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Abstract

The review is devoted to developement and applications of the so-called non-
commutative Rayleigh-Schrödinger perturbation theory (NCRSPT). As opposed to
the standard RSPT used for taking into account weak interorbital interactions,
the NCRSPT is aimed at regard for weak interactions inside and between entire
subsets of basis functions of arbitrary dimensions separated by substantial energy
gaps. Accordingly, this new PT is formulated in terms of multidimensional (non-
commutative) quantities, including row-matrices of basis functions corresponding
to individual subsets and the so-called eigenblocks playing the role of eigenvalues.
When discussing applications, the principal attention is paid to the perturbative
version of the non-canonical theory of molecular orbitals based on the Brillouin
theorem.
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1. INTRODUCTION

Perturbation theory (PT) is among the most powerful approximate methods in
quantum mechanics [1-4]. In particular, the well-known Rayleigh-Schrödinger PT
(RSPT) for eigenvalues and eigenfunctions of operators [1-3] and an alternative PT
based on the resolvent formalism [4] may be mentioned here.

Various forms of the perturbation theory are widely used in quantum chemistry as
well. To obtain the many-electron wave functions of molecules, the so-called Möller-
Plesset partitioning of the total Hamiltonian operator is now generally applied [5,6].
The analogous partitioning of localized orbitals [7-9] and its generalization for any
type of reference function [6] also are noteworthy. The self-consistent version of the
RSPT (the coupled RSPT) [10-13] forms the basis of the perturbed Hartree-Fock
(HF) calculations. Self-consistent perturbative approaches for Green’s functions
[13] and for density matrices [14-16] instead of one-electron orbitals also have been
developed. It should be additionally noted here that diagonality condition for zero
order matrices and/or operators is not imperative in perturbative approaches. Thus,
in the resolvent-based PT [4], the zero order operator is such that its eigenvalues
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and eigenfunctions can be easily determined. Similarly, the Fock operator of [7-9] is
not necessarily diagonal in the orbital space.

Quantum chemistry, however, is far from being only a field of application of
quantum mechanics. Moreover, it is an independent branch of science which is
based on fundamentals of the classical chemistry along with quantum-mechanical
methods [17]. It is no surprise, therefore, that new problems arise in this melting pot
of different concepts and thereby new quantum-mechanical formalisms are required
to solve them.

The so-called non-commutative RSPT (NCRSPT) discussed in this review is
among formalisms of the above-mentioned type. Developement of this theory started
with its particular cases devoted to the common quantum-mechanical description
of saturated molecules [18-24] (Note that entire classes of the so-called related com-
pounds usually are studied in the classical chemistry instead of individual molecules).
The same theory subsequently acquired a more general form [25,26] that may be ap-
plied for solution of the block-diagonalization problem for a definite matrix specified
below, as well as of its operator analogue referred to as the eigenblock equation.

The above-mentioned problem is a generalization of the very popular diagonaliza-
tion (eigenvalue) problem, wherein eigenblocks of arbitrary dimensions are sought in-
stead of usual (one-dimensional) eigenvalues. In other words, we look for an unitary
matrix that transforms the initial matrix H into a block-diagonal form defined as a
direct sum of eigenblocks. Given that subsets of corresponding dimensions may be
revealed in the initial basis set so that the intersubset interactions are weak as com-
pared to the intrasubset ones, the perturbation theory may be formulated in terms of
entire subsets of basis functions instead of individual orbitals. Accordingly, matrices
play the role of usual one-dimensional coefficients in this generalized formalism. In
particular, row-matrices of functions arise instead of eigenfunctions in the respec-
tive eigenblock equation for operator. As a consequence, non-commutativeness of
the eigenblock and of the respective multidimensional eigenfunction and thereby of
related terms of power series is the main distinctive feature of this formalism. That
is why it has been called the non-commutative RSPT. Allowance for non-diagonal
zero order matrices H(0) is another feature of the NCRSPT [27] (a block-diagonal
constitution of the latter is acceptable).

As opposed to the actual way of developement of the NCRSPT, the scheme of
this review is based on passing from the most general formalism to its particular
cases. Thus, we start with the case of an arbitrary number of interacting subsets
of basis functions (Section 2) and subsequently overview the relevant applications
(Section 3). The remaining sections 4, 5 and 6 are devoted to the case of two
interacting subsets. The reason why this particular case deserves so much attention
consists in the fact that the respective block-diagonalization problem for a Fockian
or Hamiltonian matrix is equivalent to the non-canonical HF equation and yields
numerous applications including those devoted to chemical reactivity (Section 6).

2. THE GENERAL OPERATOR FORMALISM OF THE NCRSPT

The standard RSPT is most commonly applied to secular equations for Hamil-
tonian operators. To be able to compare the NCRSPT to the standard RSPT more
easily, an analogous formalism of the former [26] is given in this Section.
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Let us start with principal definitions. Let us assume that the Hamiltonian matrix
of our system H is determined in the basis {ϕ}. Let this basis set to be divided
into N subsets { {ϕ1} , {ϕ2}.... {ϕN}}, each of them containing an arbitrary
number of orbitals. In this connection, subscripts i, j,m...here and below will be
ascribed to entire subsets (No consideration of individual basis functions is required
in the NCRSPT). Furthermore, basis functions of each subset will be collected into
row-matrices that will be designated by ket-vectors |Φ1〉 , |Φ2〉 ...etc. and called
multiorbitals. Accordingly, the bra-vectors 〈Φ1| , 〈Φ2| ... etc. coincide with column-
matrices containing respective compex-conjugate orbitals.

The total Hamiltonian matrix H will be accordingly divided into submatrices
(blocks) that may be alternatively considered as its multidimensional elements and
denoted by Hij . It is evident that elements of intra- and intersubset type may be
distinguished. Let us then define the relevant Hamiltonian operator

Ĥ =
N∑

i,j=1

|Φi〉Hij 〈Φj| , (1)

where multiorbitals meet the orthonormalization condition

〈Φi | Φj〉 = Iδij (2)

and I stands for the unit matrix of respective dimension.
Let us consider the operator equation of the form

Ĥ |Ψa〉 = |Ψa〉Ea, (3)

where |Ψa〉 is a row-matrix further referred to as the multieigenfunction. Accord-
ingly, Ea stands for the respective eigenblock playing the role of a multidimensional
eigenvalue. It should be additionally emphasized here that Ea does not commute
with |Ψa〉 in contrast to the usual eigenvalue equation. It may be easily verified
that Eq.(3) turns into a block-diagonalization problem for the matrix H if the mul-
tieigenfunction |Ψa〉 is expressed in the form of linear combination

|Ψa〉 =
N∑

p=1

|Φp〉Bpa (4)

containing matrix coefficients Bpa and Eq.(4) is substituted into Eq.(3) with a sub-
sequent use of Eq.(2).

Let the operator Ĥ to consist of the zero order term Ĥ(0) and of the first order

term V̂ , the latter being called the perturbation operator. We will assume also that
the zero order operator Ĥ(0) complies with the zero order equation

Ĥ(0)

∣∣Ψ(0)i

〉
=

∣∣Ψ(0)i

〉
E(0)i (5)

and the zero order multieigenfunctions are orthonormalized similarly to multiorbitals
(see Eq.(2)). Given that Eq.(5) is solved, a block-diagonal zero-order Hamiltonian
matrix evidently is obtained for our initial (unperturbed) system.
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As in the usual RSPT [1-3], let the multieigenfunction |Ψa〉 of the total operator Ĥ

to be represented in the form of linear combination of zero order multieigenfunctions,
viz.

|Ψa〉 =
N∑

i=1

∣∣Ψ(0)i

〉
Cia, (6)

where Cia also are multidimensional coefficients.
The subsequent derivation of the formalism resembles that of the usual RSPT.

Thus, we start with substitution of Eq.(6) into Eq.(3) and define multidimensional

elements Vmp representing the perturbation operator V̂ in the basis {Ψ(0)} as follows

Vmp =
〈
Ψ(0)m | V̂ | Ψ(0)p

〉
. (7)

Thereupon, the multidimensional coefficients Cia along with eigenblocks Ea are
expanded in the form of power series and terms of the same order are collected
to form the equations of PT. The principal difference of this procedure from the
standard one [1-3] consists in non-commutativeness of multidimensional factors in
respective products. The results may be described as follows:

Some of expressions of the NCRSPT formally resemble those of the RSPT, e.g.

