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Abstract.  There are several mathematical models yielding 1/f noise. For 
example, a 1/f spectrum can be obtained from a stochastic sequence of pulses 
with a power-law distribution of pulse durations or from nonlinear stochastic 
differential equations. We show that a couple of seemingly different models 
exhibiting a 1/f spectrum are due to similar scaling properties of the signals. 
In addition, we demonstrate a connection between signals with the power-law 
behavior of the power spectral density generated by the nonlinear stochastic 
differential equations and modeled by a sequence of random different pulses. 
An approximation of solutions of the nonlinear stochastic differential equations 
by the sequence of pulses correctly reproduces the power-law parts of the 
probability density function and of the power spectral density. This connection 
provides further insights into the origin of 1/f noise.
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1.  Introduction

Signals with power spectral density (PSD) at low frequencies f of the form S(f ) ∼ 1/f β 
with β close to 1 are commonly referred to as ‘1/f noise’, ‘1/f fluctuations’, or ‘flicker 
noise.’ Power-law distributions of spectra of signals with 0.5 < β < 1.5, as well as 
scaling behavior, are ubiquitous in physics and in many other fields [1–7]. Despite the 
numerous models and theories proposed since its discovery more than 80 years ago 
[8, 9], the subject of 1/f noise remains open for new discoveries. Most models and theo-
ries of 1/f noise are not universal because of the assumptions specific to the problem 
under consideration. A short categorization of the theories and models of 1/f noise is 
presented in the introduction of the paper [10]. See also recent review by Balandin [11].

Often 1/f noise is modeled as the superposition of Lorentzian spectra with a wide 
range distribution of relaxation times [12]. An influential class of the models of 1/f noise 
involves self-organized criticality (SOC). In 1987 Bak et al [13] introduced the notion of 
SOC with the motivation to explain the universality of 1/f noise. Although paper [13] 
is the most cited paper in the field of 1/f noise problems, it was shown later on [14, 15] 
that the mechanism proposed in [13] results in 1/f β fluctuations with 1.5 < β  2. The 
1/f noise in the fluctuations of mass was first seen in a sandpile model with threshold 
dissipation by Ali [16].

Other models of 1/f noise involve a class of maps generating intermittent signals. 
It is possible to generate power-laws and 1/f noise from simple iterative maps by fine-
tuning the parameters of the system at the edge of chaos [17] where the sensitivity to 
initial conditions of the logistic map is a lot milder than in the chaotic regime [18]. 
Manneville [19] showed that an iterative function can produce interesting behavior, 
power-laws and 1/f PSD. In paper [20] a mechanism of intermittency exhibiting 1/f 
noise, which occurs in nonlinear dynamical systems with invariant subspace and having 
the transverse Lyapunov exponent equal to zero, is considered.

In many cases the physical processes can be represented by a sequence of ran-
dom pulses. The mathematical way of generating power-law noise from a sequence 
of pulses has been discussed by Halford [21]. The spectrum of a signal consisting of 
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pulse sequences belonging to the Markov process, was investigated in [22, 23]. In those 
models the power-law PSD appears due to the power-law distribution of pulse dura-
tions. The main objection to this approach is an apparent lack of physical mechanism 
generating the durations over several orders of magnitude [24]. On the other hand, we 
can point out that the diffusion process gives rise to broad distributions of lifetimes. It 
is known that for the unbiased random walk, the distribution of the first return times 
has a power-law form with the exponent −3/2 [25]. Another possible mechanism lead-
ing to broad distribution of lifetimes is due to the formation of avalanches. In many 
situations (for example in Barkhausen noise [26], fluid invasion into disordered media 
[27], dislocation avalanches in microcrystals [28]) the volume of avalanches has power-
law distribution and also the volume scales as a power-law function of the duration of 
the avalanche. Similar properties also have avalanches in the models of SOC [29–31].

One more way of obtaining 1/f noise from a signal consisting of pulses has been 
presented in [32–34]. It has been shown that the intrinsic origin of 1/f noise may be 
a Brownian motion of the time between each signal pulse, similar to the Brownian 
fluctuations of the signal amplitude, resulting in 1/f2 noise. Recently, the nonlinear sto-
chastic differential equations (SDEs) generating signals with 1/f noise were obtained in 
[35, 36] starting from the point process model of 1/f noise. Analysis of the long-range 
correlated bursting signals is presented in [37–39], as well.

