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Abstract

The paper is devoted to further developement of the perturbative version of
the non-canonical method of molecular orbitals overviewed recently (V.Gineityte,
Lith.J.Phys., 44, 219 (2004)) and called the PNCMO theory. General expressions
are derived for the common one-electron density matrix of saturated organic mole-
cules in the basis of 1sH AOs of hydrogen atoms and sp3− hybrid AOs of the re-
maining atoms and for respective total energies. Explicit algebraic representations
are obtained for intrabond effects taking place in the above-specified systems due to
interbond interaction. The concepts of homolytic and heterolytic predissociation of
bonds are introduced to describe these effects. Interdependences are demonstrated
between increments of various intra- and interbond effects to the total energy of the
systems under study. Moreover, the final stabilization energy of the system vs. the
respective set of isolated bonds and lone electron pairs is shown to result from a
certain ’balance’ between increments of opposite signs. In particular, the stabiliz-
ing contributions of newly- formed bond orders between orbitals of different bonds
due to their interaction are shown to be necessarily accompanied by destabilizing
increments of intrabond type that are traced back to the homo- and heterolytic
predissociation of bonds. The results obtained are compared to those of particular
cases studied previously.

Key words : Non-canonical method of molecular orbitals, one-electron density
matrix, total energy of molecule, perturbation theory
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1. INTRODUCTION

Electronic structures of molecules are most commonly studied in terms of delo-
calized molecular orbitals (MOs) resulting from the canonical Hartree-Fock (HF)
equation [1-3]. Since the MOs are usually sought in the form of linear combination
of certain basis functions (e.g. atomic orbitals (AOs)), the canonical HF equation
resolves itself into diagonalization problem for the Fockian matrix. The well-known
Rayleigh-Schrödinger perturbation theory (RSPT) [2,4] is among popular approx-
imate methods used to obtain the solution. Given that the Fockian matrices are
additionally replaced by respective Hückel model Hamiltonian matrices and the
self-consistent nature of the HF equation is ignored, application of the RSPT yields
general algebraic results embracing entire series of the so-called related molecules.
This qualitative approach to electronic structures of molecules is usually referred to
as the perturbative MO (PMO) theory [5].
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The canonical HF equation, however, is not the only possible form of one-electron
problems for molecules. Moreover, various representations of an alternative (non-
canonical) one-electron problem are possible [1,2].

As delocalized MOs are more easily obtainable from the canonical HF equation,
the non-canonical one-electron problem is usually adapted [6] to look for orbitals
localized mostly on separate fragments of molecule (Orbitals of this type are more
closely related to chemical concepts of bonds, lone electron pairs, etc. [6-8]).

In this context, the Brillouin theorem [1,6] is of particular interest. Indeed, ap-
plications of this theorem is equivalent to solution of the non-canonical HF equation
as shown in [1]. On the other hand, the Brillouin theorem yields a new and more
general matrix problem after turning to matrix representation [9-15], namely the
block-diagonalization problem for the Fockian matrix or for its approximations in-
cluding the Hückel model Hamiltonian matrix. Moreover, this problem proved to be
solvable in terms of entire submatrices (blocks) of the initial matrix without speci-
fying either the internal constitutions or dimensions of these blocks [12-15]. To this
end, a special formalism of the perturbation theory was developed that was called
the non-commutative RSPT (NCRSPT) [15,16]. Application of the latter actually
resulted into general expressions for non-canonical MOs (NCMOs) in the form of
linear combinations of two subsets of basis functions with matrix coefficients [17].

The one-electron density matrix (DM) also is among the most fundamental char-
acteristics of molecule describing charge distribution and related to numerous ob-
served properties [2,3]. A general perturbative expression for this matrix was shown
to be obtainable on the basis of projector to the entire subset of occupied NCMOs
[17]. Moreover, the same power series for the DM may be derived directly from
solution of the so-called commutation equation by means of the NCRSPT [14]. For
the total energy of molecule ε, an analogous power series [18,19] followed from the
relation of this characteristic to the DM P (ε = Trace(PH) , where H is the Hamil-
tonian matrix). These results and their applications have been overviewed recently
in Ref.[16]. The approach under discussion was called there the perturbative NCMO
(PNCMO) theory of molecules.

An important feature of this new theory consists in the fact that no explicit defi-
nition of the principal basis set was required when deriving its principal expressions
[14]. The only condition imposed on this basis was the possibility of revealing two
subsets of basis functions within the set {ϕ} so that the energy differences between
orbitals of different subsets exceed considerably the intersubset interactions (reso-
nance parameters) and one of these subset is initially-occupied in addition. As it
turned out later [16], orbitals localized on separate fragments of the system(s) un-
der study usually meet this requirement. In the case of saturated organic molecules,
the above-specified orbitals coincide with bond orbitals (BOs) defined as eigenfunc-
tions of separate two-dimensional Hamiltonian matrix blocks associated with pairs
of atomic or hybrid orbitals pertinent to the same bond. It is also woth mentioning
here that neither AOs nor hybrid AOs (HAOs) meet the above-specified require-
ments.