E(0)a = E(0)r, C(0)ra = Iδra, E(1)r = Vrr, (8)

C(1)rr = C+
(1)rr = 0, C(2)rr = C+

(2)rr =
1

2

N∑

i( 6=r)

C+
(1)irC(1)ir,

where the superscript + here and below designates the Hermitian conjugate matrix,
Vrr is defined by Eq.(7) and the subscripts contain the order parameter (1 or 2) in
their parentheses.

The above-demonstrated similarity of expressions of the NCRSPT to those of the
RSPT, however, does not refer to coefficients C(k)mr for m 6= r, where k here and
below stands for the order parameter (k = 1, 2...). These coefficients are defined by
the following matrix equations

E(0)mC(k)mr − C(k)mrE(0)r + W(k)mr = 0 (9)

instead of usual algebraic expressions in terms of fractions containing elements of
the perturbation operator and diffences in zero order eigenvalues in their numerators
and denominators, respectively. The first order matrix W(1)mr coincides with Vmr.

For higher k values, however, more involved expressions are obtained, e.g.

W(2)mr =
∑

j

VmjC(1)jr − C(1)mrVrr. (10)

Finally, expressions for eigenblocks may be examplified by the second order correc-
tion E(2)r, which takes the form

E(2)r =
1

2

∑

i

(1 − δri)(V
+
irC(1)ir + C+

(1)irVir). (11)
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The principal matrix problems of the NCRSPT shown in Eq.(9) belong to well-
studied matrix equations of the type AX+XB+C = 0 [ 28]. Given that E(0)m and
−E(0)r are Hermitian and negative-definite matrices, the unique solution of Eq.(9)
takes the form of an integral

C(k)mr = −

∞∫

0

exp[E(0)mt]W(k)mr exp[−E(0)rt]dt. (12)

It is seen, therefore, that the solution of our principal problem of Eq.(3) is expressed
in terms of entire submatrices (blocks) of the initial Hamiltonian matrix without
specifying either the structures or dimensions of these submatrices (i.e. of E(0)m

and Vmj), and this is the most essential feature of the NCRSPT.
Before finishing this section, an important particular case of diagonal zero order

matrices E(0)m and E(0)r should be mentioned [24-27]. Let these matrices to consist
of elements E(0)m,µ and E(0)r,ρ, respectively. Separate elements of the matrix C(k)mr

may be then expressed algebraically, viz.

C(k)mr,µρ =
W(k)mr,µρ

E(0)r,ρ − E(0)m,µ

. (13)

Certain resemblance between this formula and the relevant expression of the stan-
dard RSPT [1-3] may be noticed. Even for this special case, however, no coincidence
of these power series is actually obtained. This fact causes no surprise as the matrix
C made up of coefficients Cia of Eq.(6) serves to transform the initial matrix H into
a block-diagonal form but not into a diagonal one.

3. APPLICATIONS OF THE NCRSPT TO DERIVE EFFECTIVE
HAMILTONIAN MATRICES FOR SEPARATE SUBSYSTEMS OF

MOLECULAR SYSTEMS

In this section we will discuss applications of the NCRSPT to investigate mole-
cular systems consisting of weakly interacting subsystems separated by substantial
energy gaps. The block-diagonalization procedure is used here as an intermediate
step in the way of diagonalization of the respective Hamiltonian matrix H. Subsets
of basis orbitals introduced in Section 2 evidently correspond to individual weakly-
interacting subsystems in this case.

Traditional ways of investigation of the above-specified systems are based on
the quasi-degenerate RSPT [1-3] and consist of an initial diagonalization of the
intra-subset blocks of the matrix H followed by taking into account intersubset
interactions. This procedure actually implies passing to the basis of delocalized
(canonical) molecular orbitals (MOs) of isolated subsystems from the very outset of
solving the problem and a subsequent regard for interactions between these MOs.
This approach is usually referred to as the PMO theory [29].

The experience of dealing with eigenvalue equations for matrices shows that it is
the decision on the first step when solving the problem that determines the terms in
which the final results are expressed and interpreted [30]. It is no surprise, therefore,
that the results of the PMO theory are expressed in terms of delocalized MOs of
isolated subsystems. This fact is the main origin of difficulties in revealing relations
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of the final electronic structure characteristics to peculiarities of local constition of
the system.

In this context, application of the NCRSPT offers a possibility of an inverted
order of operations vs. the traditional one, namely intersubsystem interactions
may be taken into account before the intrasubsystem ones. To this end, block-
diagonalization of the matrix H should be initially performed. This approach has
been referred to as the alternative one [31,32].

The final numerical results evidently coincide with one another for both ap-
proaches provided that these are obtained at the same level of approximation. The
alternative approach, however, offers new possibilities for interpretation of results
in terms of local structure as it is demonstrated below (Sections 3.1 and 3.2).

An essential feature of the alternative approach consists also in the fact that eigen-
blocks of the Hamiltonian matrix H resulting from the initial block-diagonalization
procedure actually coincide with the effective Hamiltonian matrices for separate sub-
systems influenced by the intersubsystem interaction [31]. In this respect, certain
analogy may be traced between the approach under discussion and the Löwdin’s
partitioning technique [33-36]. The principal difference of our procedure from that
of Refs.[33-36] consists in the eigenvalue-independent nature of the effective Hamil-
tonian matrix and thereby in the non-iterative character of the respective secular
problem. The same refers also to comparison of the present approach to the reduc-
tion procedures for Hamiltonian matrices suggested in Refs.[30,37-40].

3.1. STUDIES OF REGULAR QUASi-ONE -DIMENSIONAL SYSTEMS.
INTERPRETATION OF ENERGY BANDS IN TERMS OF LOCAL

STRUCTURE

Given that atomic orbitals (AOs) of the elementary cell of a regular quasi- one-
dimensional system (polymer) are characterized by substantial energy gaps vs. the
off-diagonal Hamiltonian matrix elements, weakly-interacting subsets of AOs may
be revealed in the total basis set. These subsets represent definite subchains of
our chain, the latter, in turn, coincidIng with the above-defined weakly-interacting
subsystems. Hence, the alternative approach based on the NCRSPT may be applied
[31].

Before passing to a more specific discussion, let us note that studies of regular
quasi-one-dimensional chains usually are based on concepts and methods of the
solid state theory [41,42]. Delocalized Bloch functions corresponding to subchains
play the role of MOs in this case. Accordingly, difficulties arise in establishing the
relations between the actual dispersion curves and local interorbital interactions in
the system.The alternative approach is especially fruitful in this respect as discussed
below.

It should be admitted here that the scope of applicability of the general solid
state theory is considerably more extended as compared to that of any perturbative
approach. This theory, however, resembles the PMO theory [29] in respect of relative
order of taking into account the intra and intersubset interactions. That is why
application of the NCRSPT offers a definite conceptual alternative to the solid state
theory [31].

Inasmuch as no specifying of the numbers of basis orbitals within separate sub-
sets is required when performing the block-diagonalization procedure by means of
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the NCRSPT (Section 2), quasi-infinite systems may be treated without additional
difficulties. To be able to solve the matrix equations like that of Eq.(9) algebraically,
the particular case of diagonal zero order blocks E(0)r has been invoked. This as-
sumption evidently implies first order magnitude of both intra- and intersubchain
interactions.

The diagonality requirement for blocks E(0)r and the regular constitution of the
chain yield proportionality of these blocks to unit matrices of corresponding dimen-
sions. Then the respective algebraic solutions of Eq.(9) have been substituted into
expressions for corrections to eigenblocks (see e.g. Eq.(11)) and simple formulae for
the latter have been derived.

The zero and first order intrasubchain blocks ( E(0)r and Vrr) make the principal
contributions to the r-th eigenblock Er (see Eq.(7)). This evidently implies corre-
spondence of this eigenblock to the r-th subchain of our chain. Again, the remaining
corrections E(k)r (k > 1) and thereby the total eigenblock Er imbibes intersubchain
interactions represented by submatrices Vir ( i 6= r). For example, the second order
correction E(2)r is expressed in terms of products of matrices Vir as follows

E(2)r =
∑

i( 6=r)

1

ε(0)r − ε(0)i

VriVir, (14)

where ε(0)r and ε(0)i stand for one-electron energies of AOs of the r-th and i-th
subsets, respectively. It has been concluded on this basis that the eigenblocks Er are
nothing more than effective Hamiltonian matrices for separate subchains influenced
by the intersubchain interaction [31].