The purpose of this paper is to show the connection between the nonlinear SDEs 
generating signals with 1/f noise and signals consisting of random pulses with the 
power-law distribution of pulse durations. As we will demonstrate, in both of these 
models 1/f spectrum appears due to the scaling properties of the signal. In addition, 
the signal generated by SDEs can be approximated by rectangular pulses yielding the 
same distribution of signal intensity and the same power-law exponent in the PSD. 
Although the models generating 1/f noise that we consider in this paper (nonlinear 
SDEs and random pulses with the power-law distribution of pulse durations) are not 
unique, the method of their derivation from the scaling properties of the signal has not 
been investigated before. We obtain nonlinear SDEs generating signals with 1/f noise 
starting not from the point process model, as was done in [35, 36], but from the scaling 
properties of the signal required to get 1/f noise. This approach allows us to reveal new 
connections between those seemingly different models.

The paper is organized as follows: In section 2 we consider nonlinear SDEs gener-
ating signals with 1/f β PSD and show that such SDEs can be obtained by requiring 
a proper scaling. In section 3 we analyze signals consisting of random pulses with the 
power-law distribution of pulse durations and power-law dependence of pulse height 
on the pulse duration. We show that such pulses have the same scaling properties as 
the signal generated by SDEs in section 2. In section 4 we produce the connection 
between the nonlinear SDEs’ modeling and the rectangular pulses’ series more explic-
itly. Section 5 summarizes our findings.

2. Nonlinear SDE generating signals with 1/f β noise from scaling

Nonlinear SDEs generating signals with 1/f β PSD are derived in papers [35, 36]. In this 
section we show these SDEs can be obtained only from the scaling properties required 
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by 1/f β PSD. This new technique reveals more directly the origin of 1/f β PSD com-
pared to the derivation starting from the point process model, as was done in [35, 36].

Pure 1/f β PSD is physically impossible because the total power would be infinite. 
Therefore, we will consider signals with PSD having 1/f β behavior only in some wide 
intermediate region of frequencies, � �f f fmin max, whereas for small frequencies �f fmin 
PSD is bounded. We can obtain nonlinear SDE generating signals exhibiting 1/f noise 
using the following considerations. Wiener–Khintchine theorem relates PSD S(f ) to the 
autocorrelation function C(t):

∫ π=
+∞

C t S f ft f( ) ( )cos (2 )d .
0

� (1)

If S(f ) ∼ f  −β in a wide region of frequencies, then for the frequencies in this region the 
PSD has a scaling property

~ β−S af a S f( ) ( )� (2)

when the influence of the limiting frequencies fmin and fmax is neglected. From the 
Wiener–Khintchine theorem (1) it follows that the autocorrelation function has the 
scaling property

~ β−C at a C t( ) ( )1
� (3)

in the time range � �f t f1 / 1 /max min. The autocorrelation function can be written 
as [40–42]

∫ ∫= ′ ′ ′ |C t x x xx P x P x t x( ) d d ( ) ( , , 0),0� (4)

where P0(x) is the steady state probability density function (PDF) and P(x′, t|x, 0) 
is the transition probability (the conditional probability that at time t the signal has 
value x′ with the condition that at time t = 0 the signal had the value x). The transi-
tion probability can be obtained from the solution of the Fokker–Planck equation with 
the initial condition P(x′, t|x, 0) = δ(x′−x). One of the ways to obtain the required 
property (3) is for the steady state PDF to have the power-law form

~ λ−P x x( )0� (5)

and for the transition probability to have the scaling property

′ | = ′ |µaP ax t ax P x a t x( , , 0) ( , , 0),� (6)

where μ is the scaling exponent, the meaning of which will be revealed below, 
equation (12). Indeed, from equations (4)–(6) and a change of variables it follows

∫ ∫= ′ ′ ′ |C at x x xx P x P x at x( ) d d ( ) ( , , 0)0� (7)

~∫ ∫ ′ ′ ′ |λ µ µ µ−x x x x a P a x t a xd d ( , , 0)1 1 1 1

� (8)

~ ∫ ∫ ′ ′ ′ |
λ

µ
−

a u u uu P u P u t ud d ( ) ( , , 0).
3

0� (9)
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Thus, the autocorrelation function has the required property equation (3) with β 
given by equation

β λ µ= + −1 ( 3) / .� (10)

Note that, according to equation (6), the change of the magnitude of the stochastic 
variable x → ax is equivalent to the change of time scale t → aμ t.