Given that BOs are chosen to play the role of basis functions in the PNCMO
theory, the resulting characteristics of electronic structures (viz. the NCMO repre-
sentation matrix, the DM and the total energy) are expressed in terms of certain
principal matrices G(k) (k = 1, 2, 3..) describing the direct (through-space) and in-
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direct (through-bond) interactions of these orbitals [14]. These expressions allowed
us to reveal the role of various interbond interactions in the formation of the actual
electronic structure(s) of the system(s) under study.

Bond orbitals, however, are not the optimum basis functions in respect of describ-
ing the influence of interbond interactions upon internal characteristics of separate
bonds, e.g. bond orders, bond dipole moments, etc. Moreover, the alternative rep-
resentation of the DM in the basis of AOs and/or HAOs (usually referred to as the
charge- bond order matrix) describes the intrabond characteristics in a far more
convenient way [20-24] as compared to the above-discussed matrix in the basis of
BOs.

Recent investigations of charge- bond order matrices of some particular systems
showed that the interbond interactions give rise to definite intrabond effects [20, 21,
23]. These may be examplified by the so-called rebonding effect [23] taking place
in hydrocarbons and involving reduction of internal bond orders of separate bonds
due to interbond interaction so that the extent of lowering is proportional to sums
of squares of newly-formed bond orders between orbitals of the bond under consid-
eration and those of other bonds. Moreover, the intrabond effects under discussion
were shown to play an important role in chemical reactions [25, 26]. In this context,
derivation of expressions for intrabond effects as general as it is possible becomes of
importance.

It should be noted that retransformation of the results of the PNCMO theory
into the AO (HAO) basis underlying the above-expected derivation is not a trivial
problem. The point is that BOs are defined in terms of local pairs of AOs (HAOs),
whereas members of the power series of the PNCMO theory are expressed in terms
of entire submatrices (blocks) of the initial Hamiltonian matrix [16]. That is why
we had to confine ourselves to local retransformation matrices in Ref.[21,24].

In this paper, we are about to suggest a retransformation procedure of a quite
general scope of applicability that refers to any saturated molecule and embraces
also the particular types of hydrocarbons studied before [20,22]. On this basis, we
expect to be able to introduce some new concepts concerning intrabond effects in
saturated organic molecules, as well as to consider the results obtained previously
[20-23] from a more general point of view.

The scheme of the paper is as follows:
We start with the common Hückel model Hamiltonian matrix of saturated mole-

cules represented in the basis of HAOs and/or AOs. To be able to apply the expres-
sions of the PNCMO theory, we transform this matrix into the basis of BOs and
discuss the resulting one-electron DM P̃ (Section 2). Thereupon, members of the

power series for the matrix P̃ are retransformed into the HAO(AO) basis again and
the intrabond effects following from the charge- bond order matrix P are analyzed
(Section 3). Section 4 is devoted to the analogous consideration of the total energy.

2. THE ONE-ELECTRON DENSITY MATRIX OF SATURATED ORGANIC
MOLECULES IN THE BASIS OF BOND ORBITALS

Let us start with specifying of the systems under study. The term ’saturated
organic molecules’ used throughout this article embraces systems containing more or
less localized two-center chemical bonds and lone electron pairs. The more precise
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definition consists in the first order magnitude of the non-neighboring resonance
parameters vs. those between strongly-overlapping (neighboring) pairs of orbitals
[13, 27-32] in the initial basis of 1sH AOs of hydrogen atoms and sp3−hybrid AOs
(HAOs) of the remaining atoms. For simplicity let us call them both the HAO basis.

Let our basis set of HAOs {χ} to contain an even total number of orbitals (2N),
where N stands for the number of bonds and lone electron pairs. In the latter case,
an even total number of basis orbitals may be ensured by introducing respective
faked antibonding orbitals [14]. These additional orbitals are presumed to be situ-
ated at sufficiently high one-electron energies so as to exert no influence upon final
results.

Let the 2N -dimensional basis set {χ} to be divided into two N-dimensional sub-
sets {χ′} and {χ′′} so that the strongly overlapping pairs of the neighboring orbitals
find themselves in the different subsets. Furthermore, let us enumerate the basis
functions in such a way that the neighboring pairs of orbitals acquire the coupled
numbers i and N +i. Finally, orbitals described by larger absolute values of Coulomb
parameters (α) will be included into the first subset.

