppose the probe field represents a Bessel beam and the Rabi frequency of the control beam
is almost constant within an atomic cloud. In such a case we have

ζ = bJl(aρ) eilϕ (47)

where b is a dimensionless constant determining the relative strength of the probe field. The
effective vector and scalar potentials are then

Aeff = −h̄
b2Jl(aρ)2

1 + b2Jl(aρ)2

l

ρ
eϕ, (48)

φ = h̄2b2

2M

4l2Jl(aρ)2 + a2ρ2(Jl−1(aρ) − Jl+1(aρ))2

4ρ2(1 + b2Jl(aρ)2)2
. (49)

In this case the effective magnetic field

Beff = −h̄
ab2l

ρ

Jl(aρ)(Jl−1(aρ) − Jl+1(aρ))

(1 + b2Jl(aρ)2)2
ez (50)

also exhibits a radial dependence. Furthermore, the strength of the effective magnetic field
alternates its sign, i.e. the regions with the effective magnetic field aligned along z-axis are
replaced by the regions in which the effective magnetic field is directed opposite to the z-axis
and vice versa.

Next we shall examine situations where the effective magnetic field is constant.

5.3. Constant effective magnetic field for ring geometry

In the previous paper [17] we have analysed a constant effective field in the case where the
atomic motion is restricted to distances where ρ < ρmax. This can be achieved if the intensity
ratio is

|ζ |2 = (ρ/ρmax)
2

1 − (ρ/ρmax)
2 , (51)

so that the effective vector potential, equation (38), takes the form

Aeff = −h̄lρρ−2
maxeφ. (52)
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Figure 2. Geometric scalar potential φ for the case of constant effective magnetic field Beff in the
ring geometry. The constants are M = 1, h̄ = 1, l = 10, ρmin = 1 and ρmax = 10.

This yields a constant effective magnetic field

Beff = −2h̄lρ−2
maxez, (53)

with the corresponding cyclotron frequency ωc = h̄2l/Mρ2
max and the magnetic length

�B = √
h̄/Mωc = ρmax/

√
2l.

Let us now consider a situation where the atomic motion is restricted additionally from
below, i.e. ρ > ρmin. In such a case the constant effective magnetic field is obtained provided

|ζ |2 = ρ2 − ρ2
min

ρ2
max − ρ2

. (54)

The effective vector potential then takes the form

Aeff = −h̄
ρ2 − ρ2

min

ρ2
max − ρ2

min

l

ρ
eϕ, (55)

giving the following magnetic field strength:

Beff = − 2h̄l

ρ2
max − ρ2

min

ez. (56)

For ρ → ρmin and ρ → ρmax, the intensity ratio |ζ |2 goes respectively to zero and to infinity,
so the equations (54)–(56) have a meaning only within a disc where ρmin < ρ < ρmax. In other
words, equation (54) can model an actual intensity distribution of the control and probe beams
only within this region. The effective magnetic flux over the disc is given by 	 = 2πh̄l. Since
the winding number l of light beams can currently be as large as several hundreds [28, 29], it
is possible to induce a substantial flux 	 in the atomic cloud. This might enable us to study
phenomena related to filled Landau levels with a large number of atoms in the quantum gas.

Finally the scalar potential is given by

φ = h̄2

2M

(
l2

ρ2

(
ρ2

max − ρ2
)(

ρ2 − ρ2
min

)
(
ρ2

max − ρ2
min

)2 +
ρ2(

ρ2
max − ρ2

)(
ρ2 − ρ2

min

)
)

. (57)

The potential φ has singularities both at ρ = ρmin and ρ = ρmax, as illustrated in figure 2.
This might provide a natural trapping container confining the atoms within the ring.
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5.4. Effective magnetic field of a magnetic monopole

The method for creating an effective magnetic field allows us to consider various exotic cases.
An interesting possibility is to create an effective field of a magnetic monopole. Such an idea
was proposed in [30].

A possible expression for the vector potential of the monopole field has the form

A ∼ 1 − cos θ

r sin θ
eϕ,

where r, θ and ϕ are the spherical coordinates. Such a potential has a singularity at the
string where θ = 0. Unlike in [30] we do not attempt to eliminate this singularity, since the
elimination does not make the field easier to create.

In order to get an effective vector potential of a magnetic monopole the intensity ratio
should obey the condition

|ζ |2 = 1 − cos θ

1 + cos θ
, (58)

where we are no longer making the paraxial approximation. In such a situation

cos(2α) = − cos θ = −z/r.

