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Abstract. A simple analytically solvable model exhibiting a
1/f spectrum in an arbitrarily wide frequency range was recently
proposed by Kaulakys and Meškauskas (KM). Signals consisting
of a sequence of pulses show that inherent origin of the 1/f noise
is Brownian fluctuations of the average intervent time between
subsequent pulses of the pulse sequence. We generalize the KM
model to reproduce the variety of self-affine time series exhibiting
power spectral density S(f) scaled as power of their frequency
f . Numerical calculations with the generalized discrete model
(GDM) reproduce power spectral density S(f) scaled as power
of frequency 1/fβ for various values of β, including β = 1/2 for
applications in financial markets. The particular applications of
the model proposed are related with financial time series of share
volume traded.



1 Introduction

Physicists have recently begun doing research in finance with wide application
of models earlier introduce in physics [1, 2] . The statistical properties of
financial time series are attracting experts of statistical physics, fluctuations
analysis, dynamical chaos and others. Papers on finance are appearing with
some frequency in physics journals. A new movement called econophysics
has been established [2]. On the other hand, several empirical studies have
determined scale-invariant behavior of both the long range correlations of
price volatility and share volume traded in financial markets [3, 4, 5, 6].
Mandelbrot introduced the concept of fractals in terms of statistical self
similarity [7] and using the context of self-affine time series extended the
concept to time series [8]. The basic definition of self-affine time series is
that the power spectral density of the time series has a power-law dependence
on frequency S(f) = f−β. Universality of 1/f noise, when β = 1, has led
to speculations that there might exist some generic mechanism underlying
production of so general statistical properties. Such concepts as fractional
Brownian motion provide a formal procedure how to produce self-affine time
series, but can’t serve as generic mechanism. We will generalize the simple
model introduced by Kaulakys and Meškauskas (KM) [9] to generate time
series in the range 0 ≤ β ≤ 2 with particular interest in financial time series.

Long range correlations in time series I(t) are quantified by autocovari-
ance (autocorrelation) function C(s):

C(s) = C(−s) =

〈
1

T

∫ T−s

0

I(t)I(t + s)dt

〉
, (1)

with Wiwner-Khintchine relation to power spectral density S(f) defined as:

S(f) = lim
T→∞

〈
2

T

∣∣∣∣
∫ T

0

I(t)e−i2πftdt

∣∣∣∣
2
〉

= 4 lim
T→∞

∫ T

0

C(s) cos(2πfs)ds, (2)

where T denotes the considered time interval of time series I(t) . The KM
model is based on the time series generated as:

I(t) =
∑

k

qkδ(t− tk) (3)

where qk is a contribution to the signal of one pulse and noise is due to the
correlations between the occurrence times tk of δ type pulses. This model
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corresponds to the flow of point objects: photons, electrons, cars, trades in
financial markets and so on. The simplest version of the model consist of
sequence of transit times tk described by recurrence equations:

tk = tk−1 + τk,

τk = τk−1 − γ(τk−1 − τ) + σεk. (4)

Here the recurrence time τk = tk−tk−1 fluctuates due to the external random
perturbation of the system by sequence of uncorrelated normally distributed
random variables {εk} with zero expectation and unit variance, where σ
denotes the standard deviation of the white noise, γ ¿ 1 is the recurrence
time τ relacsation rate to the some average value τ . Note that τ follows an
autoregressive process AR(1).

This model containing only one relaaxation time γ−1 can for sufficiently
small parameters γ produce an exact 1/f - like spectrum in wide range of
frequence [9]:

S(f) =
αH

τ
2
f

, f1 < f < min(f2, fτ ), (5)

where αH is a dimensionless constant — the Hooge parameter:

αH =
2√
π

Ke−K2

, K =
τ
√

γ

σ
. (6)

and f1 = γ3/2/πσ, f2 = 2γ1/2/πσ, fτ = (2πτ)−1.
Here we present generalized KM model with particular interest to repro-

duce the statistical properties of share volume traded in financial markets.
We will generate discrete share volume time series with recurrence time of
distinct trades described as AR(2) process. This particular application of the
model proposed by B. Kaulakys and T. Meškauskas will exhibit univesality
of the mechanism underlying production of an f−β noise.

2 Model definition

In the numerical data analysis we usually deal with discrete sets of data.
There is the first need to modify the model to the discrete one. Let us
introduce a new conventional time scale defined with a time interval τd.
Integrating continuous signal I(t) in the subsequent intervals of length τd
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we will get discrete time series (let us call it volume Vr) :

Vr =

∫ tr+τ

tr

I(t)dt =
∑

k

qk, tr = rτd. (7)

Consequently, the discrete power spectral density can be expressed as:

S(fs) =

〈
2

τdn

∣∣∣∣∣
n∑

r=1

Vre
−i2π(s−1)(r−1)/n

∣∣∣∣∣

2〉
, (8)

where fs = s−1
T

, T = τdn.
New discrete series are equivalent to the initial sequence of δ functions,

when τd & τ whit the same values of γ and σ. Numerical results of S(fs)
calculated with various parameters are shown in Fig. 1. Multiple numerical
calculations confirm full correspondence of the discrete model (DM) defined
here with earlier introduced by B. Kaulakys and T. Meškauskas [9].