The common Hückel model Hamiltonian matrix of saturated molecules may be
then presented as a sum of zero order (H(0)) and first order terms (H(1)), viz.

H = H(0) + H(1) =

∣∣∣∣
A(0) B(0)

B(0) C(0)

∣∣∣∣ +

∣∣∣∣
A(1) B(1)

B+
(1) C(1)

∣∣∣∣ , (1)

where submatrices correspond to subsets {χ′} and {χ′′}, and to their interaction. In
particular, submatrices A(0), C(0) and B(0) of the zero order term H(0) are of diagonal
constitution consisting of Coulomb parameters of HAOs χ′

i and χ′′

N+i (A(0)ii = αI1,

C(0)ii = αI2) and of resonance parameters between the latter (B(0)ii = βI). Subma-
trices A(1), C(1) and B(1) of the first order term H(1) are square matrices of arbitrary
structure. The superscript + is used here and below for Hermitian- conjugate (trans-
posed) matrices.

The energy reference point and the energy unit will be assumed to be chosen
so that the above-enumerated parameters (αI1, αI2 and βI) take positive values for
any bond and the inequality αI1 > αI2 is valid (A negative energy unit is assumed
to be actually accepted). Inasmuch as the Coulomb and the intrabond resonance
parameters always may be entirely included into the zero order matrix H(0), the
diagonal elements of the first order submatrices A(1), C(1) and B(1) will be supposed
to take zero values, i.e. A(1)ii = C(1)ii = B(1)ii = 0 for any i.

Let us define now the bonding and antibonding BOs of the I-th bond as eigen-
functions of the respective two-dimensional Hamiltonian matrix block in the basis
{χ′

i, χ
′′

N+i}, i.e.

ϕ(+)i = zIχ
′

i + vIχ
′′

N+i, ϕ(−)i = vIχ
′

i − zIχ
′′

N+i, (2)

where the expressions for coefficients zI and vI take the form [31]

zI = cos(
γI

2
), vI = sin(

γI

2
) (3)

and

γI = arctan

[
2βI

αI1 − αI2

]
, 0 6 γI 6

π

2
. (4)
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As a result, passing from the basis of HAOs {χ} to that of BOs {ϕ} will be described
by the following unitary (and Hermitian) matrix

U = U+ =

∣∣∣∣
Z V

V −Z

∣∣∣∣ , (5)

where Z and V are N−dimensional diagonal submatrices consisting of coefficients
zI and vI of Eq.(3), respectively. The transformed Hamiltonian matrix H̃ takes then
the form

H̃ = U+HU = U+H(0)U + U+H(1)U =H̃(0) + H̃(1) (6)

and containes a diagonal zero order member H̃(0). As a result, the total matrix H̃

meets the requirements of the PNCMO theory [14,16]. This, in turn, allows us to

invoke the expressions for the relevant one-electron DM P̃ derived in Ref.[14] in the

form of power series. The corrections P̃(k) of this series also are expressable in terms
of four submatrices, viz.

P̃(k) =

∣∣∣∣∣
Q̃(k)+ −2G(k)

−2G+
(k) Q̃(k)−

∣∣∣∣∣ , (7)

where k here and below stands for the order parameter. The blocks Q̃(k)+ and

Q̃(k)− correspond here to N−dimensional subspaces of bonding BOs (BBOs) and of
antibonding BOs (ABOs), respectively, and determine the k−th order increments
to occupation numbers of these orbitals along with intrasubspace bond orders.

The submatrices −2G(k) (k = 1, 2, ..) taking the off-diagonal positions within the

correction P̃(k) coincide with the principal matrices of the PNCMO theory (Section
1) up to the factor −2. At the same time, these determine the k−th order incre-
ments to the intersubspace bond orders referring to pairs of BOs of opposite initial
occupation.

The zero order member P̃(0) of the power series for the DM P̃ takes a diagonal
form containing the initial occupation numbers of BOs. These coincide with 2 and
0 for BBOs and ABOs, respectively. Hence, the submatrix Q̃(0)+ = 2I is the only

non-zero block of the matrix P̃(0).