In order to avoid the divergence of steady state PDF (5) the diffusion of sto-
chastic variable x should be restricted at least from the side of small values and, 
therefore, equation (5) holds only in some region of the variable x, � �x x xmin max.  
When the diffusion of stochastic variable x is restricted, equation (6) also cannot be 
exact. However, if the influence of the limiting values xmin and xmax can be neglected 
for time t in some region � �t t tmin max, we can expect that the scaling equation (3) 
approximately holds in this time region.

To get the required scaling equation (6) of the transition probability, the SDE 
should contain only powers of the stochastic variable x. This will be the case if the coef-
ficient in the noise term is the power-law depending, i.e., proportional to xη. The drift 
term then is fixed by the requirement (5) for the steady state PDF. Thus we consider 
SDE [10]

σ η λ σ=


 −



 +η η−x x t x Wd

1

2
d d .2 2 1

t� (11)

Here Wt is a standard Wiener process (the Brownian motion) and σ is the white noise 
intensity. Note that SDE equation (11) is the same as in papers [10, 36], only here we 
have obtained it from consideration of the scaling properties, not starting from the 
point process model. Changing the variable x in (11) to the scaled variable =x axs  
or introducing the scaled time = η−t a ts

2( 1)  and using the property of the Wiener pro-
cess a= η−W Wd dt

1
ts  one gets the same resulting equation. Thus, change of the scale 

of the variable x and change of time scale are equivalent, as in equation (6) and the  
exponent μ is

µ η= −2( 1).� (12)

From equation (10) it follows that the power-law exponent in the PSD of the signal 
generated by SDE (11) is

β
λ
η

= +
−
−

1
3

2( 1)
.� (13)

In order to obtain a stationary process and avoid divergence of steady state PDF 
the diffusion of stochastic variable x should be restricted or equation (11) should be 
modified. The simplest choice of the restriction is the reflective boundary conditions 
at =x xmin and =x xmax. Another choice would be modification of equation (11) to get 
a rapidly decreasing steady state PDF when the stochastic variable x acquires values 
outside of the interval x x[ , ]min max . For example, the steady state PDF

~





−






 −
















λ
P x

x

x

x

x

x
( )

1
exp

m m

0
min

max
� (14)
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with m > 0 has a power-law form when � �x x xmin max and exponential cut-offs when 
x is outside of the interval x x[ , ]min max . Such exponentially restricted diffusion is gener-
ated by the SDE

σ η λ σ=




 − +






−









 +η η−x

m x

x

x

x
x t x Wd

1

2 2
d d

m

m

m

m t
2 min

max

2 1
� (15)

obtained from equation (11) by introducing additional terms in the drift.
The presence of the restrictions at =x xmin and =x xmax makes the scaling 

equation (6) not exact and this limits the power-law part of the PSD to a finite range of 
frequencies � �f f fmin max. Let us estimate the limiting frequencies. Taking into account 
the limiting values xmin and xmax, equation (6) for the transition probability correspond-
ing to SDE (11) becomes

′ | = ′ |µaP ax t ax ax ax P x a t x x x( , , 0; , ) ( , , 0; , ).min max min max� (16)

Here xmin, xmax are the parameters of the transition probability. The steady state distri-
bution P x x x( ; , )0 min max  has the scaling property

=aP ax ax ax P x x x( ; , ) ( ; , ).0 min max 0 min max� (17)

Inserting equations (16) and (17) into equation (4) we obtain

= µC t ax ax a C a t x x( ; , ) ( , , ).min max
2

min max� (18)

This equation means that time t in the autocorrelation function should enter only in 
combinations with the limiting values, µx tmin

1/  and µx tmax
1/ . We can expect that the 

influence of the limiting values can be neglected and the scaling equation (6) holds 
when the first combination is small and the second large; that is, when time t is in the 
interval � �σ σµ µ− − − −x t x2

max
2

min. Then, using equation (1) the frequency range where the 
PSD has 1/f β behavior can be estimated as

� �σ π σµ µx f x2 .2
min

2
max� (19)

However, numerical solutions of proposed nonlinear SDEs show that this estimation is 
too broad, i.e., the numerically obtained frequency region with the power-law behavior 
of PSD is narrower than according to equation (19). Note that for μ = 0, i.e., η = 1 
the width of the frequency region equation (19) is zero and we do not have 1/f β power 
spectral density.