Analysis of separate elements of the eigenblocks Er also yield interesting con-
clusions. Thus, the first order contribution ( E(1)r,µν) to the effective interaction
between AOs ϕr,µ and ϕr,ν of the r-th subchain coincides with their direct interac-
tion (resonance parameter) Vrr,µν (see Eq.(8)), whereas the relevant second order
correction ( E(2)r,µν) follows from Eq.(14) and describes the indirect interaction
between the same AOs by means of AOs of other subchains playing the role of me-
diators. Accordingly, an indirect interaction by means of two mediators corresponds
to the third order increment E(3)r,µν . Hence, elements of eigenblocks describe ef-
fective interactions between AOs of the given subchain that consist of their initial
(direct) interactions and of additional indirect interactions by means of nearest AOs
of other subchains.

On the whole, the block-diagonalization procedure allows the initial chain to
be divided into M non-interacting effective chains, where M coincides with the
number of AOs in the elementary cell. Each of these new chains contains both
the initial bonds of the respective subchain and some additional bonds originating
from intersubchain interaction. Experience in dealing with specific examples shows
that effective chains of a rather simple constitution actually arise, wherein the most
important bonds correspond to neighboring pairs of equivalent AOs. At the same
time, each effective chain gives birth to a definite energy band.

On this basis, dispersion relations for separate energy bands may be derived be-
fore the final solution of the problem. Moreover, each of several additive components
of such a relation may be traced back to a particular type of effective intrasubchain
interaction. Inasmuch as the latter, in turn, are expressable in terms of local interor-
bital interactions (see Eq.(14)), interpretation of dispersion curves in terms of local
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structure easily follows from the alternative approach. This important achievement
has been illustrated in Ref.[31] by several non-trivial examples.

3.2. EXPRESSIOS FOR EFFECTIVE ENERGIES OF BRIDGE-ASSISTED
INTERACTIONS

Let us dwell here on studies of molecules and molecular systems described by a
general formula A-(X)n-B, where A and B stand for functional groups and -(X)n- is a
bridge usually consisting of a certain number of similar elementary units X (see [32]
and the references cited therein). The groups A and B usually are approximately
representable by a single frontier orbital which is sufficiently separated from orbitals
of the bridge. That is why the functional groups and the bridge may be considered
as two weakly-interacting subsystems.

Non-conjugated molecules containing NH2-, OH- or H2C=CH-groups joined with
a saturated bridge (X=CH2) or several bridges of the same constitution are among
the most well-studied systems of the above-specified type. A pair of splitted energy
levels corresponds to terminal groups in the photoelectron spectra of these molecules.
Interpretation both of the variable extent of this splitting for related compounds and
of relative orders of the two levels is of importance for theoretical spectroscopy.

Further, molecular systems of analogous constitution are assumed to participate
in the electron transfer reactions in condensed media. In this case, the system con-
tains an electron-donating subsystem (A) and an electron-accepting one (B) joined
with bridges of solvent molecules.

Developement of the theory of these important and intriguing systems has been
overviewed in a detail in [32]. In our context, applications of the standard PMO
theory [29] may be mentioned [43-45]. So far as electron transfer reactions are
concerned, partitioning technique [33-36] and related approaches are most commonly
used.

Application of the block-diagonalization procedure based on the NCRSPT to
the Hamiltonian matrix of a system A-(X)n-B yields an eigenvalue- independent
eigenblock corresponding to the subset of orbitals of terminal groups. For the case
of two orbitals ϕa and ϕb representing these groups, a single off-diagonal element of
this block describes the effective interaction energy (Eab) between fragments A and B.
As with the quasi-one-dimensional chains (Subsect.3.1) , the energy Eab was shown to
consist of the direct (through-space) interaction of orbitals ϕa and ϕb and of various
types of their indirect (bridge-assisted) interactions, as well as of mixed increments.
On the whole, the effective interaction energy has been expressed in terms of sums of
increments corresponding to various pathways through the bridge from one terminal
group to another. As opposed to similar expressions based on partitioning technique
[33-36], the formulae of Ref.[32] contain the difference E(0)a − E(0)b between one-
electron energies of orbitals ϕa and ϕb explicitly. A more detailed comparison of
these expressions may be found in Ref.[32].

The above-mentioned explicit dependence of Eab upon the difference E(0)a−E(0)b

allowed us to study the case of dissimilar functional groups A and B in a detail.
Given that the latter are joined with a sufficiently long tightly-bound bridge(s),
application of the NCRSPT yields a generalization to the case of dissimilar groups
A and B of the well-known McConnell formula [46] for the bridge-assisted interaction
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energy. An analogous extension of the scope of validity of the so-called parity rule
[43-45,47] also has been achieved (the rule consists in opposite signs of Eab for even
and odd numbers of mediating orbitals).

4. THE NON-COMMUTATIVE RSPT IN THE FRAMEWORK OF THE
NON-CANONICAL METHOD OF MOLECULAR ORBITALS. THE PNCMO

THEORY

Electronic structures of molecules are most commonly studied in terms of delo-
calized canonical MOs (CMOs) resulting from the canonical HF (CHF) equation
[2,48]. Since the CMOs are usually sought in the form of linear combination of
certain basis functions (usually of AOs), the CHF equation resolves itself into the
diagonalization problem for the Fockian matrix.

In contrast to the unique CHF equation, various forms of the non-canonical one-
electron problem are possible [2,48]. As delocalized MOs are more easily obtainable
from the CHF equation, the non-canonical problems are usually adapted [49] to look
for orbitals localized mostly on separate fragments of molecule (Orbitals of this type
are more closely related to chemical concepts of interatomic bonds, lone electron
pairs, etc. [49-51]). Localized pattern of MOs usually is achieved by imposing a
certain ”external” localization criterion (cf. the criterion of minimal self-energy of
an atom in the Adams-Gilbert equation [52-54]).

In our context, the Brillouin theorem [22-24, 26, 48,49] deserves particular at-
tention. Application of this theorem is equivalent to solution of the non-canonical
HF equation [48]. On the other hand, the theorem itself contains no particular
localization criterion, and, consequently, it may be used to obtain various types of
non-canonical MOs (NCMOs).

Applications of this theorem to derive expressions for NCMOs started with the
contribution [56], where the conditions that ensure the existance of non-orthogonal
localized MOs (LMOs) containing a single bond orbital and tails consisting of vacant
orbitals of other bonds have been explored. Thereupon [57,58], explicit perturbative
expressions for tails have been derived in terms of separate elements of the initial
Hamiltonian matrix. A similar iterative approach to the linearized version of the
Brillouin theorem for Fockian operator also may be mentioned here [55].

Among particular forms of the Brillouin theorem there is a zero value require-
ment for an off-diagonal element of the Fockian operator referring to an occupied
and a vacant MO [48]. In its matrix form, this requirement resolves itself into the
zero matrix condition for the occupied-vacant off-diagonal block (submatrix) of the
total Fockian matrix in the basis of NCMOs being sought [22-24,26, 56-58]. As a re-
sult, the block-diagonalization problem for the Fockian matrix actually arises, where
the two eigenblocks correspond to subsets of occupied and vacant NCMOs, respec-
tively. Moreover, basis sets of the so-called fragmental orbitals (FOs) were shown
to exist for various classes of molecules (Sect.5) that contain two weakly-interacting
subsets separated by a substantial energy gap. In qualitative investigations, these
orbitals may be additionally assumed to be orthonormalized [59]. Finally, the Fock-
ian matrices of molecules may be actually replaced by certain effective one-electron
Hamiltonian matrices (e.g. of the Hückel type [17]). That is why a solution of
the above-discussed non-canonical problem proved to be possible by means of the
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particular case of the NCRSPT corresponding to two eigenblocks and thereby two
multidimensional eigenfunctions (N=2).

One-electron density matrices (DMs) also are widely used to represent electronic
structures. This matrix is one of the most fundamental quantum-mechanical char-
acteristics describing charge redistributions in molecule and related to numerous
observed properties [2,36]. Moreover, the DM is a unique characteristic of the given
molecule in contrast to NCMOs. The relevant general expressions for the DM were
shown to follow from the projector to a single multieigenfunction of the Hamiltonian
matrix containing occupied NCMOs (Sect. 4.2). Finally, the total energy is express-
able either as Trace of occupied eigenblock multiplied by the occupation number 2
or in terms of the DM (Sect.4.3). The above-outlined scheme forms the basis of the
general perturbative PNCMO theory.

