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In the model for the ionization energies of the Cas-¢electrons in saturated hydro-
carbons, put forward by Heilbronner et al., the energy levels are calculated as eigenval-
ues of the line graph of the hydrogen-filled molecular graph. It is now shown that in the
case of alkanes, these energy levels are related to the Laplacian eigenvalues of the
molecular graph. A few rules are formulated, relating these ionization energies with
molecular structure.
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In theoretical organic chemistry, graph spectral-2 are traditionally used for the
description of Teelectrons in unsaturated conjugated molecules.3-5 Relatively re-
cently, Heilbronner in collaboration with Bieri, Dill and Schmelzer®:7 developed a
model, based on graph spectra, capable of reproducing the experimental photoelec-
tron spectra of saturated hydrocarbons.® The model is applicable to the photelectron
spectra in the range 17-26 ¢V, the so-called high-energy band (HEB). In saturated
hydrocarbons the HEB corresponds to the ionisation of electrons from the 2s-orbi-
tals of the carbon atoms, so-called Cas-electrons.

In what follows, this model by Heilbronner et al. will be referred to as the
BDHS model.

The BDHS model uses a Hamiltonian matrix H on the basis of the (localized)
carbon-carbon and carbon-hydrogen bonding orbitals, having a Hiickel-type form.6
H=aI+BAL(G)) (1)

with I standin% for the unit matrix and A (L(G)) being the adjacency matrix® of the
line graph2’9_ 2 L(G) of the molecular graph G of the corresponding hydrocarbon.
Recall that, within the BDHS model, G is a hydrogen-filled molecular graph
(sometimes called plerograml3’l4), in which both the carbon and hydrogen atoms
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are represented by vertices. For alkanes, the semiempirical parameters o and 3 in
Eq. (1) were estimated as:

=-16.10%£0.08 eV
B=-211%£0.03¢eV

Eventually, the BDHS model found numerous applications and was further
claborated.”-%15-20 However, a detailed analysis of the dependence of the (calcu-
lated) features of the HEB on molecular structure has not been undertaken so far.
The present work is a contribution towards filling this gap.

GRAPH THEORETICAL CONNECTIONS

As a direct consequence3—> of relation (1), the Cas-electron energy levels are
of the form

Ei=a+ By @)

where x; is an eigenvalue of L(G). The (experimentally measurable) ionisation
potentials are then calculated assuming the validity of the Koopmans theorem,” and
are equal to — Bx;. As a result of the nature of the BDHS approximation, only the
first few (largest) eigenvalues of L(G) are relevant for the interpretation of the HEB.
Anyway, physical meaning (may) have only those E;-values which lie below the
multiply degenerate” o — 3 manifold, i.e., the energy levels for which x>-1.

The hydrogen-filled molecular graphs of propane and 2,3,5-trimethyl-hexane
and the corresponding line graphs are depicted in Fig. 1. More about line graphs and
their chemical applications can be found elsewhere.9~12

%%
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L(Gy) L(Gy)
Fig. 1. The hydrogen-filled molecular graphs of propane (G1) and 2,3,5-trimethyl-hexane (G2) and

their line graphs L(G1) and L(G2); observe the close formal resemblance of L(G1) and L(G2) to the
van’t Hoff tetrahedron models of the respective alkanes.

Now, in order to apply formula (2) to a given alkane, the eigenvalues of the

line graph of the respective hydrogen-filled molecular graph (cf. Fig. 1) have to be
determined. Of interest are the eigenvalues greater than —1.
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Consider the hydrogen-filled molecular graph G of an alkane with # carbon
atoms. This graph has 3n + 2 vertices and 3n + 1 edges. Consequently, L(G) has 3n
+ 1 vertices.9 12,

Denote the eigenvalues of L(G) by x;, i = 1,2,..., 3n + 1, and assume that
X1 2X2 2 ... 2X3n+1

In the Appendix, it is demonstrated that in the case of alkanes, for j =
1,2,...3n +1,

Xj=y—2 3)
where y1,2,...,V3,+ 1 are the non-zero Laplacian eigenvalues of the molecular graph.

