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Abstract
We consider the spontaneous emission in an absorbing medium by calculating
the quantum flow of energy from an emitting atom. For this purpose, we
extend the analysis by Power and Thirunamachandran of quantized Maxwell
fields in the vicinity of an atom in the free space to a situation where the
emitter is in a dielectric medium. We represent the quantum flow in terms
of the non-equal time commutators involving electric and magnetic fields,
as well as the local displacement field. The commutators are calculated
applying a previously developed microscopic theory of quantization of radiation
in dielectrics. Consequently, we derive from first principles the rate of
spontaneous emission in an absorbing medium containing local field factors and
other refractive contributions. The results support the previous introduction of
the (virtual cavity) local field correction by Barnett et al on a phenomenological
basis, as well as our previous approach in which the spontaneous emission is
considered as a resonance energy transfer to the far-zone atoms. A distinctive
feature of the present formalism is that it deals with the spontaneous emission
directly by calculating the quantum flow from the emitting atom. Therefore,
the method is free from divergences appearing in other approaches analysing
the spontaneous decay in absorbing media.

This paper is dedicated to the memory of Edwin Power.

1. Introduction

During the past years, there has been a great deal of interest in modified spontaneous
emission by atoms (molecules) in various environments, such as in photonic band-gap crystals
[1–5] and left-handed media [6, 7]. Spontaneous emission has been investigated in ordinary
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homogeneous dielectrics as well, including both transparent [8–11] and absorbing [12–18]
ones. In the case of transparent dielectrics, the rate of the spontaneous emission is usually
obtained through a standard procedure that involves summation over the modes of emitted
photons [10, 11]. The rate of the spontaneous decay can then be represented in terms of
the appropriate (single-site) Green functions. However, such a procedure leads to spurious
divergences in the rate of the spontaneous decay if applied to absorbing media [13, 16, 17].
The divergences appear because the calculated rate of the spontaneous decay accommodates
not only emission of a real photon but also de-excitation of the emitter by near-zone atoms via a
Förster mechanism [19–22]. The Förster energy transfer represents an exchange of excitation
energy between an excited and unexcited atom with a rate proportional to R−6, where R is
an inter-atomic separation. The decay rate of an excited atom is thus sensitive to its local
atomic environment and diverges if a continuous limit is applied for the surrounding medium.
The divergences can be removed by applying a real cavity model [23, 24] or by using other
procedures that effectively introduce a cut-off distance preventing the surrounding atoms from
being too close to the emitter [13, 16, 17]. It is worth noting that various procedures lead to
somewhat different emission rates [13, 16, 17].

It is desirable to have a method allowing one to calculate the rate of spontaneous emission
directly without eliminating the near-zone (Förster) energy transfer. In the previous paper [14],
we have applied a unified theory of radiative and radiationless energy transfer in dielectrics [22]
to deal with the spontaneous emission in absorbing media. The decay rate of an excited atom
has been derived calculating the total rate of excitation transfer to the surrounding species.
The contribution due to the far-zone energy transfer was shown to yield the rate of a photon
emission in the absorbing medium [14].

Here, we develop a more direct method of calculating the rate of spontaneous emission in
an absorbing medium. Specifically, we derive the emission rate in the absorbing medium by
calculating the quantum flow of energy by an emitting atom. For this purpose, we extend the
analysis by Power and Thirunamachandran of quantized Maxwell fields in a vicinity of an atom
in the free space [25, 26] to a situation where the emitter is situated in a dielectric medium.
We represent the quantum flow in terms of the non-equal time commutators involving electric
and magnetic fields, as well as the local displacement field. The commutators are calculated
applying a previously developed microscopic theory of quantization of radiation in dielectrics
[22, 27–29]. Consequently, we derive from first principles the rate of spontaneous emission
in an absorbing medium containing local field factors and other refractive contributions. The
results support the previous introduction of the (virtual cavity) local field correction by Barnett
et al [12, 13] on a phenomenological basis, as well as our previous approach [14] in which
the spontaneous emission is treated as a resonance energy transfer to the far-zone atoms. A
distinctive feature of the present formalism is that it deals with the spontaneous emission
directly by calculating the quantum flow from the emitting atom. Therefore, the method is
free from the divergences appearing in other approaches analysing the spontaneous decay in
absorbing media.