The actual way of formulating the PNCMO theory, however, was different from
this rather straightforward scheme. Thus, the particular case of the block-diagonalization
problem for two-subsets (N=2) [24] has been solved before formulating the general
formalism of Section 2. This particular solution was also additionally generalized to
the case of two non-orthogonal sets of FOs [25] (The generalized solution has been
accordingly expressed in terms of entire blocks of both Hamiltonian and overlap
matrices). Finally, a direct way of obtaining the DM based on solution of the so-
called commutation equation has been applied in the first derivations of this matrix
[18-24]. These results also will be discussed briefly in Subsections 4.1 and 4.2.

4.1. ANALYSIS OF EXPRESSIONS FOR NCMOs

To discuss the above-indicated expressions, we will turn to more convenient no-
tations used throughout Refs.[22-27]. Inasmuch as the principal subsets of FOs
usually correspond to initially-occupied (bonding) and initially-vacant (antibond-
ing) orbitals (Sect.5), these may be conveniently represented by row-matrices

∣∣Φ(+)

〉

and
∣∣Φ(−)

〉
. The zero order hamiltonian matrix H(0) was assumed to take a block-

diagonal form containing submatrices E(+) and −E(−) in its diagonal positions,
where the minus sign in front of E(−) was introduced for convenience. The relevant
first order matrix H(1) has been represented in terms of four blocks T,R and Q so
that the following relations with submatrices Vmr of Section 2 result

H(1)11 = V11 = T, H(1)22 = V22 = Q, H(1)12 = V12 = R. (15)

The mulrieigenfunctions of this Hamiltonian matrix containing occupied and vacant
NCMOs, respectively, have been accordingly designated by

∣∣Ψ(+)

〉
and

∣∣Ψ(−)

〉
. From

Eq.(6) it is evident that these take the form of simple linear combinations of two
multiorbitals

∣∣Φ(+)

〉
and

∣∣Ψ(−)

〉
containing matrix coefficients, e.g.

∣∣Ψ(+)

〉
=

∣∣Φ(+)

〉
C11 +

∣∣Φ(−)

〉
C21. (16)

Eq.(16) may be considered as the matrix analogue of expressions for MOs of two-
level systems as linear combinations of two AOs. The relations like that of Eq.(16)
may be rewritten into the following matrix form

∣∣∣∣Ψ(+)

〉
,
∣∣Ψ(−)

〉∣∣ =
∣∣∣∣Φ(+)

〉
,
∣∣Φ(−)

〉∣∣
∣∣∣∣
C11 C12

C21 C22

∣∣∣∣ = ΦC, (17)

10



where the transformation matrix C is expressable as a power series. The first three
corrections of this series are

C(0) = I, C(1) =

∣∣∣∣
0 G(1)

−G+
(1) 0

∣∣∣∣ , C(2) =

∣∣∣∣
−1

2
G(1)G

+
(1) G(2)

−G+
(2) −1

2
G=

(1)G(1)

∣∣∣∣ , (18)

where the notations G(k) here and below stand for C(k)12.It should bee noted here
that G(k) play the role of the principal matrices of the PNCMO theory, and these
are determined by matrix equations

E(+)G(k) + G(k)E(−) + W(k)12 = 0 (19)

resulting from Eq.(9), where W(1)12 = R and W(2)12 = TG(1)−G(1)Q. Coincidence
between matrices C(0) and I seen from Eq.(18) ensures both one-to-one correspon-
dence between NCMOs and basis orbitals (FOs) and a localized nature of the former.

Given that E(+) and E(−) are diagonal matrices, Eq.(13) yields the expressions

G
(d)
(1)ir = G

+(d)
ri(1) = −

Rir

E(+)i + E(−)r

, (20)

G
(d)
(2)ir = G

+(d)
(2)ri =

1

E(+)i + E(−)r

{
IOFOs∑

p

TipRpr

E(+)p + E(−)r

−

IV FOs∑

m

RimQmr

E(+)i + E(−)m

}
(21)

where the abbreviations IOFOs and IVFOs stand for initially-occupied and initially-
vacant FOs, respectively,and the superscript (d) serves to distinguish this particu-
lar case. Interpretation of these elements [24] was based on the concept of direct
(through-space) and indirect interactions of orbitals [47, 60-62].

Thus, the first order term G
(d)
(1)ir of describes the direct (through-space) interaction

between orbitals ϕ(+)i and ϕ(−)r.Inasmuch as resonance parameters (Rir) decrease
rapidly when the interfragmental distance increases, the same refers also to the
direct interaction G

(d)
(1)ir . Hence, considerable LMO tails usually are localized on

the nearest environment of the given basis orbital. Similarly, the element G
(d)
(2)ir

has been interpreted as indirect interaction of the same basis functions by means of
various mediators (either ϕ(+)p or ϕ(−)m).This interaction is likely to be of a more
long-range nature vs. the direct one.

4.2.THE TWO WAYS OF DERIVATION OF THE ONE-ELECTRON DM

As it was mentioned already, the one-electron DM of molecules described by the
Hamiltonian matrix of Sect. 4.1 may be obtained [25] on the basis of projector to
the multieigenfunction

∣∣Ψ(+)

〉
of Eq.(16) multiplied by the occupation number 2,

that is
P (r | r′) = 2

∣∣Ψ(+)(r)
〉 〈

Ψ(+)(r
′)
∣∣ . (22)

Substituting Eq.(16) into Eq.(22) yields the following expression for the DM P (r | r′)
in terms of four multidimensional elements of the bond order matrix

P (r | r′) =
2∑

i,j=1

|Φi(r)〉Pij 〈Φj(r
′)| , (23)
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where i and j coincide with either (+) or (−). This result serves as a generalization
of the well-known bilinear form of the DM in terms of individual basis functions
[36]. The multidimensional elements Pij are

P11 = 2C11C
+
11; P22 = 2C21C

+
21 ; P12 = 2C11C

+
21. (24)

These expressions demonstrate the analogy of our DM to that of a simple two-level
system. Use of Eqs.(17) and (18), in turn, allows us to obtain the four submatrices
of the matrix P in terms of the principal matrices G(k) defined by Eq.(19). This
procedure may be referred to as the indirect way of obtaining the DM (i.e. via
NCMOs as an intermediate step).

The direct way of obtaining the same matrix consists in solution of the following
system of equations [16]

[H,Y]− = 0, Y2 = I; TraceY = 0 (25)

where Y is the residual charge matrix connected with P by the relation Y = P − I,

and the notation [.., ..]− indicates a commutator of matrices. The commutation
condition of Eq.(25) is the main physical requirement determining the matrix Y

and thereby the DM P. This relation results from Dirac’s equation for the time-
independent Hamultonian. The remaining relations of Eq.(25) are additional system-
structure- independent restrictions following from the idempotence requirement (Π2 =
Π) for the projector Π = 1

2
P and the charge conservation condition, respectively.

In Ref.[24], the system of matrix equations of Eq.(25) has been solved directly
by substituting the matrix Y in the form of power series and collecting terms of the
same order. Each correction Y(k) , in turn, has been represented in terms of four
multidimensional elements.

It is evident that both ways of obtaining the bond order matrix P yield coinciding
results, viz. the corrections P(k) of the following form

P(k) =

∣∣∣∣
P(k)+ −2G(k)

−2G+
(k) P(k)−

∣∣∣∣ , (26)

where the intrasubset blocks P(k)+ and P(k)− have been expressed in terms of ma-
trices G(k−1),G(k−2), etc. as examplified below

P(0)+ = 2I, P(0)− = 0; P(1)+ = P(1)− = 0;

P(2)+ = −2G(1)G
+
(1), P(2)− = 2G+

(1)G(1), etc. (27)

It should be noted, however, that the direct way of obtaining the matrix P proves
to easier and more convenient when looking for higher order correstions [63,64] nec-
essary for applications (Sect.6). Moreover, feasibility of the direct way demonstrates
that the eigenblock equation is not the only problem the NCRSPT is applicable to.