Separate elements (G(k)il) of the principal matrices G(k) were shown to be express-
able algebraically [14] provided that a zero order member of diagonal constitution
may be revealed in the total Hamiltonian matrix of the system(s) under study. Our
matrix of Eq.(6) corresponds to just this case and thereby the expressions for G(k)il

of Ref. [14] may be invoked here.
Let the one-electron energies of BBOs and of ABOs taking the diagonal posi-

tions within the matrix H̃(0), to be denoted by E(+)i and E(−)l, respectively. The
expressions for elements G(1)il and G(2)il take then the form

G(1)il = −

〈
ϕ(+)i

∣∣∣Ĥ
∣∣∣ ϕ(−)l

〉

E(+)i − E(−)l

, (8)
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G(2)il =
1

E(+)i − E(−)l

[
BBOs∑

m

〈
ϕ(+)i

∣∣∣Ĥ
∣∣∣ ϕ(+)m

〉 〈
ϕ(+)m

∣∣∣Ĥ
∣∣∣ ϕ(−)l

〉

E(+)m − E(−)l

−

ABOs∑

r

〈
ϕ(+)i

∣∣∣Ĥ
∣∣∣ ϕ(−)r

〉 〈
ϕ(−)r

∣∣∣Ĥ
∣∣∣ ϕ(−)l

〉

E(+)i − E(−)r

], (9)

where the numerators of fractions contain resonance parameters between BOs indi-
cated within the bra- and ket-vectors.

Elements G(1)il of Eq.(8) have been interpreted as direct (through-space) interac-
tions between BOs ϕ(+)i and ϕ(−)l. Accordingly, G(2)il of Eq.(9) represent indirect
(through-bond) interactions of the same BOs, where both BBOs (ϕ(+)m) and ABOs
(ϕ(−)r) of other bonds are able to play the role of mediators.

Finally, the diagonal elements G(1)ii and G(2)ii deserve a separate discussion.
Thus, the above-introduced definition of BOs ensures zero values for intrabond res-

onance parameters
〈
ϕ(+)i

∣∣∣Ĥ
∣∣∣ ϕ(−)i

〉
and thereby for first order elements G(1)ii. The

second order element G(2)ii, in turn, desribes the indirect intrabond interaction be-
tween BOs of the I-th bond by means of orbitals of other bonds that will be referred
to as the intrabond coupling for simplicity. As it is seen from Eq.(7), the intrabond
coupling G(2)ii determines the bond order between BOs ϕ(+)i and ϕ(−)i of the I-th
bond due to interbond interaction.

Let us turn now to submatrices Q̃(k)+ and Q̃(k)− of Eq.(7). For the first order

correction P̃(1), the relevant blocks Q̃(1)+ and Q̃(1)− coincide with zero matrices [14],
whereas those corresponding to higher values of the order parameter are expressable
in terms of products of the principal matrices G(k) of lower orders. In particular,

the most important second order corrections Q̃(2)+ and Q̃(2)− take the form

Q̃(2)+ = −2G(1)G
+
(1), Q̃(2)− = 2G+

(1)G(1). (10)

These relations imply the following explicit forms for alterations in occupation num-
bers of the BBO ϕ(+)i and of the ABO ϕ(−)i of the I-th bond against their initial
values (equal to 2 and 0, respectively), viz.

X(+)i ≈ Q̃(2)+,ii = −2
ABOs∑

p

(G(1)ip)
2,

X(−)i ≈ Q̃(2)−,ii = 2
BBOs∑

m

(G(1)mi)
2. (11)

The above expressions evidently correspond to confinement to second order correc-
tions. In the framework of this approximation, alterations in occupation numbers
of BOs prove to be determined by squares of direct interactions between BOs of the
bond under consideration and those of other bonds, the latter contributing additive
increments to both X(+)i and X(−)i. From Eq.(11) it follows also that the initially- oc-
cupied BO ϕ(+)i always looses some population, whilst the initially- vacant BO ϕ(−)i

acquires it as a consequence of the interbond interaction. Finally, the alterations in
occupation numbers of BOs shown in Eq.(11) may be traced back to emergence of
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bond orders of intersubspace type within the first order matrix P̃(1) (Note that the
latter are determined by elements of matrices −2G(1) as Eq.(7) indicates).

Now, no more is required as to retransform the matrix P̃ defined by Eqs.(7)-(11)
into the HAO basis again. This procedure is performed in the next Section.

3. ANALYSIS OF THE RETRANSFORMED ONE-ELECTRON DENSITY
MATRIX. THE PRINCIPAL INTRABOND EFFECTS IN SATURATED

MOLECULES

It is evident that each correction P̃(k) of the DM P̃ may be retransformed into
the basis {χ} separately using the matrix U of Eq.(5), viz.