The paper is organized as follows. In the next two subsections, we define a system of
atoms interacting with a radiation field and separate the system into the emitting atom and
the remaining atoms coupled with the radiation field. In subsection 2.3, we consider the time
evolution of the electric and magnetic field operators and expand these operators in the powers
of the interaction strength between the emitting atom and the surrounding radiation field. In
subsection 2.4, we obtain the corresponding expansion of the Poynting vector. In section 3, we
analyse the quantum flow due to an atom emitting both in the free space and in an absorbing
medium, and obtain the corresponding rates of the spontaneous emission. In section 4, we
summarize the findings.
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2. General

2.1. A system of atoms coupled with a radiation field

Let us consider a system of atoms (or molecules) interacting with a quantized radiation field.
We shall make use of a multipolar formulation of quantum electrodynamics (QED) in which
interaction between the atoms is mediated by virtual photons, there being no direct inter-atomic
coupling [30–35]. The Hamiltonian of the system in the electric dipole approximation of the
multipolar QED reads

H = Hrad +
∑

ζ

Hζ +
∑

ζ

Vζ , (1)

where Hrad is the Hamiltonian of the quantized radiation field, Hζ is the Hamiltonian for an
atom ζ positioned at rζ and the summation is carried out over all atoms ζ . The operator

Vζ = −ε−1
0 µ(ζ ) · d⊥(rζ ) (2)

describes coupling of the atom ζ with the radiation field, where µ(ζ ) is the corresponding
electric dipole operator and d⊥(r) is the operator for the transverse displacement field.

Both the radiation Hamiltonian and the displacement field operator can be expanded in
terms of vacuum photon operators in a conventional way, see e.g. references [32–35]. Yet the
vacuum photons do not represent normal modes of a coupled radiation–matter system.

2.2. Separation into zero-order Hamiltonian and interaction term

We shall be interested in the spontaneous emission by an atom (molecule) A surrounded
by an atomic (molecular) medium. For this purpose, it is convenient to separate the full
Hamiltonian (1) into a zero-order Hamiltonian H0 and the interaction operator V :

H = H0 + V. (3)

The operator V describes coupling between the emitting atom A and the surrounding
electromagnetic field:

V = −ε−1
0 µ · d⊥(0), (4)

where the emitter is assumed to be placed at the origin: rA = 0. Furthermore, we have omitted
the superscript A in the dipole operator µ ≡ µ(A). It is worth noting that d⊥(r) is calculated
at the emitter site r = 0 in equation (4). Therefore, it is the local displacement operator that
is featured in the interaction operator V .

The zero-order Hamiltonian H0 comprises the Hamiltonian for the emitter HA and the
Hamiltonian Hpol for the radiation field coupled with the remaining species ζ �= A:

H0 = HA + Hpol, (5)

Hpol = Hrad +
∑
ζ �=A

Hζ +
∑
ζ �=A

Vζ . (6)

The normal modes of the latter radiation–matter system are known as polaritons [8, 9, 11,
22, 27–29, 36] representing photons ‘dressed’ by the atomic medium. Thus, the spontaneous
decay of an atom involves emission of a polariton (a medium-dressed photon) rather than a
vacuum photon.
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2.3. Time evolution of the field operators

Let us consider the time evolution of the electric and magnetic field operators in the Heisenberg-
interaction representation (x stands for e or h):

x̃(r, t) = e−iH0t/h̄ eiHt/h̄x(r) e−iHt/h̄, eiH0t/h̄, (7)

where x(r) is the corresponding Schrödinger field. The operator x̃(r, t) obeys the following
equation of motion:

ih̄
∂x̃(r, t)