Comparison of corrections P(k)(k = 1, 2) to respective correctios C(k) of Eq.(18)
indicates a similarity of their structures. Analysis of direct ways of obtaining these
corrections [24] allowed us to conclude that this similarity originates from a deep
interrelation between the Brillouin theorem and the commutation condition for the
DM in the framework of the NCRSPT. Moreover, direct matrix relations between
corrections P(k) and C(k) have been derived [24].
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Similarity of the structures of correctiond P(k) and C(k) has important implica-
tions. First, NCMOs and the respective DM rows (columns) prove to be interrelated
and characterized by the same dependence on the structure of the system. Second,
diagonal elements of the matrix P (i.e. occupation numbers of individual FOs)
are proportional to extents of delocalization of respective NCMOs, namely, the al-
terations in occupation numbers versus their initial values (equal either 2 or 0 for
bonding and antibonding FOs, respectively) coincide with the total delocalization
coefficients of respective NCMOs (see Refs. [23,24] for definition). As occupation
numbers are invariant to unitary transformations, the above relation implies that
a certain special choice of NCMOs was actually made when applying NCRSPT,
namely, NCMOs, the extents of delocalization of which were related to the unique
populations of basis orbitals. Finally, from similarity of corrections P(k) and C(k)

it follows that the unique bond order matrix belongs to the localized way of repre-
senting electronic structures along with LMOs. This conclusion contributes to an
increased importance of this alternative representation of electronic structures vs.
the delocalized (canonical) one.

4.3. ANALYSIS OF THE TOTAL ENERGY

For a system represented by a certain one-electron Hamiltonian matrix H, the
expression

E =Trace(PH) (28)

is among alternative definitions of the total energy (E) [16]. Given that the matrix
H contains a zero order (H(0)) and first order matrices (H(1)) (Sect. 4.1), two
components reveal themselves within any correction E(k) of the power series for the
energy E , viz.

E
(α)
(k) = Trace(P(k)H(0)); E

(β)
(k) = Trace(P(k−1)H(1)). (29)

Substituting the expressions for P(k) of Eqs.(26) and (27) along with a definite
algebraic procedure based on employment of Eq.(19) yields the following general
relation [64]

(k − 1)E
(β)
(k) = −kE

(α)
(k) (30)

for any k. Eq.(30), in turn, implies the total correction E(k) to be alternatively
representable as follows

E(k) = −
1

k − 1
E

(α)
(k) ; E(k) =

1

k
E

(β)
(k) . (31)

Opposite signs of both components of the total correction E(k) also may be seen
from Eq.(30) along with the inequality for their absolute values given below, viz.

∣∣∣E (β)
(k)

∣∣∣ >
∣∣∣E (α)

(k)

∣∣∣ . (32)

Therefore, the correction E(k) of the total energy E is determined by a difference

between two interdependent components, namely between E
(β)
(k) of a larger absolute

value and E
(α)
(k) of a smaller absolute value. Consequently, it is the sign of E

(β)
(k) that

conditions the sign of the total correction E(k).
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In particular, the zero and first order corrections take the form

E(0) = E
(α)
(0) = 2TraceE(+); E(1) = E

(β)
(1) = 2TraceT (33)

and their sum coincides with the total one-electron energy of isolated FOs. Given
that one-electron energies of FOs are entirely included into respective diagonal ele-
ments of the matrix E(+),the equality E(1) = 0 obtained in Ref.[65,66] results.

For the second order correction E(2), the following formula has been derived [27,64]

E(2) = −Trace(G(1)R
+) (34)

on the basis of expression in terms of E
(β)
(2) shown in Eq.(31). If we recall that

a block-diagonal zero order Hamiltonian matrix (H(0)) cooresponds to the power
series under discussion (Sect.4.1), Eq.(34) may be considered as a generalization of
the well-known Dewar formula for total energies of molecules (The latter corresponds
to a diagonal form of H(0) and follows from the standard RSPT). Feasibility of such
a generalization, in turn, demonstrates non-trivial consequences of the allowance for
a non-diagonal zero order matrix H(0) in the NCRSPT [27].

Additional possibilities for interpretation of relations of Eqs.(30)-(32) arise in the
case of diagonal blocks E(+) and E(−) containing elements E(+)i and E(−)j . Thus,

the following expressions for E
(α)
(k) fas been derived in this case [64]

E
(α)
(k) =

IOFOs∑

i

IV FOs∑

j

x
(k)
(+)i,(−)j(E(+)i + E(−)j), (35)

where x
(k)
(+)i,(−)j coincides with the k-th order partial transferred population between

orbitals ϕ(+)i and ϕ(−)j. The latter emerge when expressing the occupation numbers
of FOs as sums of increments of individual orbitals of the opposite subset, viz.

P(k)+,ii =
IV FOs∑

l

x
(k)
(+)i,(−)l; P(k)−,jj =

IOFOs∑

m

x
(k)
(−)j,(+)m, (36)

where x
(k)
(+)i,(−)j = −x

(k)
(−)j,(+)i. For k = 2 and 3, simple formulae for partial transferred

populations have been derived, viz.

x
(2)
(+)i,(−)j = −2(G(1)ij)

2; x
(3)
(+)i,(−)j = −4G(1)ijG(2)ij (37)

On the basis of Eq.(35), the first component of the correction E(k) (i.e. E
(α)
(k) ) has

been interpreted as the charge transfer energy (Note that E(+)i + E(−)j coincides
with the energy interval between orbitals ϕ(+)i and ϕ(−)j). Again, the remaining

part of the total correction E(k) ( E
(β)
(k) ) was shown to describe the effect of formation

of new bond orders upon the k-th order energy.
These interpretations along with the general relations of Eqs.(30)-(32) allowed

us to conclude that stabilization of the system vs. the set of isolated FOs (if any)
is entirely due to formation of new bond orders owing to interorbital interaction,
and the subsequent charge redistribution actually reduces this stabilizing effect. On
the other hand, the absolute value of the stabilization energy is proportional to the
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charge transfer energy as Eq.(31) indicates. This principal result formed the basis
of substantiation [64] of the popular intuition-based assumption of the theoretical
chemistry about a relation between the stabilization energy and the relevant charge
redistribution. It should be added finally that a positive charge transfer energy E

(α)
(2)

and a negative total correction E(2) has been obtained for k = 2. This conclusion
gave an additional insight into the content of the Dewar formula [27].

5. APPLICATIONS OF THE PNCMO THEORY TO INVESTIGATE
ELECTRONIC STRUCTURES OF SEPARATE CLASSES OF MOLECULES

Each of the above-indicated applications may be characterized by a particular
choice of basis functions, i.e. of FOs. Thus, let us start with discussing these
functions.

Orbitals localized on separate fragments of the system(s) under study usually play
the role of FOs. So far as the structures of the fragments themselves are concerned,
individual chemical bonds both of saturated [22-24,27] and conjugated molecules
[67] and phenyl rings along with substituents [63,68] may be mentioned, as well as
separate molecules of many-molecular systems (Sect.6).

It is noteworthy here that orbitals of the above-specified type are among popular
basis sets in quantum chemistry [69]. This especially refers to strictly localized two-
center bond orbitals (BOs) for alkanes and their derivatives [57,58,64,65]. In our
applications, BOs have been defined as eigenfunctions of separate two-dimensional
Hamiltonian matrix blocks associated with pairs of atomic or hybrid orbitals perti-
nent to the same bond so that the direct intrabond interaction vanishes. For sat-
urated systems [22-24,27] and π-electron subsystems of conjugated molecules [67],
sp3−hybrid AOs (HAOs) supplemented by 1sH Aos of hydrogen atoms and 2pz

AOs of carbon atoms were correspondingly used. Eigenfunctions of six-dimensional
blocks in the basis of 2pz AOs of carbon atoms were accordingly invoked when study-
ing phenyl rings [63,68]. Substantial energy gaps between bonding and antibonding
orbitals is the main origin of applicability of the NCRSPT in the basis of FOs.

The fact that even particular results of the NCRSPT (i.e. those based on a
certain choice of FOs) usually embrace entire series or classes of related mole-
cules also deserves emphasizing. Indeed, related compounds usually consist of the
same fragments joined in a uniform manner (cf. alkanes containing C-C and C-H
bonds). This, in turn, implies FOs of similar structure to represent these com-
pounds. Consequently, a common Hamiltonian operator and/or matrix corresponds
to the whole class, where individual representatives (molecules) are characterized by
specific structures and dimensions of multidimensional parameters Hij (see Eq.(1)).
Accordingly, a single eigenblock equation refers to the whole class.