The model can produce the 1/f - like spectrum in an arbitrarily wide
range of frequencies f1 < f < f2, fτ and is free from unphysical divergence
of the spectrum at f → 0; for f < f1:

S(f) = τ−2 2σ2/τγ2

1 + σ4/4τ 2γ4
. (9)

Due to the long memory random process, defining transit time sequence
tk, the model describes long time correlations quantified in power spectral
density S(f) v 1/f . This model may be also generalized for non-Gaussian
distribution of the periods τk. Then

S(f) = 2τ−1ψ(0)/f, (10)

where ψ(τ) is the distribution density of periods τk. This makes the model
applicable to the wide variety of stochastic processes, which have well defined
distribution function ψ(τ) in the vicinity of τk = 0. Numerical calculations
confirm that, when ψ(0) = 0, the dependance of the power spectral density
on frequency appears as S(f) v 1/f 3/2 [10].

One more generalization of the model is needed for applications in finan-
cial markets and other self-affine time series with a power-law dependence
on frequency S(f) = f−β with β ' 1/2. We will strengthen high frequencies
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Figure 1: Power spectral density versus frequency calculated from the model
described by Eqs. (3), (4), (7), (8). The main parameters defining the
model are: τ , σ, γ. Time scale τd determines the highest frequency f ≤ 1

τd

under consideration. The sinuous curves represent the results of numerical
simulations averaged over five realizations, and the straight lines represent
the analytical spectra described by Eqs. (5) and (6).
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Figure 2: Volume Vr versus the number r of time interval τd and power spec-
tral density S(f) versus frequency f , calculated from the generalized discrete
model (GDM) with σ = 0.0002, τ = 0.01, α = 0.95, γ = 0.0002, τd = 1. S
is averaged over five realizations. The straight lines represent the fractional
power law S(f) = 2 ∗ 103/f 1/2.

and will account for positive playback of τk increment by adding the term
α∆τk−1 = α(τk−1 − τk−2) to the τk recurrent expression:

τk = τk−1 + α(τk−1 − τk−2)− γ(τk−1 − τ) + σεk. (11)

Note that this new term changes autoregressive process AR(1) to the higher
one AR(2). Multiple numerical calculations with the generalized discrete
model (GDM) exhibit dependance of β on α and other parameters of the
model: σ, τ , γ. We demonstrate an example of numerical calculation with
GDM in Fig. 2, which exhibits clear fractional power law with β = 1/2 of
the power spectral density.

3 Application to the financial market

An important quantity that characterizes the dynamics of price movement
in financial markets is the number of shares Vr (share volume) traded in
a time interval rτd < t < (r + 1)τd. The statement “It takes volume to
move stock prices” accumulates very general idea that statistical properties
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of financial markets are enclosed in time series of share volume. Very direct
confirmation of this statement and quantitative investigation of the largest
1000 stocks in three major US stock markets was recently presented in [6].
This work provides an evidence that long range correlations in share volume
and price volatility are largely due to those of the number of trades Nr in
time interval τd. Close correlation between Nr and Vr is imposed by the
relation:

Vr ≡
Nr∑
i=1

qi (12)

and very weak correlation in time sequence of share volume per transaction qi.
These results suggest us to apply GDM as a model for the time series of share
volume traded in financial markets , with a simple assumption that in the
first approach the average 〈qi〉 can be included into the normalization factor.
This mean that simple relation Vr = Nr 〈qi〉 enables us to make comparison
of GDM to the variety of real market data. In Fig. 3. we demonstrate
comparison of Lithuanian Stock Market data with numerical results from
GDM. The volume of shares included in the index LITIN is normalized to
average of 100 trades per τd = 1day . Note that despite the model simplicity it
serves as market data generator and reproduces the main statistical property
of the system, i.e., the power law dependence (β = 1/2) on the frequency of
the power spectral density.

4 Conclusion

The empirical evidence provided by Gopikrishnan et al [6], that the num-
ber of transactions Nr in the subsequent time intervals τd define long range
correlations of share volume traded, enabled us to apply simple model of a
1/f noise [9] and to reproduce long-range correlations of the share volume
traded in financial markets. We generalized the KM model by integrating
the sequence of pulses in a conventional time interval τd and replacing the
recurrent time τk stochastic process from AR(1) to the AR(2) one. Numeri-
cal calculations with the generalized discrete model (GDM) reproduce power
spectral density S(f) scaled as power of frequency 1/fβ for various values of
β, including β = 1/2 for applications in financial markets. Further investi-
gation of the model with its possible applications in financial time series is
in progress.
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Figure 3: (LSE) The volume of shares Vr , included in the index LITIN
of Lithuanian Stock Exchange, normalized to an average of 100 trades per
τd = 1day versus the number of day traded and corresponding power spectral
density S(f) versus frequency f calculated from Fast Fourier Transform of
discrete data. (GDM) Volume Vr versus the number r of the time interval
τd = 1 and power spectral density S(f) versus frequency f , calculated from
the generalized discrete model (GDM) with σ = 0.00015, τ = 0.01, α =
0.75, γ = 0.0007, τd = 1. The straight lines approximating the power spectral
density curves represent the fractional power law S(f) = 700/f 1/2.
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