Consequently the effective vector potential, the effective magnetic field and the scalar potential
are

Aeff = −h̄l

2

1 − cos θ

r sin θ
eϕ, (59)

Beff = − h̄l

2r2
er , (60)

φ = h̄2

2M

l2 + 1

4r2
. (61)

The magnetic charge of the effective monopole is now proportional to the difference of the
orbital angular momentum of the light beams h̄l ≡ h̄(lp − lc). On the other hand, the emerging
scalar potential φ is repulsive and spherically symmetrical, and is characterized by the r−2

behaviour.
In order to satisfy the condition (58) the Rabi frequencies should obey the following:

|�p|2 = f (r)(1 − cos θ), (62)

|�c|2 = f (r)(1 + cos θ) (63)

where f (r) is an arbitrary function of the coordinates. For a light beam with an OAM,
its intensity is known to be zero along the propagation axis z [21, 22]. Therefore if the
probe beam has an OAM, the function f (r) should be zero for cos θ = −1, i.e. along
the negative part of z-axis. Under this condition the control beam should also be zero
along the negative part of z-axis, so the adiabatic condition (21) is violated there. Similar
conclusions can be reached if the control beam has OAM.

In this way the effective field of a magnetic monopole cannot be created in the whole
space, i.e. the effective field differs from the field of a monopole in the vicinity of the negative
(or positive) part of the z-axis. This conclusion is valid even if the singularity of the potential
is eliminated [30], since the intensities of the beams remain of the same form using such a
procedure. It should be noted that a possibility of creating the field of a magnetic monopole
can be improved applying a more complex scheme where three laser beams act resonantly on
four-level atoms in the tripod configuration [31].
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6. Conclusions

In this paper we have studied the effects of using probe and control beams with orbital angular
momentum in an EIT configuration. The nontrivial phase and intensity of the incident light
beams gives rise to effective magnetic vector potentials and trapping potentials for the atoms.
The theory holds for both fermions and bosons where the effects from collisional interactions
can be readily included [17]. Recent advances in spatial light modulator technology enables
us to consider rather exotic light beams [32]. Indeed one of the advantages of using light
to create the effective vector potential, and consequently an effective magnetic field, is the
freedom to choose almost any spatially dependent effective magnetic field, as long as the
corresponding light fields obey Maxwell’s equations. This means that we have complete
freedom to choose the effective magnetic field in a two-dimensional geometry, but we can
also control the effective field in three dimensions. Shaping light beams in three dimensions
is more difficult but certainly not impossible [33]. We have analysed different cases where
the radial dependence of the magnetic fields was exploited. In particular the homogenous
magnetic field in a ring geometry and magnetic fields using Bessel beams were studied.

An effective magnetic field acting on an atomic quantum gas offers some truly remarkable
possibilities. We are now in a position to study magnetic effects encountered in solid-state
situations with electrons. The effective magnetic field can also be applied to investigate other
intriguing phenomena which intrinsically depend on the magnetic field. For instance, the
properties of a gas described by a single completely filled Landau level can now be explored
using a cold gas of electrically neutral atomic fermions [34]. In addition, if the collisional
interaction between the atoms is taken into account, we can study the magnetic properties of a
superfluid atomic Fermi gas [35–38] where insight into the BCS–BEC crossover regime could
be gained.

Acknowledgments

This work was supported by the Royal Society of Edinburgh, the Alexander von Humboldt
Foundation and the Marie-Curie Trainings-site at the University of Kaiserslautern. Helpful
discussions with M Fleischhauer are gratefully acknowledged.

References

[1] Davis K B, Mewes M-O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys.
Rev. Lett. 75 3969

[2] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[3] Dalfovo F, Giorgini S, Pitaevskii L and Stringari S 1999 Rev. Mod. Phys. 71 463
[4] Pitaevskii L and Stringari S 2003 Bose–Einstein Condensation (Oxford: Clarendon)
[5] DeMarco B and Jin D 1999 Science 285 1703
[6] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev.

Lett. 87 080403
[7] Hadzibabic Z, Gupta S, Stan C A, Schunck C H, Zwierlein M W, Dieckmann K and Ketterle W 2003 Phys.

Rev. Lett. 91 160401
Hadzibabic Z, Gupta S, Stan C A, Schunck C H, Zwierlein M W, Dieckmann K and Ketterle W 2005 Phys.

Rev. Lett. 95 010404
[8] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[9] Bretin V, Stock S, Seurin Y and Dalibard J 2004 Phys. Rev. Lett. 92 050403

[10] Schweikhard V, Coddington I, Engels P, Mogendorff V P and Cornell E A 2004 Phys. Rev. Lett. 92 040404
[11] Baranov M A, Osterloh K and Lewenstein M 2005 Phys. Rev. Lett. 94 070404
[12] Jaksch D and Zoller P 2003 New J. Phys. 5 56
[13] Mueller E J 2004 Phys. Rev. A 70 041603(R)

http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1103/PhysRevLett.91.160401
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.92.050403
http://dx.doi.org/10.1103/PhysRevLett.92.040404
http://dx.doi.org/10.1103/PhysRevLett.94.070404
http://dx.doi.org/10.1088/1367-2630/5/1/356
http://dx.doi.org/10.1103/PhysRevA.70.041603


Effective magnetic fields in atomic gases 4183

[14] Sørensen A S, Demler E and Lukin M D 2005 Phys. Rev. Lett. 94 086803
[15] Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
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