Comparison of the numerically obtained steady state PDF and the PSD with ana-
lytical expressions for SDE (11) with η = μ = 2 and λ = 3 is presented in figure 1. 
For the numerical solution we use the Euler–Maruyama approximation, transforming 
the differential equations to difference equations. We can use a constant time step; 
however, at large values of x the coefficients in the equations become large and thus 
require a very small time step. A more effective solution is to use a variable time step, 
decreasing with the increase of x. As in [35, 36] we choose the time step in such a way 
that the coefficient before noise becomes proportional to the first power of x. One also 
gets very similar numerical results by using the Milstein approximation [10]. We see 
good agreement of the numerical results with the analytical expressions. A numerical 
solution of the equations confirms the presence of the frequency region for which the 
power spectral density has 1/f β dependence. The 1/f interval in the PSD in figure 1 is 

http://dx.doi.org/10.1088/1742-5468/2014/06/P06005


Scaling properties of signals as origin of 1/f noise

7doi:10.1088/1742-5468/2014/06/P06005

J. S
tat. M

ech. (2014) P
06005

approximately between ≈f 10min
0 and ≈f 10max

3 and is much narrower than the width 
of the region 1  f 106 predicted by equation (19). The width of this region can be 
increased by increasing the ratio between the minimum and the maximum values of 
the stochastic variable x.

As we see in figure 1(a), the numerical calculations exhibit a structure of the sig-
nal, consisting of peaks or bursts. Analysis [10] reveals that the sizes of the bursts are 
approximately proportional to the squared durations of the bursts with the power-law 
distributions of the bursts’ durations and the interburst time. The exponent of the 
PDF of the interburst time approximately equal to −3/2 has been obtained numeri-
cally [10] and analytically [43].

3. Stochastic pulse sequences

In this section we consider pulse sequences with independent pulses. The shapes of the 
pulses are characterized by an arbitrary large set of parameters ξ, whereas the occur-
rence times of the pulses are described by a set of time moments {tk}. The general form 
of the signal can be written as

∑ ξ= −I t A t t( ) ( , ),
k

k k� (20)

where functions A(t, ξ) determine the shape of individual pulses. The pulse dura-
tion τ is included in the set of parameters ξ or, more generally, is a function of the 
parameters, τ(ξ). Inter-pulse duration is ϑk = tk+1−tk. Such a pulse sequence is sche-
matically shown in figure 2. We assume that: (i) the pulse sequences are stationary 
and ergodic; (ii) parameters ξ of different pulses are independent; (iii) all pulses are 
described by the same function A(t, ξ); (iv) the pulse parameters ξ have the distri-
bution P(ξ).

The easiest way to calculate the PSD of a pulse sequence is to start from the PSD’s 
definition directly [22]. However, in order to demonstrate a connection with the previ-
ous section we will consider the expression for the autocorrelation function of the sig-
nal. The autocorrelation function is given by the equation

Figure 1. (a) Typical signal generated by equation (11) with reflective boundaries 
at xmin and xmax. (b) The PDF of the signal intensity. The dashed (green) line 
shows the power-law with the exponent −3. (c) The PSD of such a signal. The 
dashed (green) line shows the slope f−1. Used parameters are η = 2, λ = 3, =x 1min ,  

=x 1000max  and σ = 1.
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∫=
−

′ ′ + ′
→∞

−

C t
T t

I t I t t t( ) lim
1

( ) ( )d ,
T

T t

0
� (21)

where T the observation time interval and the brackets 〈·〉 denote averaging over real-
izations of the pulse sequence. Using the signal (20) we can write

∫∑ ξ ξ= ′ ′ + + − ′
→∞ ′=

∞

′ ′C t
T

A t A t t t t t( ) lim
1

( , ) ( , )d ,
T

k k

N

k k k k
, 1 0

� (22)

where N is the number of pulses during the observation time interval T.
The autocorrelation function can be decomposed into two parts, the first part con-

taining the autocorrelation of each pulse with itself and the second part containing all 
cross terms:

∫∑ ξ ξ= ′ ′ + ′ +
→∞ =

∞

C t
T

A t A t t t( ) lim
1

( , ) ( , )d other terms.
T

k

N

k k
1 0

� (23)