∂t
= [x̃(r, t), V (t)], (8)

with V (t) = exp(−iH0t/h̄)V exp(iH0t/h̄). We shall expand x̃(r, t) in the powers of the
interaction strength:

x̃(r, t) = x(0)(r, t) + x(1)(r, t) + x(2)(r, t) + · · · , (9)

where the zero-order field coincides with the Schrödinger field x(0)(r, t) = x(r) ≡ x(r, 0).
The higher order fields can be obtained through the following recurrent relationship:

x(j+1)(r, t) = i(h̄ε0)
−1

∫ t

0
dt ′

[
x(j)(r, t ′), d⊥

l (0,−t ′)µl(−t ′)
]

(j � 0), (10)

where the summation over a repeated Cartesian index l is implied. Here,

µ(τ ) = eiHAτ/h̄µ e−iHAτ/h̄

and

d⊥(rA, τ) = eiHpolτ/h̄d⊥(rA) e−iHpolτ/h̄

are operators in the interaction representation.
Since

[
x(r, 0), d⊥

l (0,−t ′)
]

is a c-number, equation (10) yields the following first- and
second-order fields:

x(1)(r, t) = i(h̄ε0)
−1

∫ t

0
dt ′

[
x(r, 0), d⊥

l (0,−t ′)
]
µl(−t ′), (11)

x(2)(r, t) = −(h̄ε0)
−2

∫ t

0
dt ′

[
x(r, 0), d⊥

l (0,−t ′)
] ∫ t ′

0
dt ′′d⊥

j (0,−t ′′)[µl(−t ′), µj (−t ′′)].

(12)

2.4. Poynting vector

We are interested in a flow of the emitting energy from the source atom A. The operator of
the Poynting vector in the Heisenberg-interaction representation reads

S̃ = 1
2 (ẽ × h̃ − h̃ × ẽ). (13)

Using the Poynting vector, one can calculate the rate of the spontaneous emission by analysing
the total flow of energy over a sphere of a radius r [25, 26]:

Jγ =
∫

r〈vac|〈γ |S̃|γ 〉|vac〉 · r d�, (14)

where |γ 〉|vac〉 is the initial state of the whole system in which the emitting atom A is in an
excited state |γ 〉 and the surrounding polariton medium in its ground (vacuum) state |vac〉.

The electric and magnetic field operators entering equation (13) can be expanded using
the procedure outlined in the previous subsection. As a result, one obtains the expansion of
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the Poynting vector in the powers of the interaction strength between the emitting atom and
the surrounding polariton bath. The second-order Poynting vector reads

S̃(2) = S̃(1,1) + S̃(2,0) + S̃(0,2), (15)

with

S̃(q,r) = 1
2 e(q) × h(r) + h.c. (16)

Here, e(q) and h(r) are the qth-order electric and the rth-order magnetic fields. Note that the
zero- and first-order Poynting vectors S(0) = S(0,0) and S(1) = S(0,1) +S(1,0) do not contribute
to the energy flow (14) and hence are out of interest. Therefore in what follows we shall
concentrate on the second-order Poynting vector.

The quantum mechanical average of the Poynting vector can be expressed as

〈vac|〈γ |S̃(2)|γ 〉|vac〉 = Aγ + Bγ (17)

where Aγ = 〈vac|〈γ |S̃(1,1)|γ 〉|vac〉 is a contribution due to the first-order electric and magnetic
fields, Bγ = 〈vac|〈γ |(S̃(2,0) + S̃(0,2))|γ 〉|vac〉 being due to the products of the zero- and
second-order fields.

The former Aγ reads

Aγ = 1

2

∑
κ

e(1)
γ κ × h(1)

κγ + c.c. (18)

where

e(1)
γ κ = i(h̄ε0)

−1µl
γ κ

∫ t

0
dt ′

[
e(r, 0), d⊥

l (0,−t ′)
]

eiωκγ t ′ , (19)

h(1)
κγ = i(h̄ε0)

−1µj
κγ

∫ t

0
dt ′

[
h(r, 0), d⊥

j (0,−t ′)
]

eiωγκ t ′ , (20)

ωγκ = ωγ − ωκ is the frequency of the atomic transition γ → κ and µγ κ is the corresponding
transition dipole moment.