P(k) = UP̃(k)U
+. (12)

Substituting Eqs.(5) and (7) into Eq.(12) yields the following expression for the
k−th order correction P(k) of the charge- bond order matrix P

P(k) =

∣∣∣∣
T′

(k) + Π′

(k) Ω(k) + Λ(k)

Ω+
(k) + Λ+

(k) T′′

(k) + Π′′

(k)

∣∣∣∣ , (13)

where the N × N−dimensional submatrices of the right-hand side take the form

T′

(k) = ZQ̃(k)+Z + VQ̃(k)−V, T′′

(k) = VQ̃(k)+V + ZQ̃(k)−Z, (14)

Π′

(k) = −2(VG+
(k)Z + ZG(k)V), Π

′′

(k) = 2(ZG+
(k)V + VG(k)Z), (15)

and
Ω(k) = ZQ̃(k)+V − VQ̃(k)−Z, Λ

(k)
= 2(ZG(k)Z − VG+

(k)V). (16)

The intrabond characteristics (i.e. the occupation numbers of HAOs and the neigh-
boring bond orders) evidently are determined by diagonal elements of submatrices of
matrices P(k). The latter, in turn, imbibe the interbond interactions G(1)il and G(2)il

as Eqs.(10), (11) and (13)-(16) indicate. This offers us a possibility of revealing the
intrabond effects caused by the interbond interaction in the general case without
specifying the structure of the molecule under study.

The diagonal constitution of matrices Z and V allows us to conclude immediately
that diagonal elements of submatrices T′

(k) and T′′

(k), as well as those of Ω(k) are

determined by corrections to occupation numbers of BOs (Q̃(k)+,ii and Q̃(k)−,ii),
whilst the analogous elements of the remaining submatrices (Π′

(k),Π
′′

(k) and Λ(k))

are proportional to respective intrabond interactions of BOs (G(k)ii).
Let us dwell now on consideration of the I-th bond and confine ourselves to the

second order increments. Let us define the following new characteristics of this bond

∆X(2)I = Q̃(2)+,ii + Q̃(2)−,ii (17)

∆R(2)I = Q̃(2)+,ii − Q̃(2)−,ii (18)

The term ∆X(2)I represents the total population lost (acquired) by the I-th bond
owing to interbond interaction. This characteristic actually consists of difference
between absolute values of population lost by the BBO ϕ(+)i and of that acquired
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by the ABO ϕ(−)i. Again, the increment ∆R(2)I is determined by the sum of the same
absolute values and thereby describes the total redistributed population referring to
the I-th bond. It is seen that negative contributions to ∆R(2)I arise owing to both the
additional occupation of the ABO ϕ(−)i and the partial deocupation of the BBO ϕ(+)i

as Eq.(11) indicates. Hence, a negative sign of the total redistributed population
∆R(2)I follows. Along with the above-discussed characteristics ∆X(2)I and ∆R(2)I ,

our bond also is represented by respective diagonal elements of matrices Π′

(k),Π
′′

(k)

and Λ(k). For k = 1, these elements vanish owing to zero direct intrabond interaction
G(1)ii. This implies that the relevant second order increments (Π′

(2)ii, Π
′′

(2)ii and Λ(2)ii)
should be considered that are determined by the intrabond coupling G(2)ii.

Let us replace now the diagonal elements of matrices Z and V of Eqs.(14)-(16)
by coefficients zI and vI of Eq.(3). For the zero order increments to characteristics
of the I-th bond, we then obtain

T ′

(0)ii(T
′′

(0)ii) = 1 ± cos γI , Ω(0)ii = sin γI . (19)

The relevant first order corrections prove to yield no contributions to characteristics
under study, whilst the second order increments are as follows

T ′

(2)ii(T
′′

(2)ii) =
1

2
∆X(2)I ±

1

2
∆R(2)I cos γI , (20)

Ω(2)ii =
1

2
∆R(2)I sin γI , (21)

Π′

(2)ii(Π
′′

(2)ii) = ∓2G(2)ii sin γI , (22)

Λ(2)ii = 2G(2)ii cos γI (23)

where the upper signs of the right-hand sides of Eqs.(20) and (22) correspond to
matrices denoted by the superscript ’ , whilst the lower ones refer to matrices sup-
plemented with the superscript ”. The definitions of Eqs.(17) and (18) also are
invoked when deriving Eqs.(20)-(23).

Let us turn now to interpretation of these expressions. Let us start with the zero
order increments. The zero order dipole-like increment ± cos γI to populations of
HAOs χ′

i and χ′′

N+i resulting from elements T ′

(0)ii and T ′′

(0)ii of Eq.(19) is inherent

in the bond under consideration whatever the structure of the whole molecule (
γI is defined by Eq.(4)). This dipole coincides with the respective value for an
isolated bond. Hence, it may be called the primary dipole moment of the I-th
bond [21]. In accordance with the expectation, the population of the HAO χ′

i of
the more electronegative atom becomes increased, whereas that of the HAO χ′′

N+i

is accoedingly reduced as compared to 1. Similarly, the increment sin γI following
from the element Ω(0)ii may be referred to as the primary bond order of the I-th
bond.

Alterations in occupation numbers of HAOs as well as in intramolecular bond
orders due to interbond interaction are determined by second order contributions as
the above-derived expressions indicate. Thus, let us consider these terms in a more
detail.