The importance of relations (3) is twofold. First, the calculation of the
Laplacian eigenvalues of an alkane graph is somewhat easier than the calculation
of the ordinary eigenvalues of the line graph of this graph.2! Second, it is much
simpler to envisage the dependence of y; on molecular structure?? than the depend-
ence of x; on molecular structure (which, however, must be precisely the same).

NUMERICAL WORK

The Laplacian eigenvalues of all alkanes with up to 10 carbon atoms (methane,
ethane, propane, 2 butanes, 3 pentanes, 5 hexanes, 9 heptanes, 18 octanes, 35
nonanes and 75 decanes) were calculated. These are available from the authors upon
request. The Laplacian eigenvalues, relevant for the HEB of some selected members
of the decane family, are given in Table I.

TABLE 1. The Laplacian eigenvalues of the hydrogen-filled molecular graphs of some decanes; only
the eigenvalues greater than unity are given, because only these are relevant for the BDHS model of
the photoelectron spectra

6.032 6.098 5776 5363 4.892
4403 3941 3544 3245 3.062

6331  6.126 5745 5229 4791
4.640 4052 3.542 3174  2.960

6.353  6.108 5.672 5309 4959
4381 4.061 3.638 3203 2.905
6.365 6.070 5716 5345 4.724
4.652 3964 3.609 3257 2.887
6.423  6.035 5.645 5225 5.051
4352 4162 3.646 3275 2.737
6.390 6.127 5523 5293 5.041
4358 4106 3.812 3.058 2.844
6.421  6.175 5533 4791 4.791
4791 4.630 3.697 3.006 2.612
6.469 6201 5242 4791 4791
4791 4791 4000 2719 2.545

n-decane
2-methyl nonane
3-methyl nonane
4-methyl nonane
3,4-dimethyl octane
3,6-dimethyl octane
2,2,6-trimethyl heptane

2,2.5,5-tetramethyl hexane
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TABLE I. Contd.

6.501  5.827 5555 5555 4947
4384 3859 3.859 3527 2462

6.459 5913 5555 5555 4921
4391 3859 3.859 3358  2.681

6.399 5880 5880 5363 4.678
4.678 3927 3478 3478  2.827

6.500 5.842 5842 4791 4.791
4791 4.605 3369 3369 2.576

6.535 5.763 5555 5555 4791
4.639 3859 3.859 3498  2.380

6.554 6.054 5309 4791 4791
4791 4791 4000 2889 2322

6.581 5948 5447 4791 4.791
4791 4791 3812 3.133  2.189

3,3-diethyl hexane
3,4-diethyl hexane
4-propyl heptane
2.4-dimethyl,3-isopropyl pentane
3,3-diethyl,4-methyl pentane
2,2,3.4. 4-pentamethyl pentane

2,2,3,3,4-pentamethyl pentane

Based on these calculations, a few general rules for the dependence of the
HEB of alkanes on molecular structure were established. These are formulated in
the subsequent section.

RESULTS AND DISCUSSION

The rules below were obtained by analyzing the calculated Laplacian eigen-
values, corresponding to alkanes. The rules are stated in terms of the Cps-electron
energies (£}, Eq. (2)). They are strictly valid within the BDHS model, but, of course,
have a direct correspondence to experimental photoelectron spectra.8

In the following, isomeric alkanes with the formula C,Hp,+2 will be referred
to as Cy-alkanes.

Rule 1. Every Cy-alkane has exactly n Cpg-electron energy levels lying below
the degenerate d — 3 manifold. [In other words, the respective hydrogen-filled
molecular graph has exastly n Laplacian eigenvalues greater than +1.]

Rule 2. The energy gap between the degenerate o — [3 manifold and the next
lower energy level is remarkably large and in all cases studied (i.e., for all alkanes
CyH2,+2 with n < 10) exceeds 1.2 |B]. This energy gap is a decreasing function of n
and also decreases with increasing extent of branching of the molecular skeleton.