For times exceeding the inverse emission frequencies ω−1
γ κ , one can neglect the fast

oscillating terms in the latter Bγ giving

Bγ = 1

2

∑
κ

sign (ωγκ) e(1)
γ κ × h(1)

κγ + c.c. (21)

where sign(x) = x/|x| is a sign function. Therefore, the full second-order Poynting vector
then reads

〈vac|〈γ |S̃(2)|γ 〉|vac〉 =
∑

κ

	(ωγκ) e(1)
γ κ × h(1)

κγ + c.c. (22)

where 	(· · ·) is a unit step function.
It is instructive that contributions due to the upward atomic transitions cancel out in

equation (22) due to the term Bγ featured in equation (17). Therefore, only downward
transitions contribute to the Poynting vector (22) as required. Furthermore, the term Bγ gives
the second half to the energy flow associated with the downward atomic transitions. This
shows the importance of the terms S̃(2,0) and S̃(0,2) due to the zero- and second-order electric
and magnetic fields, the point already discussed by Power and Thirunamachandran [25, 26]
in their analysis of quantized fields generated by a source atom in vacuum. Note that our
analysis is not restricted to the case where the source atom is situated in the free space. The
influence of the material medium appears through the non-equal time commutators featured in
equations (19) and (20). In the next subsection we shall outline the analysis of the quantum
flow from a source atom in the free space [25, 26]. Subsequently, we shall extend the treatment
to the case of an absorbing dielectric medium.
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3. Spontaneous emission in free space and media

3.1. Emission in the free space

In the case of the free space, the non-equal time commutators featured in equations (19)
and (20) can be easily obtained using the familiar expansion for the field operators in terms of
vacuum photons [32–34] giving[

eq(r, 0), d⊥
l (0,−t ′)

] = ih̄c(∇2δql − ∇q∇l )�(r, t ′), (23)

[
hs(r, 0), d⊥

j (0,−t ′)
] = ih̄cε0εsjp∇p

∂

∂t ′
�(r, t ′), (24)

where

�(r, t ′) = δ(r − ct ′) − δ(r + ct ′)
4πr

, (25)

is the relativistic � function [37]. Hence, one has for times in excess of the relativistic time
lag, t > r/c,

(
e(1)
γ κ

)
q

= µl
γ κ(−∇2δql + ∇q∇l )

eikκγ r

4πε0r
= µl

γ κ

4πε0
k3
κγ fql(kκγ r) eikκγ r , (26)

(
h(1)

κγ

)
s
= iωγκµ

j
κγ εsjp∇p

eikγ κ r

4πr
= ωγκ

µ
j
κγ

4π
k2
γ κgsj (kκγ r) eikγ κ r , (27)

where

fql(kκγ r) =
[
βql

(
1

k3
κγ r3

− i

k2
κγ r2

)
− αql

1

kκγ r

]
eikκγ r , (28)

gsj (kκγ r) = −εsjpr̂p

[
1

k2
γ κr

2
− i

kγκr

]
eikγ κ r (29)

are the tensors describing the dipole radiation. Here,

αql = δql − r̂q r̂l , βql = δql − 3r̂q r̂l , (30)

where r̂ = r/r is a unit vector and kγκ = ωγκ/c is a wavevector corresponding to the atomic
transition γ → κ .

Consequently, the Poynting vector, equation (22), takes the form

〈vac|〈γ |S̃(2)|γ 〉|vac〉 = r̂
∑

κ

ωγκ	(ωγκ)
k3
γ κ

8π2ε0r2
[|µκγ |2 − (µκγ · r̂)2], (31)

where the terms with r−4 and r−6 cancel exactly in the Poynting vector (31) leaving only the
r−2 term [25, 26]. Therefore, the result (31) does not necessarily restrict r to large distances.
Substituting equation (31) into (14), the quantum flow can be represented as

Jγ =
∑

κ

h̄ωγκ�
vac
γ→κ	(ωγκ), (32)

where

�vac
γ→κ = ω3

γ κ |µκγ |2
3πc3h̄ε0

(33)

is the vacuum rate of the spontaneous emission associated with the atomic transition γ → κ .
Such a method of obtaining the emission rate [25, 26] can be contrasted with a conventional
approach employing the Fermi golden rule [38, 39].
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3.2. Emission in an absorbing medium