Let us start with diagonal elements of matrices T′

(k) and T′′

(k) defined by Eq.(20).
It was mentioned already that these elements originate from redistribution of pop-
ulation among BOs. In addition, the sum of these elements equal to

T ′

(2)ii + T ′′

(2)ii = ∆X(2)I (24)
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coincides with the total lost (acquired) population of the I-th bond. Consequently,
the elements T ′

(2)ii and T ′′

(2)ii describe the actual way of distribution of the lost (ac-

quired) population of the I-th bond among the two HAOs. It is no surprise in
this connection that the expressions for these elements contain uniform increments
(1

2
∆X(2)I) equal to a half of the total population lost (acquired) by this bond and a

dipole-like increment (±d(2)I), where

d(2)I =
1

2
∆R(2)I cos γI . (25)

It is seen that this dipole depends on the total redistributed population ∆R(2)I and
vanishes for homopolar bonds described by uniform Coulomb parameters (Given
that αI1 = αI2, γI = π

2
and cos γI = 0). Moreover, the a priori negative sign of

d(2)I for any I follows from the negative sign of ∆R(2)I . This implies that the HAO
χ′

i pertinent to the more electronegative atom loses its population owing to forma-
tion of the dipole ±d(2)I , whereas the HAO χ′′

N+i acquires an additional population.
Therefore, the primary dipole moment of the I-th bond becomes reduced after ’em-
bedding’ this bond into any molecule. In this connection, the term ±d(2)I has been
called the depolarization dipole moment [21].

Opposite orientations of the primary dipole and of the depolarization one may be
easily accounted for by shapes of BOs ϕ(+)i and ϕ(−)i . Thus, the shape of the BBO
ϕ(+)i of Eq.(2) ensures the primary reduction of population of the HAO χ′

i when
this BO is deoccupied. Accordingly, the additional population acquired by the ABO
ϕ(−)i becomes localized mainly on the HAO χ′′

N+i. Both of these effects evidently
contribute to reduction of the primary dipole moment of our bond.

The diagonal element Ω(2)ii of the matrix Ω(2) shown in Eq.(21) represents the
second order increment to the internal bond order of the I-th bond and also is
determined by the total redistributed population ∆R(2)I . The negative sign of the
latter implies reduction of the primary bond order under influence of the interbond
charge redistribution. This result also causes no surprise if we recall an additional
occupation of the antibonding BO ϕ(−)i and a certain deoccupation of the bonding
BO ϕ(+)i underlying the total redistributed population ∆R(2)I .

It is seen, therefore, that two interdependent intrabond effects originate from
charge redistribution among BOs, namely the depolarization of an initially-heteropolar
bond and the related reduction of the internal bond order. In the case of an initially-
homopolar bond, lowering of the internal bond order only is observed. The above-
mentioned simultaneous effects evidently reflect a trend towards a homolytic disso-
ciation of the given bond after including it into the molecule under study. In this
connection, the term ’the homolytic predissociation’ will be used to refer to these
interdependent effects.

Let us turn now to the remaining second order increments shown in Eqs.(22)
and (23) and determined by the intrabond coupling G(2)ii. The sign of the latter
cannot be established a priori (i.e. without specifying the structure of the system)
in contrast to population alterations of BOs. The same refers also to the sign of
the secondary dipole moment (±p(2)I) resulting from the elements Π′

(2)ii and Π′′

(2)ii

of Eq.(22) and defined as follows

p(2)I = −2G(2)ii sin γI . (26)
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Nevertheless, an interdependence is evident between the sign of this dipole and
that of the related alteration in the bond order of the I-th bond described by the
increment Λ(2)ii of Eq.(23). Moreover, reduction of the bond order (predissociation)
is expected to take place for a negative value of the intrabond coupling (G(2)ii),
and this effect is predicted to be accompanied by emergence of a positive dipole
(p(2)I > 0)( Just this fact makes the term ’the polarization dipole moment’ used to
refer to the increment ± p(2)I [21] even more appropriate). Inasmuch as the total
dipole moment of our bond grows in this case, we have actually to do here with the
trend towards a heterolytic dissociation or, more conveniently, with the heterolytic
predissociation of an initially heteropolar bond.

The case of an initially homopolar bond deserves a separate consideration in
this respect. Indeed, formation of a non-zero secondary dipole (± p(2)I) due to
intrabond coupling is possible also for the above-specified bond. In particular, dipole
moments of this type were shown to be responsible for the secondary (induced)
dipoles of C-C(C-H) bonds under influence of a heteroatom-containing bond [21].
Emergence of such a secondary dipole, however, is not accompanied by reduction of
the internal bond order ( Λ(2)ii = 0 in this case). Hence, the secondary polarization
of homopolar bonds does not imply their heterolytic predissociation. In other terms,
the heterolytic predissociation is among consequences of interbond interaction only
so far as the initially heteropolar bond are concerned.