In many cases 1/f β PSD is caused only by the first part. For example, it is known that 
when the pulses occur randomly as a Poisson process, the PSD of the signal depends 
only on the shapes of the pulses, as given by Carson’s theorem [44]. Conditions when 
a sequence of randomly occurring pulses leads to 1/f β noise were investigated in [21]. 
Note, that when inter-pulse duration ϑk = tk+1−tk is uncorrelated with the duration of 
the pulse, different pulses may be overlapping. Even in case when the other terms in 
equation (23) are nonzero, the first part can have different dependence on time t and 
dominate for some time range < <t t tmin max. Therefore, initially we will consider only 
the first part of equation (23). It can be written as

∫ν ξ ξ= ′ ′ + ′
∞

C t A t A t t t( ) ( , ) ( , )d ,
0

� (24)

where ν is the mean number of pulses per unit time. Since the pulse duration τ is a 
function of the parameters ξ, the PDF of pulse durations is

∫τ δ τ ξ τ ξ ξ′ = − ′τP P( ) ( ( ) ) ( )d� (25)

Introducing the autocorrelation function of the pulses with the same duration τ′,

∫ ∫τ ξ δ τ ξ τ
ξ
τ

ξ ξ′ = − ′
′

′ ′ ′ +
τ

τ′
C t

P

P
t A t A t t( , ) d ( ( ) )

( )

( )
d ( , ) ( , ),

0
� (26)

Figure 2. Sequence of random pulses.
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we can write equation (24) in the form

∫ν τ τ τ= τC t P C t( ) ( ) ( , )d .� (27)

If the PDF of pulse durations has a power-law form

~τ ττ
ρP ( )� (28)

and the autocorrelation function of the pulses with the same duration has the scaling 
property

τ τ= γ+C at a a C t( , ) ( , )2 1
� (29)

then it follows that the autocorrelation function C(t) has the required property (3) with 
β given by equation

β ρ γ= + +2 3.� (30)

The meaning of the parameter γ will be revealed below, equations (35) and (36). Note, 
that the scaling in equation (29) is the same as described by equation (9) in [26], where 
the pulse area S ∼τγ+1 is used instead of pulse duration τ.

In order to avoid the divergence of the PDF of pulse durations, equation (28) should 
hold only in some region of the pulse durations τ, τ τ τmin max⩽ ⩽ . In this case the scaling 
cannot be exact. However, if the influence of the limiting values τmin and τmax can be 
neglected for time t in some region � �t t tmin max, we can expect that the scaling equa-
tion (3) approximately holds for this time region.

One of the ways to get the required scaling equation (29) of the autocorrelation 
function C(t, τ) is to consider pulses having the same shape, only stretched in height 
and in time. The signal consisting of such pulses was investigated in [21]. For stretched 
pulses we can write

ξ ξ τ ξ=A t h y t( , ) ( ) ( / ( )),� (31)

where h(ξ) is the height of the pulse. The function y(ts) is nonzero only when 0  ts  1.
From equation (26) we obtain

τ τ τ τ=C t h c t( , ) ( ) ( / ),2� (32)

where

∫τ δ τ ξ τ ξ
ξ
τ

ξ′ = − ′
′τ

h h
P

P
( ) ( ( ) ) ( )

( )

( )
d2 2

� (33)

is the mean squared amplitude of pulses having the same duration τ′ and the function

∫= +′ ′ ′c t y t y t t t( ) ( ) ( )ds
0

1

s s s s� (34)

is the autocorrelation function of pulse shapes. If the height h of the pulse is a power-
law function of the pulse duration τ,

~τγh ,� (35)

then the scaling equation (29) of the autocorrelation function (32) holds. It should 
be noted, that even when pulse height h is proportional to τγ, the coefficient of 
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proportionality is not necessarily constant. In particular, the sign of the pulses can be 
random. Only coefficient of proportionality for the average of the square of the pulse 
height ~τ τ γh ( )2 2  should be constant. If pulse height is a power-law function of the pulse 
duration, then the change of the magnitude of the pulse height h → ah is caused by the 
change of pulse duration τ → a1/γτ. Comparing this scaling property to equation (6) we 
see that the power-law exponent γ plays a similar role as −1/μ, i.e.,

γ
µ η

= − =
−

1 1

2(1 )
.� (36)

The sign minus in equation (36) appears because stretching the time, as in equation (6), 
is equivalent to the shortening of the pulse duration.