Consider now the case where the emitter is in a dielectric medium. The non-equal time
commutators featured in equations (19) and (20) can then be obtained using a microscopically
derived expansion of the electric and magnetic field operators eq(r, 0) and hs(r, 0), as well as
the local displacement field operator d⊥

l (0,−t ′) in terms of polariton creation and annihilation
operators [27, 28]. Alternatively, non-equal time commutators can be calculated adapting for
the present situation a Green function technique developed in [22, 29]. In fact, the commutators
can be represented in terms of the appropriate (two-site) Green functions:[
xu(r, 0), d⊥

l (0 − t ′)
] = 1

2π i

∫ +∞

−∞
dω

[
Gxd

ul (r, ω − is) − Gxd
ul (r, ω + is)

]
eiωt ′ , (34)

where s → +0,

Gxd
ul (r, ω) = 〈vac| {xu(r)G+(ω)d⊥

l (0) − d⊥
l (0)G−(ω)xu(r)

} |vac〉, (35)

and G±(ω) = (ω ± Hpol/h̄)−1. Here, x stands for the electric and magnetic field operators:
x = e, h. For x = d the Green function Gxd

ul (r, ω) has been calculated in [22, 29] assuming
that the host atoms are of the same type, placed regularly to form a simple cubic lattice, and
characterized by isotropic polarizabilities. The analysis can be extended to the case where
x = e, h giving[

eq(r, 0), d⊥
l (0,−t ′)

] = ih̄c(∇2δql − ∇q∇l )�̃(e)(r, t
′), (36)

[
hs(r, 0), d⊥

j (0,−t ′)
] = ih̄cε0εsjp∇p

∂

∂t ′
�̃(h)(r, t

′), (37)

with

�̃(x)(r, t
′) = δ̃(x)(r, t

′) − δ̃∗
(x)(r,−t ′)

4πr
, (38)

where

δ̃(e)(r, t
′) = 1

2πc

∫ +∞

−∞
dω

(
n2 + 2

3

)
eiω(nr/c−t ′), (39)

δ̃(h)(r, t
′) = 1

2πc

∫ +∞

−∞
dω

(
n2 + 2

3n2

)
eiω(nr/c−t ′) (40)

are the smoothened delta functions and n ≡ n(ω) = n′ + in′′ is a complex refractive index
satisfying the Clausius–Mosotti relation. The refractive index n(ω) contains no singularities
in the upper half plane and exhibits other general properties, such as n(−ω) = n∗(ω) and
n′′ > 0 for ω > 0. In the vacuum case (n = 1), the modified delta functions reduce to usual
retarded and advanced delta functions: δ̃(e)(r,±t ′) = δ̃(f )(r,±t ′) = δ(r ± ct ′).

The integrands in equations (39) and (40) have no singularities in the upper half plane, so
δ̃(x)(r, t

′) vanishes for t ′ − r/c < 0. In a similar manner, δ̃∗
(x)(r,−t ′) vanishes for t ′ + r/c > 0

and hence does not contribute to the integrals featured in equations (19) and (20). Using
equations (36) and (37), the integrals of interest for times in excess of the time lag read∫ t

0
dt ′

[
eq(r, 0), d⊥

l (0,−t ′)
]

eiωκγ t ′ = ih̄

(
n2

κγ + 2

3n2
κγ

)
(∇2δql − ∇q∇l )

eikκγ r

4πr
, (41)

∫ t

0
dt ′

[
hs(r, 0), d⊥

j (0,−t ′)
]

eiωγκ t ′ = h̄ε0

(
n2

γ κ + 2

3

)
ωγκεsjp∇p

eikκγ r

4πr
, (42)

where kκγ = ωκγ nκγ /c is a complex wavevector, nγκ = n(ωγκ) is a refractive index
calculated at the emission frequency ωγκ and nκγ = n(ωκγ ) = n∗

γ κ is its complex conjugate
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counterpart. In calculating the above integrals, we have assumed that the refractive index n(ω)

is a sufficiently smooth function of frequency. Consequently, the major contribution to the
integration over the frequency comes from a narrow area around ω = ωκγ or ω = ωγκ leading
to the results (41) or (42).