Rule 3. The width of the high-energy band in the photoclectron spectra of the
Cp-alkanes increases with the increasing extent of branching of the molecular
skeleton. The minimal bandwidth is found in the normal (unbranched) alkane,
whereas the maximal bandwidth is observed in the most branched alkane isomer.

Rule 3 is illustrated by the data given in Table II.

Some particular numbers frequently occur among the Laplacian eigenvalues
of alkanes and can be directly related with certain structural features thereof.
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TABLE II. Extremel values ofthe Laplacian eigenvalues y1 and y,, of hydrogen-filled molecular graphs
of alkanes C,H2,+2, minimal y; and maximal y, correspond to the normal (unbranched) alkane;
maximaly| and minimaly y, correspond to the maximally branched alkane whose structure is indicated,
note that y, is the smallest Laplacian eigenvalue being greater than 1

n miny) max yy max y| min y, max. branched alkane

4 6.071 3.340 6.133 3.140 2-methyl propane

5 6.155 3.228 6.303 2.697 2,2-dimethyl propane

6 6.209 3.163 6.362 2.629 2,2-dimethyl butane

7 6.245 3.122 6.435 2.507 2,2,3-trimethy] butane

8 670 3.095 6.519 2.268 2,2,3,3-tetramethyl butane

9 6.289 3.075 6.545 2.241 2,23 3-tetramethyl pentane
10 6.302 3.062 6.581 2.189 2,2,3,3,4-pentamethyl pentane

Rule 4. (a) The energy level o +2.791 B occurs whenever a C(CH3); fragment
is present in the molecule.

(b) The energy levels o + 3.555 3 and a + 1.859 B occur whenever a
C(CH2CH3); fragment is present in the molecule.

(¢) The energy levels o+ 3.880 3, a +2.678 Band o + 1.478 3 occur whenever
a C(CH2CH2CH3); fragment is present in the molecule.

(d) The energy levels a+3.842 3, a0 +2.791 Band a + 1.369 3 occur whenever
a C[CH(CH3)2]» fragment is present in the molecule.

An inspection of the Laplacian spectra of alkanes (see, for instance the data
given in Table I) shows that degenerate eigenvalues occur quite frequently. The
structural origin of such degeneracies are easily recognized:

Rule 5. Degenerate Cas-clectron energy levels occur whenever cither three
cqual fragments (e.g., methyl, ethyl,..) are attached to the same carbon atom, or there
are two carbon atoms to cach of which two equal fragments are attached.

Numerous examples illustrating Rules 4 and 5 are found in Table L.

It should be noted that mathematical results tantamount to Rule 5 were
recently reported by Sciriha?3 and one of the present authors.24 When these
considerations are applied to the eigenvalues of the alkane graphs, it can be shown
that the Laplacian eigenvalue 4.791, indicating the presence of C(CH3) fragments,
is one of the solutions of the equation x2-5x + 1 = 0. Similarly, the eigenvalues 5.555
and 3.859, indicating the presence of C(CHs), fragments, are solution of the
equation x4-10x3 + 27 x2-13x + 1 = 0.
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n 3 B O N1

BUCOKOEHEPTETCKA TPAKA Y ®OTOEJIEKTPOHCKOM CITEKTPY AJIKAHA U IbEHA
3ABUCHOCT OJ1 MOJIEKYJICKE CTPYKTYPE

UBAH I'YTMAH,? BUKTOPUJA TUHEUTUTE,” MUPKO JIEIIOBUR® 1 MUPOCIIAB IIETPOBUR?

a — — R — — O —_ — . — .
IIpupoono-maitiemaitivuku gpaxyaitieii y Kpazyjesyy u ” Hucitiuitiyiti 3a wieopujcky ¢pusuxy u acitiponomujy, Buamyc,
Jluiusanuja