The additive nature of increments representing the homo- and heterolytic predis-
sociations of bonds also is among the conclusions of this section.

4. CONTRIBUTIONS OF INTRABOND EFFECTS TO TOTAL ENERGIES OF
SATURATED ORGANIC MOLECULES

In this Section, we will look for alterations in total energies representing the
homo- and heterolytic predissociation of bonds. In this connection, we start with
an overview of the general results of the PNCMO theory concerning total energy
[16,18,19].

As it was mentioned already (Section 1), the total energy of the system(s) under
study (ε) has been expressed in the form of power series in the framework of the
PNCMO theory. Moreover, any correction of this series (ε(k)) was shown to consist

of a sum of two interrelated components ( ε
(α)
(k) and ε

(β)
(k)) defined as follows

ε
(α)
(k) = Trace(P(k)H(0)), ε

(β)
(k) = Trace(P(k−1)H(1)). (27)

The above-mentioned relation takes the form

(k − 1)ε
(β)
(k) = −kε

(α)
(k) . (28)

Opposite signs of both components result from this principal relation along with the
following inequality for their absolute values

∣∣∣ε(β)
(k)

∣∣∣ >

∣∣∣ε(α)
(k)

∣∣∣ . (29)

The possibility of expressing the total correction ε(k) in terms of either ε
(α)
(k) or ε

(β)
(k)

also is evident from the above results, viz.

ε(k) = −
1

k − 1
ε
(α)
(k) , ε(k) =

1

k
ε
(β)
(k) . (30)
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Finally, stabilization of the system due to interaction (the latter is assumed to
be contained within the first order Hamiltonian matrix H(1)) was shown to be
determined by the second order correction ε(2). Given that a negative energy unit is
accepted, the above statement along with Eq.(30) resolves itself into the following
relations

∆εstab = ε(2) = ε
(α)
(k) + ε

(β)
(k) = −ε

(α)
(k) > 0, ε

(α)
(k) < 0, ε

(β)
(k) = −2ε

(α)
(k) > 0, (31)

where ∆εstab stands for the stabilization energy.
As with other expressions of the PNCMO theory, the relations of Eqs.(27)-(31)

originally refer to the basis of BOs. In contrast to the power series for the DM,
however, Eqs.(27)-(31) are invariant against an unitary transformation of the basis
set. That is why the labels ˜ used in Eqs.(6) and (7) for characteristics represented
in the basis of BOs are omitted here.

The above-discussed invariance of Eqs.(27)-(31) allows us to substitute the cor-
rections P(k) of Eqs.(13)-(16) along with the zero and first order members of the
initial Hamiltonian matrix of Eq.(1) directly into Eq.(27). As a result, we are able
to derive the expressions for both the total corrections ε(k) and their separate com-

ponents ε
(α)
(k) and ε

(β)
(k) in terms of characteristics of our system(s) represented in the

basis of HAOs {χ}. For the zero and first order members, the result is as follows

ε(0) = ε
(α)
(0) =

∑

I

ε
(α)
(0)I , ε(1) = 0, (32)

where ε
(α)
(0)I is the primary energy of the I-th bond, viz.

ε
(α)
(0)I = (αI1 + αI2) + (αI1 − αI2) cos γI + 2βI sin γI . (33)

Let us turn now to the second order energy ε(2) responsible for stabilization of
our system vs. the set of isolated bonds and lone electron pairs. Let us start with
a brief discussion of its separate components ε

(α)
(2) and ε

(β)
(2) .

Thus, zero values of diagonal elements of submatrices A(1), B(1) and C(1) of Eq.(1)

ensure zero contributions to the correction ε
(β)
(2) originating both from the internal

bond orders and from the populations of HAOs. This implies the component ε
(β)
(2)

to be determined by non-neighboring bond orders that are formed between pairs of
HAOs of different bonds due to their interaction. Hence, the increment ε

(β)
(2) will be

called the interbond component of the second order energy.
Again, the diagonal constitution of submatrices A(0), B(0) and C(0) of the zero

order Hamiltonian matrix H(0) of Eq.(1) ensures the dependence of the remaining

component ε
(α)
(2) of the correction ε(2) exclusively on intrabond characteristics. In

this connection, the increment ε
(α)
(2) will be referred to as the intrabond component

of the second order correction to the total energy.
Let us turn now to the principal relations shown in Eqs.(28)-(31). From Eq.(31) it

follows that the absolute value of ε
(β)
(2) exceeds twice the relevant value of ε

(α)
(2) . Hence,

stabilization of the whole system vs. the set of isolated bonds and lone pairs proves
to be actually determined by the interbond component ε

(β)
(2) of the second order

energy ε(2) and thereby only by newly-formed bond orders between pairs of HAOs
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of different bonds due to their interaction. Furthermore, the opposite signs of ε
(α)
(2)

and ε
(β)
(2) seen from Eq.(28) and (31) allow us then to expect that the above-specified

stabilization necessarily is accompanied by intrabond destabilization. Finally, the
larger is the total extent of destabilization of bonds, the more stabilized the system
actually becomes due to the interbond interaction.