Before finishing these introductory remarks, let us distinguish between direct and
indirect applications of the PNCMO theory. The former case implies FOs to play
the role of the only basis set. Alternatively, we start with the basis of either HAOs or
AOs and transform the relevant Hamiltonian matrix into the basis of FOs in order to
be able to apply the NCRSPT. Thereupon, retransformation of the results into the
initial basis set is carried out. The latter procedure, in turn, may embrace either the
entire matrices C and P or their particular blocks (The term local retransformation
will be used in the latter case).
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The subsequent overview starts with direct applications of the PNCMO theory
in the basis of BOs [22-24, 27,64,70] (Subsect.5.1). These results originally referred
to alkanes and their derivatives. Although their applicability to π−electron subsys-
tems of aliphatic conjugated hydrocarbons seems to be rather evident, the relevant
extension of the discussion is not undertaken. The main reasons of such a decision
are cleared up in Subsection 5.2, where indirect applications of the PNCMO theory
[67,71,72] are described. Subsection 5.3 is devoted to results of local retransforma-
tions of expressions of the PNCMO theory [68,73,74]. It deserves mentioning here
that the contribution [63] devoted to the indirect intersubstituent interaction also
belongs to direct applications of the PNCMO theory. However, the relevant results
are not discussed separately in this review because of their close resemblance to
those of two interacting molecules overviewed in Section 6.

5.1. INTERBOND INTERACTION IN ALKANES AND THEIR DERIVATIVES

In accordance with the above-introduced definition of BOs, two bond orbitals
were ascribed to each chemical bond in a saturated molecule, viz the initially-
occupied bonding BO (BBO) ϕ(+)i and the initially-vacant antibonding BO (ABO)
ϕ(−)i. Orbitals referring to lone electron payrs (if any) also may be included into the
subset { ϕ(+)}.As a result, a Hamiltonian matrix consisting of four sumatrices like
that of Section 4.1 has been constructed. The first order magnitude of interactions
(resonance parameters) of the intersubset type (i.e. between a BBO and an ABO)
vs. the intersubset energy gaps [24] follows from the relevant estimations [19,21,75-
79]. These ratios between matrix elements, in turn, imply applicability to both
alkanes and their derivatives of the NCRSPT and thereby of the results of Section
4. It is also noteworthy here that the above-mentioned ratios have been directly
related to the tetrahedral local structure of alkanes [22].

On the whole, a common localized description of saturated molecules follows
from the PNCMO theory of Section 4, wherein LMOs and the DM play the role of
alternative representations of electronic structures.

So far as the structures of the zero order blocks E(+) and E(−) are concerned, an
assumption about their diagonality proved to be a somewhat rough approximation
for alkanes [27]. In particular, resonance parameters between nearest-neighboring
(geminal) BBOs were shown to exceed those of the intersubset type considerably
[27,75,76,78]. In this connection, two different approximations have been considered,
the first one being based on acceptance of diagonal matrices E(+) and E(−), and the
second one containing a non-diagonal matrix E(+) .

Let us start with the first approximation. Similar energies of all BBOs and of
all ABOs may be assumed in this case [80-82]. As a result, matrices E(+) and E(−)

become proportional to unit matrices and thereby the relevant problem of Eq.(20)
may be solved algebraically (see also Sect 3.1). Studies of respective expressions for
the LMO representation matrix and for the DM showed definite common features
to be inherent in these matrices [22]. These have been traced back to the similar
spatial constitution of all alkanes, viz. to the constant numbers of the nearest-
neighboring (geminal) bonds for all C-C and for all C-H bonds equal to six and
three, respectively. In particular, similar structures have been obtained for both
LMOs and the DM rows (columns) belonging to C-C and C-H bonds. It deserves

16



mentioning here that transferability of LMOs of alkanes has been borne out by
numerical calculations too [50,51]. In this context, the results of the NCRSPT yield
a general relation between this transferability and the common local structure of
these molecules.

In the framework of the same approximation, application of Eq.(34) to the total
energy of alkanes [71] actually yields the Dewar formula [29,65,66,83]. The a priori

negative sign of the second order correction of this formula, in turn, indicates an
additional stabilization of any molecule vs. the relevant set of isolated BOs in line
with the observed stability of alkanes. Moreover, any direct interbond interaction
was shown to contribute to stabilization of the whole system whatever the actual
spatial arrangement of participating bonds [27,71].

An analogous study of substituted alkanes may be found in Ref.[70]. Rules gov-
erning the interbond charge transfer originating from the inductive effect of sub-
stituent (heteroatom) have been formulated there. On the basis of the general
relation between the LMO representation matrix and the DM (Section 4.2) it has
been demonstrated that the inductive effect may be interpreted either in terms of
a perturbed electron density distribution or in terms of LMOs that have changed
shape relative to those of parent alkanes. The latter perturbations, in turn, were
shown to be proportional to the extents of delocalization of LMOs in the parent hy-
drocarbons. Accordingly, the well-known short-range nature of the inductive effect
has been concluded to originate from a weak interbond delocalization in alkanes.

Application of the more rigorous second approximation to alkanes has been dis-
cussed in Ref.[27] in connection with the generalization of the Dewar formula to
the case of zero order intrasubset interactions. No algebraic solution of Eq.(19) is
obtained in this case. Thus, a general analysis of LMOs and DM hardly is possible.

Nevertheless, some conclusions concerning total energies of alkanes have been
drawn on the basis of studies of signs of the second order correction E(2) referring
to zero order blocks E(+) and E(−) of arbitrary constitution. Thus, stabilization of
the system vs. the set of isolated BOs was confirmed for negative-definite matrices
E(+) and E(−) [28,84]. Negative signs of eigenvalues of matrices E(+) , in turn,
have been concluded on the basis of studies of their spectra [37,38,40]. Hence, the
stabilizing effect of the interbond interaction in alkanes was additionally supported.
As opposed to the Dewar formula, however, a more profound accounting for stability
of alkanes follows from its generalization. Indeed, the above-mentioned negative
signs of eigenvalues of matrices E(+) were related to the asymmetry of their spectra
relatively to diagonal elements, which , in turn, is conditioned by the specific spatial
arrangement of BOs and thereby of bonds. Consequently, the tetrahedral spatial
arrangement of quartets of bonds at the same carbon atom (molecular topology)
was considered as the main origin of stability of alkanes.

5.2. COMPARATIVE STUDIES OF SATURATED AND CONJUGATED
HYDROCARBONS

Bond orbitals are not the optimum basis functions in respect of describing the
details of electron density distributions, especially of changes in the intrabond char-
acteristics due to interbond interaction. To this end, the HAO(AO) bases have
been used as initial basis sets (cf. the indirect application of the PNCMO the-
ory [67,71,72]). Advantages of HAOs(AOs) when comparing the relative rates of
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convergence of the power series for different types of molecules [67] also may be
mentioned.

The HAOs (AOs) of hydrocarbons may be represented by close values of Coulomb
and of intrabond resonance parameters, whereas the remaining Hamiltonian matrix
elements are relatively small [18-21,23,59,67, 71,72,75-79]. This allowed us to reveal

a zero order member H̃(0) of a simple and common form in the total Hamiltonian

matrix H̃ , which containes unit matrices in its off-diagonal positions. Then the rel-
evant unitary transformation matrix U (which describes passing to the basis of BOs
and backwards) also consists of unit submatrices and the transformed Hamiltonian

matrix (H = U+H̃U) coincides with that referred to as the first approximation for
alkanes (Subsect. 5.1).

It is evident that new combinations of the principal matrices G(k) including their
Hermitian-conjugate counterparts (G+

(k)) arise as building blocks of the final DM

(P̃) after retransformation [71,72]. These combinations were shown to represent
new types of intramolecular interactions being expressed in terms of through-space
and through-bond ones, namely, intrabond polarization, interbond charge transfer,
and redistribution of bond orders (rebonding).