Now we will investigate the influence of limiting pulse durations τmin and τmax. From the 
assumptions made above, equations (28), (30) and (35), we have that τ τ τ=τ

β−P h B( ) ( )2 3 
when τ τ τmin max⩽ ⩽ . Here B is the coefficient independent from τ. For time � �τ τtmin max 
we can write the autocorrelation function, according to equations (27) and (32), as

∫ ∫ν τ τ τ ν= =
τ

τ
β β

τ
β− − −C t B c t Bt u c u u( ) ( / )d (1 / )d .

t2 1

1

2

min

max
max

� (37)

According to paper [21], physically reasonable pulses are square-integrable and have 
everywhere a finite derivative of the autocovariance function with respect to time. 
Then for large u we can approximate c(1/u) ≈ c(0)+c′(0)/u and get

β

τ β

β

≈














+ 


< <

+ ′ − =




+ 


< <

β
β β

τ
β

β
β

−
−

′
−

−
− ′

−

β−

[ ]C t

vBt

vB c c c t

vB c t

( )

, 0 1,

(0) ln (0) (0) ln , 1,

(0) , 1 2.

c c

c

1 (0)

1
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1
1 (0)

2
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1

� (38)

Thus, for 0 < β <2 and � �τ τtmin max the term containing time t has a scaling prop-
erty the same as in equation (3), the limiting values of the pulse durations τmin and τmax 
do not influence the scaling of the autocorrelation function. On the other hand, if β >2 
then the influence of τmax becomes significant.

As has been pointed out in [45], the condition for 1/f spectrum, ρ + 2γ + 2 = 0, can be 
easily satisfied. The power-law dependence of the pulse height on the pulse duration can 
occur naturally. Various cases are listed in table 1. The value γ = 0 corresponds to the 
pulses of constant height; γ = −1 corresponds to constant area pulses. Geometrically simi-
lar pulses have γ = 1. If the energy is proportional to the square of the signal, the constant 

Table 1.  Some situations when the power-law dependence of the pulse height h 
on the pulse duration τ occurs. The corresponding power-law exponents γ together 
with the exponents ρ required to get 1/f PSD.

Signal γ ρ Meaning of ρ

Constant area pulses −1    0 Uniform distribution of pulse durations
Constant energy pulses −1/2 −1
Pulses of constant height    0 −2 Uniform distribution of inverse durations
Geometrically similar pulses    1 −4
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energy pulses correspond to γ = −1/2. Since we have 1/f spectrum when ρ = −2(γ+1), 
this spectrum occurs for constant area pulses (γ = −1) and uniform distribution of pulse 
durations (ρ = 0) in a wide interval. For constant height pulses (γ = 0) we have 1/f spec-
trum when the distribution of inverse durations τ−1 is uniform, that is when Pτ(τ)∝ τ−2.

A signal consisting of overlapping constant height pulses has a PDF of the Poisson 
distribution. On the other hand, pulses with γ≠0 can lead to power-law tails in the 
PDF of the signal. Let us consider rectangular pulses with the only random param-
eter being the pulse duration τ. Large signal intensities are due to pulses of large 
height, for which one can neglect the overlap between pulses. Each pulse of the height 
h(τ) occurs with the probability Pτ(τ) and lasts for time τ. Thus, the PDF of the 
signal intensity I = h is (see for analogy [34])

τ
τ

τ
τ

= τ
=

P I P
h

( ) ( )
d

d
.I

h I

� (39)

If the PDF of pulse durations has the power-law Pτ(τ)∝ τρ form and the height of 
the pulse depends on the pulse duration as h∝τγ, then from equation (39) we obtain 
PI(I) ∝ I−λ, where

λ
ρ

γ
= −

+
1

2
.� (40)

For the pure 1/f noise 2+ρ = −2γ and we get the exponent λ = 3. For the case of 
f −β spectrum we have the following relation between the exponent β of the spectrum 
and exponent λ of the signal PDF:

β γ λ= + −1 (3 ).� (41)

Taking into account equation (36) we see that relation (41) is the same as  
equation (13), describing the power-law spectrum of the signal generated by the non-
linear SDE (11). Note that the PDF of the signal intensity has the same power-law 
exponent λ = 3 also when 1/f noise is generated by the nonlinear SDE equation (11).