Substituting equations (41) and (42) into equations (19) and (20), one finds

(
e(1)
γ κ

)
q

=
(

n2
κγ + 2

3n2
κγ

)
µl

γ κ

4πε0
k3
κγ fql(kκγ r) eikκγ r , (43)

(
h(1)

κγ

)
s
= ωγκ

(
n2

γ κ + 2

3

)
µ

j
κγ

4π
k2
γ κgsj (kκγ r) eikγ κ r . (44)

where the tensors fql(kκγ r) and gsj (kκγ r) have the same form as in the previously
considered vacuum case, the medium effects coming from the modification of the wavevector
kκγ = ωκγ nκγ /c. In such a situation, the Poynting vector (22) reads, for |kγκ |r � 1,

〈vac|〈γ |S̃(2)|γ 〉|vac〉 = 3h̄r̂

8πr2

∑
κ<γ

ωγκ�
med
γ→κ [|µκγ |2 − (µκγ · r̂)2] e−αγκ r , (45)

where αγκ = 2ωγκn
′′
γ κr/c is the Beer length absorbency at the emission frequency ωγκ and

�med
γ→κ = n′

κγ

∣∣∣∣∣n
2
γ κ + 2

3

∣∣∣∣∣
2

ω3
γ κ |µκγ |2

3πc3h̄ε0
. (46)

For an absorbing medium the result (45) holds for the far-zone distances only. In the near
zone, additional terms r−n with n > 2 appear due to the non-radiative losses. The non-
radiative contributions become negligible in the far zone (|kγκ |r � 1) in which the Poynting
vector (45) describes the radiative energy flow proportional to r−2 and hence can be attributed
to the spontaneous emission. Substituting equation (45) into (14), the quantum flow of energy
reads

Jγ =
∑
κ<γ

h̄ωγκ�
med
γ→κ e−αγκ r . (47)

Thus, �med
γ→κ can be identified as the rate of the spontaneous emission is a dielectric medium.

The energy flow (47) appears to be affected by the dielectric medium both through
the exponential factor proportional to e−αγκ r (describing absorption losses in the medium)
and also through the refractive modifications of the emission rate �med

γ→κ . The latter �med
γ→κ

contains local field factors and other refractive contributions. The result (46) supports the
previous introduction of the (virtual cavity) local field correction by Barnett et al [12, 13] on
a phenomenological basis, as well as our previous approach [14] in which the spontaneous
emission is considered as a far-zone resonance energy transfer [22].

4. Conclusions

We have considered the spontaneous emission in an absorbing medium by calculating the
quantum flow of energy from an emitting atom. For this purpose, we have extended the
analysis by Power and Thirunamachandran of quantized Maxwell fields in a vicinity of an
atom in the free space [25, 26] to a situation where the emitter is in a dielectric medium. We
have represented the quantum flow in terms of the non-equal time commutators involving
electric and magnetic fields, as well as the local displacement field. The commutators
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have been calculated applying a previously developed microscopic theory of quantization
of radiation in dielectrics [22, 27–29]. Consequently, we have derived from first principles the
rate of spontaneous emission in an absorbing medium containing local field factors and other
refractive contributions. The results support the previous introduction of the (virtual cavity)
local field correction by Barnett et al [12, 13] on a phenomenological basis, as well as our
previous approach [14] in which the spontaneous emission is considered as a resonance energy
transfer to the far-zone atoms. A distinctive feature of the present formalism is that it deals with
the spontaneous emission directly by calculating the quantum flow from the emitting atom.
Therefore, the method is free from the divergences appearing in other approaches analysing
the spontaneous decay.
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[16] Scheel S, Knöll L, Welsch D-G and Barnett S M 1999 Phys. Rev. A 60 1590
[17] Fleischhauer M 1999 Phys. Rev. A 60 2534
[18] Scheel S 2006 Phys. Rev. A 73 013809
[19] Förster T 1948 Ann. Phys. 2 55
[20] Förster T 1949 Z. Naturf. 4a 321
[21] Agranovich V M and Galanin M D 1982 Electronic Excitation Energy Transfer in Condensed Matter

(Amsterdam: North-Holland)
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