Non-zero intrabond dipole moments in alkanes even for uniform Coulomb pa-
rameters of all HAOs and 1sH AOs may be mentioned as a principal result here.
Indeed, the second order intrabond polarization was shown to yield a substantial in-
crement to an intrabond dipole proportional to the self-interaction (G(2)ii) between
respective BOs ϕ(+)i and ϕ(−)i by means of orbitals of the nearest environment . For
C-C bonds in alkanes, the mediating effects of the six geminal neighbors cancel out
each other, and, consequently, zero dipoles are obtained. Alternatively, non-zero
transferable dipole moments follow for C-H bonds. Their immediate reason was
shown to consist in the non-symmetric nearest environment of these bonds. It has
been concluded on this basis that non-zero experimental dipole moments of some
alkanes [85 ] are not necessarily related to differences in electronegativities of carbon
and hydrogen atoms.

Furthermore, an alternative interpretation of the total energy (vs.that in terms of
interbond interactions discussed in Section 5.1) was achieved using the HAO (AO)
basis [72]. Thus, any correction E(k) of the energy E has been expressed as Trace

of the rebonding matrix Ω(k), the latter taking the off-diagonal position within the

retransformed correction P̃(k). As a result, stabilization of hydrocarbons has been
related to the so-called rebonding effect, which involves a formation of new bond
orders between orbitals of different bonds due to their interaction accompanied by
reduction of intrabond bond orders.

Along with the total k−th order energy E(k) , its separate components E
(α)
(k) and

E
(β)
(k) also acquired a new interpretation in the HAO (AO) basis [71,72] (Note that

the relations of Eqs.(29)-(32) are invariant towards unitary transformations of basis

set). Thus, the first component E
(α)
(k) contains the k−th order corrections to the

neighboring bond orders, whereas the second one (E
(β)
(k) ) consists of contributions

of non-neighboring bond orders. As a result of Eq.(30), the relevant effects upon
the total k−th order energy are interrelated. In particular, consideration of the
second order term (k = 2) allowed us to conclude that lowering in the neighboring
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bond orders in itself gives rise to destabilization of the system in accordance with
the expectation (E

(α)
(2) > 0). On this basis, the final stabilization of hydrocarbon

vs. the respective set of isolated bonds was traced back to the fact that the total
stabilizing effect of the newly-formed non-neighboring bond orders exceeds twice the
total destabilizing increment due to reduction of the neighboring bond orders.

Let us turn now to comparison of saturated and conjugated hydrocarbons [67]. A
considerably slower convergence of the power series for both the LMO representation
matrix and the DM is peculiar to conjugated molecules vs. the saturated ones, and
this makes the most important difference between the two classes. Furthermore,
substantial individual differences are observed in the relative rates of convergence for
separate conjugated hydrocarbons as opposed to the saturated ones. In particular,
the convergence rate of linear polyenes decreases gradually when the chain length
increases. On the other hand, turning from linear to a cyclic constitution of the
chain leads to drastic reduction of the convergence rate. These results, in turn, have
been related to different relative values of interbond interactions vs. the intrabond
energy gaps for conjugated and saturated hydrocarbons )these were evaluated to be
0.25 and 0.1, respectively). It has been concluded on this basis that applicability of
the PNCMO theory to conjugated hydrocarbons in general is not self-evident.

Before finishing this Subsection, investigation of validity of the basis-set- orthogo-
nality assumption for alkanes [52] should be mentioned. Let us start with a notation
that the above-mentioned assumption seems to be less justified in the HAO basis
because of large intrabond overlap integrals. Treatement of this problem is known
to be based on transforming the initial Hamiltonian matrix into the symmetrically-
orthogonalized basis using the Löwdin’s transformation matrix S−1/2 [86,87], where
S stands for the initial overlap matrix. To obtain a convergent power series for
the matrix S−1/2 in terms of four submatrices of the matrix S, the NCRSPT has
been successfully applied in Ref.[59]. This result not only allowed us to justify the
basis-set- orthogonality assumption for alkanes in the HAO basis, but also demon-
strated an example of applicability of the NCRSPT in dealing with power functions
for matrices.

5.3. ELECTRON DENSITY REDISTRIBUTIONS INSIDE HYDROCARBON
FRAGMENTS UNDER INFLUENCE OF HETEROATOM

As it was mentioned already, local repransformations of expressions of the
PNCMO theory into the HAO (AO) bases also are possible. The relevant matrices
U then embrace orbitals of a certain fragment of the molecule. It is noteworthy that
such a procedure refers to all molecules containing the given fragment. Additivity
of the PNCMO expressions for elements of the bond order matrix with respect to
contributions of separate FOs (Section 4), allows us to consider the effect of a cer-
tain external group (e.g. of a substituent or heteroatom) upon the fragment under
interest separately without specifying the structure of the whole compound. The
results of just this approach are overviewed in this Subsection.

Let us start with a two-dimensional DM block [73,74] corresponding to two BOs
ϕ(+)i and ϕ(−)i of the I-th bond defined in terms of HAOs(AOs) χ1 and χ2 gen-
erally represented by different Coulomb parameters. The diagonal elements of the
retransformed DM block describing the occupation numbers of orbitals χ1 and χ2
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take then the form of sums of several meaningful components, including the zero
order (primary) dipole moment, the increments of the secondary polarization of var-
ious orders, the analogous contributions of the so-called depolarization, as well as
increments of the population alteration of the whole bond due to interbond charge
transfer.

Applications of these results to substituted alkanes [73] allowed us to replenish
the early interpretation of the inductive effect in terms of interbond charge transfer
(Sect. 5.1). Thus, alteration in the secondary polarization of a C-C (or C-H) bond
under influence of heteroatom was shown to be among the principal components of
the effect. This increment, in turn, has been related to differences in the indirect
self-interaction (G(2)ii) between BOs ϕ(+)i and ϕ(−)i by means of orbitals of the
heteroatom-containing bond before and after substitution.

Further, the so-called trans-effect of heteroatom (revealing itself as non-equivalence
of the cis- and trans-arranged Cβ-Cγ(Cβ-H) bonds with respect to the heteroatom-
containing (Z-Cα) bond) has been traced back to third order increments to occu-
pation numbers of HAOs(AOs) [74]. Moreover, application of the PNCMO theory
allowed both the inductive and the trans-effect of heteroatom to be studied on the
unified basis. Similarity and differences of the two effects also have been successfully
revealed.

Let us turn now to an analogous local retransformation of a six-dimensional
Hamiltonian matrix block corresponding to the phenyl ring [68]. The relevant ma-
trix U was made up of coefficients of linear combinations of the canonical MOs of
benzene in terms of 2pz AOs of carbon atoms. As a result of retransformation, the
occupation numbers of AOs of the phenyl ring have been expressed as a sum of five
terms, two of them describing the intramolecular charge transfer and the remain-
ing ones representing the secondary dipoles arising within the ring under influence
of the heteroatom. These expressions yielded simple accountings for observed pic-
tures of electron density distributions in substituted bemzenes and in pyridine-like
heterocycles in terms of direct and indirect interactions of FOs.

6. THE PNCMO THEORY AS THE BASIS OF THE SEMILOCALIZED
DESCRIPTION OF CHEMICAL REACTIVITY

Early stages of bimolecular chemical reactions usually are modelled by formation
of weak intermolecular bonds. In this connection, various forms of perturbation
theory are used in quantum-chemical studies of relative reactivities of alternative
routes of a certain process. Passing to the basis of delocalized (canonical) MOs of
isolated molecules makes the principal step of these theories and thereby delocalized
descriptions of reactivity are obtained. This equally refers both to pioneering con-
tributions based on the simple Hückel theory [ ] and to perturbative approaches of
a considerably higher level of sophistication developed later (these are overviewed
in Ref.[88] in a detail).

As opposed to the majority of quantum-chemical studies, a local point of view to
chemical reactivity is prevalent in the classical chemistry [89-91]. Thus, a definite
functional group is regarded as taking part in the given process directly and it is
usually referred to as the reaction center. Again, the remaining parts of molecules are
supposed to participate in the same process indirectly by exerting certain electron-
donating or accepting effects upon the respective reaction centers, and the extents
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of these effects are usually considered to be quite different at various stages of the
reaction [89]. Extinction of the indirect influence when the distance between the
given fragment and the reaction center grows also is among the expectations.