Y Mopeny 3a eHeprujy joHn3anuje CoseIeKTpoHa y 3acnheHIM YTIbOBOIOHUIMMA, KOJA

Cy ImpeaytoRmmy XajaOpoHep W capaJHUIM, eHEPreTCKA HUBOU Ce pavuyHajy U3 CONCTBEHUX

BpeHOCTH rpacha rpaHe MOIEKYIICKOT Tpaca KOHCTPYHCAHOT TAKO Ja CY CBH aTOMH (YTJbeHUKA

7 BOJIOHMKA) IpejcTaBbeHn 1uBoposuma. IToka3aHo je Aa y CiIy4ajy ajkaHa OB CHEPreTCKU

HUBOU OAroBapajy JlammacoBuM CONICTBEHUM BPERHOCTHMA MOJIEKYJICKOT rpada. Popmymnu-
CaHO je HEKOJIMKO IpaBHUiIa O 3aBUCHOCTU €HEPIHja jOHU3AIH]e Off MOJICKYJICKE CTPYKTYPE.

(ITpumibeno 20. maja 1999)
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APPENDIX
A RELATION BETWEEN GRAPH EIGENVALUES AND
LAPLACIAN GRAPH EIGENVALUES

Let G be a graph and U1, U2,...,un be its vertices. The adjacency matric A(G) =||Ajj|| of this
graph is a square matrix of order &, defined via

Aij= u if the vertices U; and U; are adjacent
83 otherwise
Then the eigenvalues of the matrix A(G) are said to be the (ordinary) eigenvalues of the graph
G.! These will be denoted by x1(G) 2 x2(G) 2...2xn(G). The eigenvalues of G are the zeros of the
characteristic polynomial
@G ,x)=det [x 1 - A(G)]
The degree d; of the vertex Uj is the number of first neighbors of this vertex. Clearly

N
di= z Ajj
j=1

The matrix whose diagonal elements are d1, da,....,dn and whose off-diagonal elements are zero,
will be denoted by D (G). Then C(G) = D(G) — A(G) is the Laplacian matrix (or matrix of admittance)

of'the graph Gl ts cigenvalues, y1 (G) 2y2(G) 2....2yn(G), are the Laplacian eigenvalues of G. These
are just the zeros of the Laplacian characteristic polynomial

Y(G,x) =det [x T - C(G)]

For all N-vertex graphs yn is 0, and for all connected graphs (and thus for all molecular graphs),
YN-1>0.

For trees (= acyclic and connected graphs) there is a simple relation between the Laplacian and
ordinary eigenvalues. Recall that the molecular graphs of alkanes are trees.

Let T be a tree with N vertices. Then T has N — 1 edges and, consequently, its line graph L(7)
has N — | vertices. Therefore L(7) has N — 1 ordinary eigenvalues, whereas 7" has N Laplacian
eigenvalues of which N — 1 are non-zero.

Lemma. For T being a tree with N vertices, the equality x; (L(7)) = yi(T) — 2 holds for i =
1,2,...N—1.

Proof. Denote the vertices of 7by U1, U2,....,UNn and its edges by ey, e2,....en 1. Color the vertices
of Tin two colors, say black and white, so that no two vertices of the same color are adjacent. Direct
the edges of T so that they all start at a black and end at a white vertex.

Define the matrix Q = ||Qjj|| as follows:
Orl  if the edge ¢ starts at vertex U;
0= 01 ifthe edge ¢; ends at vertex U;
g 0 .
0 otherwise
Then
QQ'=C(G)
QQ=2I+A(L(G)

where M’ stands for the transpose of the matrix M. It is known from Linear Algebra that for any matrix
M, the non-zero eigenvalues of MM’ and M'M coincide. Therefore

det[x I - QQ'] = x det [x I-Q'Q]
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ie.,

det[x I - C(G)] = x det [x I-2 I-A(L(G))]

ie.,

W(Gx) =x AL(G)x-2)

from which the Lemma straightforwardly follows.