A typical signal for rectangular constant area pulses (γ = −1) is shown in figure 3(a), 
the PDF of the signal is shown in figure 3(b) and the PSD in figure 3(c). We see a good 

Figure 3. (a) Typical signal consisting of the constant area rectangular pulses with 
the uniformly distributed durations, ρ = 0. (b) The PDF of the signal intensity. 
The dashed (green) line shows the power-law with the exponent −3. (c) The PSD 
of such a signal. The dashed (green) line corresponds to the spectrum obtained 
using Wiener–Khintchine theorem from the autocorrelation function. The time 
intervals between the pulses are distributed according to Poisson process with the 
average ϑ = 5. The parameters used are τ = 0.01min  and τ = 100max .
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agreement of numerically obtained PSD with the analytical estimation. In figure 3(b) 
we can see that the PDF has a power-law tail for large signal intensities. Note that, 
due to the overlapping of the pulses, the PDF of the signal at smaller intensities is not 
a power-law and acquires a power-law tail only for larger intensities, where the overlap 
can be neglected. This is in contrast with the SDE (11), where the steady state PDF 
of the signal can have a power-law form for all values of the signal sufficiently far from 
limiting values xmin and xmax.

4. Connection between the nonlinear SDE and stochastic pulse sequences

As was shown in sections 2 and 3, the signals having 1/f β PSD and generated by the 
nonlinear SDEs have similar scaling like the signals consisting from random pulses. In 
this section we approximate nonlinear SDE by a sequence of pulses and show that this 
approximation gives the same PDF of signal intensity and a power-law region in the 
PSD with the same exponent. However, other details of the approximated signal can 
be different: for example, a signal consisting of pulses does not exhibit the intermittent 
bursts characteristic for the solution of a SDE.

Let us consider SDE (11) together with reflective boundaries at =x xmin and =x xmax.  
Using the Euler–Maruyama approximation with a time step Δt = s and replacing the 
stochastic differential equation with the difference equation, we have

σ η
λ

σ ε= +


 −



 +η η

+
−x x x s x s

2
.k k k k k1

2 2 1
� (42)

Here εk is a Gaussian random variable with zero mean and unit variance. Variable time 
step [36]

κ
σ

= η−s xk k

2

2

2(1 )
� (43)

results in the equation

κ η λ κε=


 + − +



+x x 1

1

2
(2 ) ,k k k1

2
� (44)

where κ  1 is a small parameter. The approximation of the SDE becomes better with 
decreasing κ. It should be noted that equation (44) has an universal form: xk enters only 
in the first power independent on the exponent η. We can estimate the steady state 
PDF of xk in k-space by considering equation (44) as an Euler–Maruyama approxima-
tion of the SDE in k-space,

kκ η
λ

κ=


 −



 +x x k x Wd

2
d d .2

� (45)

Taking into account reflective boundaries at xmin and xmax we get from the Fokker–
Planck equation in k-space corresponding to equation (45) that the steady state PDF has 

the power-law form, ∝ η λ− −P x x( )k k
2( 1) . From this steady state PDF and equation (43) 

it follows that PDF of sk has a power-law form ∝ ρP s s( )k k k  with
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ρ
λ
η

=
−
−

−
1

2( 1)
2.� (46)

The same expression for the power-law exponent ρ can be obtained from equations (36) 
and (40).

From equation (44) we obtain xk+n:

�∏ κ η λ κε κ ε=


 + − +



 ≈ + ++

=
+ −x x x n1

1

2
(2 ) (1 ),k n k

i

n

k i k

1

2
1� (47)

where ε is a Gaussian random variable with zero mean and unit variance. Here we 
have used the fact that the sum of n Gaussian variables εk+i−1 is a Gaussian variable 
with the dispersion equal to n. We can conclude that xk+n does not differ significantly 
from xk as long as �κ n 1. The maximal value of n when xk+n is approximately equal 
to xk is ~ κn 1 /max

2. The duration in which the stochastic variable x does not change 
significantly is

τ
σ σ

= = =η γ−x n s x x( )
1 1

,k k k kmax 2

2(1 )

2

1/
� (48)

where γ is given by equation (36). The duration τ, being proportional to sk, has the 
power-law PDF with the same exponent ρ as the PDF of sk:

τ
τ τ τ τ

=





≤ ≤
τ

ρ
P

C
( )

, ,

0, otherwise.
min max

� (49)

Here C is normalization coefficient and

τ
σ

τ
σ

= =
η η− −x x

1
,

1
.min 2

max
2( 1) max

2
min
2( 1)� (50)

From equation (48) the value of the stochastic variable xk is connected with the dura-
tion τ by the relation