To formulate quantum-chemical analogues of the above-discussed classical con-
cepts and to be able to discuss chemical reactions in terms of local structures and/or
interactions, a semilocalized approach to chemical reactivity [88] has been developed
on the basis of application of the PNCMO theory to the case of two interacting mole-
cules. Orbitals localized on separate elementary fragments of both participants of
the process (e.g. the single and double bonds, phenyl rings, etc.) played the role
of FOs, and the term ”semilocalized” was introduced to distinguish our approach
from oversimplified localized models [92], wherein only a few of directly-overlapping
orbitals are explicitly considered. Electron density redistribution inside and be-
tween two weakly-interacting molecules A and B was the principal characteristic
under study. The relation between this redistribution and the total intermolecular
interaction energy has been taken from Eq.(35).

To be able to apply the general expressions for the bond order matrix P shown
in Eqs.(26) and (27), the total subset of IOFOs {ϕ(+)} has been subdivided into two

parts {ϕ
(a)
(+)} and {ϕ

(b)
(+)} referring to molecules A and B, respectively. The subset of

IVFOs , in turn, consisted of subsets {ϕ
(a)
(−)} and {ϕ

(b)
(−)}. Accordingly, submatrices

E(+) and E(−) of the zero order Hamiltonian matrix H(0) have been assumed to
consist of direct sums of matrices referring to separate molecules, viz.

E(+) = E
(a)
(+) ⊕ E

(b)
(+), E(−) = E

(a)
(−) ⊕ E

(b)
(−), (38)

whereas the first order blocks T,R and Q contained intermolecular parts of the
anti-block-diagonal constitution in addition. Use of these partitions allowed the
total principal matrices G(k) to be represented as follows

G(k) = G
(a)
(k) ⊕ G

(b)
(k) + δG(k) (39)

where G
(a)
(k) and G

(b)
(k) are purely mono-molecular terms and δG(k) is a correction

generally consisting of four non-zero blocks and describing contributions of the in-
termolecular interaction.

After substituting Eq.(39) into Eqs.(26) and (27), it turned out that any correc-
tion P(k) of the total DM of two interacting molecules also is representable as shown
in Eq.(39). This result, allowed us to study the respective intermolecular increment
δP(k) separately and to derive a general expression for an alteration δP(k)+,ii in the
population of a certain IOFO ϕ(+)i of the molecule A due to its contact with the
opposite molecule B.

Before passing to an overview of the relevant results, some definitions of Ref. [88]
should be recalled. Thus, the directly-interacting fragments of molecules A and B
have been called the reaction centers and denoted by RC(A) and RC(B). Further,
the fragments of molecules A and B , the orbitals of which interact directly only with
those of reaction centers of their own molecules (but not with orbitals of opposite
molecule) have been referred to as the nearest-neighboring fragments and denoted
by NN(A) and NN(B). Analogously, the next-nearest- meighboring fragments may
be defined and so forth.
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Let us turn now to the population alteration δP(k)+,ii . As with the total popu-
lations of FOs shown by Eq.(36), the alteration δP(k)+,ii consists of a sum of partial

populations δx
(k)
(+)i,(−)l of various orders (k). Given that the opposite orbital ϕ(−)l

belongs to the same molecule (A), the relevant partial population describes charge
redistribution inside the molecule A owing to its contact with the molecule B. Al-
ternatively, an intermolecular increment is obtained.

Analysis of separate contributions to the population alteration δP(k)+,ii showed
that the higher is the order of the given increment (k) , the more distant fragments
are embraced by the relevant charge redistribution. In particular, the second and
the third order increments describe charge redistributions inside and between the
reaction centers RC(A) and RC(B). This result indicates the primary role of these
centers in chemical processes. Moreover, the above-mentioned local charge redistri-
butions have been considered as the quantum-mechanical analogues of the supposed
direct participation of the RC(A) and EC(B) fragments in a certain process.

The fourth order correction δP(4)+,ii to the total population alteration was
shown to contain five meaningful components, three of them describing intramole-
cular charge redistribution. The first of these components proved to represent an
electron-donating or accepting effect of the NN(A) fragment upon the reaction cen-
ter RC(A) owing to the indirect participation of orbitals of the opposite molecule B.
Accordingly, the second increment described an intramolecular charge redistribution
within the RC(A) fragment due to its contact with the molecule B and orbitals of
the NN(A) fragment participated in this redistribution indirectly as mediators of a
certain interorbital interaction. Finally, the third intramolecular increment repre-
sented a charge redistribution inside the same reaction center RC(A) mediated by
orbitals of the opposite reaction center RC(B).

The remaining two intermolecular components of the forth order correction δP(4)+,ii

were shown to desribe the following effects: i) an additional charge redistribution
between the reaction centers RC(A) and RC(B) under an indirect participation of
the NN fragments, and ii) an indirect charge transfer between one of the two reaction
centers (e.g. RC(A)) and the nearest- neighborhood of the opposite reaction cen-
ter (NN(B)), wherein orbitals of the remaining reaction center (i.e. of the RC(B),
respectively) play the role of mediators.

On the whole, the above-discussed fourth order terms represent additive compo-
nents of an indirect participation of a certain neighboring fragment in a chemical
process. In the case of a still more remote fragment, terms of even higher orders are
required to describe the relevant effects. Thus, extinction of an indirect influence
is predicted when the distance between the given fragment and the respective reac-
tion center grows. Moreover, the relative importance of higher order terms may be
expected to increase when passing from the early stages of reactions to later ones.

Therefore, the intuition-based hypotheses of the classical chemistry concerning re-
activity (see the introductory part of this section) acquired an additional quantum-
chemical support. Moreover, the scope of validity of these classical concepts has
been related to that of the PNCMO theory. It is also evident that both the local
charge redistributions representing consequences of direct participation of the reac-
tion centers in the given process and the above-enumerated principal components
of the indirect influence of the nearest-neighboring fragment (substituent) depend
on the spatial arrangement of the reagent with respect to reactant. On this basis,
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relative efficiences of alternative routes of reactions may be compared.
Applicability of the above-described general approach to specific chemical prob-

lems has been illustrated by several examples. First, the approach formed the basis
of the so-called extended model of the SN2 reaction between a substituted alkane
and nucleophile [93]. Application of this model allowed us to distinguish between
the efficiencies of the frontal and back attacks of the reagent even if the direct inter-
molecular interactions between the orbital of the latter and the antibonding orbital
of the Z-Cα bond take coinciding absolute values. An analogous model gave us an
insight into the origin of the enhanced reactivity of α−halocarbonyl compounds in
SN2 processes [94]. In the case of the AdE2 reaction of substituted ethenes [95], dif-
ferent relative reactivities of carbon atoms have been related to dissimilar indirect
influences of the substituent for alternative directions of an electrophilic attack.

7. CONCLUDING REMARKS

As it seen from the above review, the NCRSPT is formulated in terms of entire
submatrices (blocks) of the initial Hamiltonian matrix. This, in turn, ensures a
considerably more general nature of the subsequent results vs. those of the standard
RSPT. For example, general expressions have been derived for effective Hamiltonian
matrices of separate weakly-interacting subsystems of molecular systems and these
may be regarded as the most outstanding result of the NCRSPT in the framework
of the usual (canonical) method of MOs.

The principal achievemennts of the NCRSPT, however, refer to the non-canonical
method of MOs based on the Brillouin theorem. This fact may be traced back to the
more general nature of the NCMO method itself as compared to the CMO method.
Moreover, application of the NCRSPT allowed us to formulate the so-called PNCMO
theory of molecules that involves the following principal points:

i) The interrelation between the Brillouin theorem and the commutation equation
for the one-electron density matrix;

ii) The expressions for NCMOs that are related to the respective bond order
matrix as closely as possible;

iii) The generalization of the Dewar formula for total energies of molecules to the
case of substantial intrasubset interactions.

It is no surprise in this context that applications of the PNCMO theory embrace
entire classes of related molecules and yields general results concerning chemical
reactivity.

Finally, good prospects for further developement of the NCRSPT, in general, and
of the PNCMO theory, in particular, may be mentioned. For example, generalization
of the NCRSPT to the case of non-orthogonal subsets of basis functions seems to
be feasible. (Such an expectation is based on an analogous generalization of the
standard RSPT [96-99], on the one hand, and of the paricular case of two interacting
subsets [25], on the other hand). Moreover, the NCRSPT is likely to be applicable
to solution of a wide variety of matrix problems. The latter expectation is based on
the successful solution of the commutation equation for the one-electron DM and
derivation of a power function for matrix discussed in this review.
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