σ τ= γ γx .k
2

� (51)

Therefore, we can approximate the signal generated by SDE (11) by rectangular 
pulses of random duration τ having the PDF of durations equation (49) and pulse 
height h ≡ xk related to the pulse duration τ by equation (51). The pulses are not 
overlapping and immediately follow each other. Although the durations of adjacent 
pulses obtained from the signal generated by SDE equation (11) are correlated, for 
simplicity we will neglect this correlation. The PDF of the signal x constructed as 
such a pulse sequence has a power-law form. Using equations (40) and (46) we get 
that the power-law exponent in the PDF P(x) is equal to −λ, with λ appearing in 
the SDE (11).

When pulses occur not randomly but follow each other, the other terms in the 
equation (23) are nonzero. However, one can check that for some range of time t the 
first part in the equation (23) dominates. Thus the PSD of this pulse sequence has a 
power-law part with the exponent given by equation (41). Using the value of the expo-
nent γ from equation (36) we get the power-law exponent equation (13) in the PSD. 
The frequency range � �τ τ− −fmax

1
min

1  where the PSD of the signal, consisting of pulses, 

http://dx.doi.org/10.1088/1742-5468/2014/06/P06005


Scaling properties of signals as origin of 1/f noise

14doi:10.1088/1742-5468/2014/06/P06005

J. S
tat. M

ech. (2014) P
06005

has power-law behavior coincides with inequalities equation (19). Thus, the proposed 
approximation of the SDE by a sequence of pulses correctly reproduces power-law parts 
of the PDF and the PSD of the generated signal.

To illustrate the approximation of nonlinear SDE by a sequence of pulses, in figure 4 
we compare the PDF and the PSD of the signal consisting from pulses to the PDF and 
the PSD of the signal shown in figure 1. The SDE has parameters η = 2, λ = 3, =x 1min ,  

=x 1000max , therefore, duration of the pulses has power-law PDF equation (49) with 
ρ = −1 (according to equation (46)) and τ = −10min

6, τ = 1max . The height of each pulse 
is proportional to the duration of the pulse to the power of γ = −1/2, obtained from 
equation (36). This value of γ means that each pulse has the same energy. The signal 
consisting of such pulses is shown in figure 4(a). As one can see, this signal looks rather 
different from the one shown in figure 1(a). Large values of the signal in figure 4(a) 
do not come in intermittent bursts as in figure 1(a). This difference is caused by the 
assumption that the durations of different pulses are uncorrelated. The PDF of the 
signal, shown in figure 4(b), is the same as in figure 1(b). Comparison of the PSDs is 
shown in figure 4(c). There is qualitative agreement between the PSD of the signal gen-
erated by the nonlinear SDE and the PSD of the signal consisting of pulses. The PSD of 
the signal consisting of pulses has a power-law part in a different range of frequencies, 
from f ≈ 101 up to f ≈ 4 × 104. This difference from the expected range τ τ< <− −fmax

1
min

1  is 
caused by other terms neglected in equation (23).

5. Conclusions

In summary, we have demonstrated the connection between nonlinear SDEs generating 
signals with 1/f  β noise and signals consisting of random pulses with the power-law distri-
bution of pulse durations. The exponent ρ of the power-law PDF of pulse durations and 
the exponent γ characterizing the dependence of the pulse height on the pulse duration 
are related to the parameters η and λ of the SDE (11) by means of the equations (36) 
and (46). The signal generated by the SDE and the corresponding signal consisting of 

Figure 4. (a) Typical signal consisting of the equal energy pulses that immediately 
follow each other. The PDF of pulse durations τ is given by equation (49) with 
ρ = −1, τ = −10min

6 and τ = 1max  and pulse heights are proportional to τ−1/2. (b) The 
PDF of the signal intensity. The dashed (green) line shows the power-law with the 
exponent −3. (c) Comparison of the PSD calculated using the signal generated by 
SDE (11) with the same parameters as in figure 1 (black line) and using the signal 
consisting of pulses (gray line). The dashed (green) line shows the slope 1/f.
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rectangular pulses, yield the same distribution of signal intensity and the same power-law 
exponent in the PSD equation (13). The appearance of 1/f β spectrum and relationship 
between parameters can be obtained just by considering the scaling properties of the 
signals. The revealed connection between different models of 1/f noise provides further 
insights into the origin and relationship between different models of 1/f noise.
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