In this connection, let us consider the intrabond component ε
(α)
(2) in a more detail.

It is evident that the relevant expression may be presented as a sum of partial
increments of separate bonds as shown in Eq.(32), where

ε
(α)
(2)I =

1

2
(αI1 + αI2)∆X(2)I +

1

2
(αI1 − αI2)∆R(2)I cos γI + βI∆R(2)I sin γI

−2(αI1 − αI2)G(2)ii sin γI + 4βIG(2)ii cos γI (34)

describes the destabilization energy of the I-th bond. Three types of increments are
present in Eq.(34): The first ∆X(2)I−containing term describes the effect of charge
redistribution among separate bonds and lone electron pairs of our system upon the
energy of the I-th bond. The subsequent two ∆R(2)I− containing inrements of the
same relation represent the contribution of the homolytic predissociation of the I-th
bond to the same energy. Finally, the last two (G(2)ii−containing) terms may be
accordingly traced back to the heterolytic predissociation of the same bond.

Before passing to the more detailed analysis of these increments, let us note that
the last two terms of the right-hand side of Eq.(34) actually cancel out each other.
To show this, the alternative form of Eq.(4), namely

(αI1 − αI2) sin γI = 2βI cos γI (35)

should be substituted into Eq.(34).
We may conclude on this basis that the heterolytic predissociation is an energy-

free effect in the framework of the Hückel model. This result causes no surprise if
we recall that electrostatic forces are not considered explicitly in this model (just
these forces are expected to protect the bonds from the heterolytic dissociation).

The total intrabond component ε
(α)
(2) of the second order correction ε(2) takes then

the following final form

ε
(α)
(2) =

∑

I

1

2
(αI1 + αI2)∆X(2)I +

∑

I

[
1

2
(αI1 − αI2) cos γI

+βI sin γI ]∆R(2)I (36)

and contains two principal contributions describing the total effects of charge redis-
tribution among bonds and of their homolytic predissociation, respectively. These
contributions are likely to be of opposite signs within the total intrabond energy ε

(α)
(2)

as it was the case with the intra- and interbond components within the total second
order energy ε(2) (see Eq.(31)).

Indeed, the inequalities αI1 ≥ αI2 > 0 and βI > 0 accepted in Section 2 and the
a priori negative sign of any redistributed population ∆R(2)I ensure the negative
sign of the second sum of Eq.(36). Hence, the homolytic predissociation always

contributes to the destabilizing nature of the total intrabond component ε
(α)
(2) in

accordance with the expectation. So far as the first sum of Eq.(36) is concerned, it

12



is likely to take a positive value and thereby to yield a certain stabilizing increment
to the total intrabond energy ε

(α)
(2) .

The latter anticipation is based on the following points. First, negative (lost)
populations (∆X(2)I < 0) correspond to electron-donating bonds and positive (ac-
quired) populations (∆X(2)I > 0) refer to electron- accepting bonds in the first sum
of Eq.(36). Second, the electron-donating bonds usually are those described by lower
mean values of Coulomb parameters, whereas the electron- accepting bonds coincide
with those represented by higher mean values of the same parameters. This allows
us to expect that the total positive increment of electron- accepting bonds to the
first sum of Eq.(36) exceeds the absolute value of the total negative increment of
the electron-donating bonds and thereby the sum under discussion takes a positive
value. In other terms, charge is usually transferred from bonds that are built up of
orbitals of a lower average electronegativity to those formed by HAOs of higher elec-
tronegativity and thereby a certain stabilization of the system is expected to result
(In the case of two interacting bonds (1 and 2), this conclusion may be easily verified
by invoking the equality ∆X(2)1 = −∆X(2)2 based on the charge conservation con-
dition). It should be mentioned finally that the negative sign of the total intrabond

component ε
(α)
(2) implies that the increment of the homolytic predissociation predom-

inates over that of interbond charge redistribution in Eq.(36). Hence, the intrabond
destabilization may be largely traced back to the homolytic predissociation.

It is seen, therefore, that the constitution of the total energy of saturated organic
molecules reflects interdependences between inter- and intrabond effects. Moreover,
the final stabilization energy of the system vs. the set of isolated bonds and lone elec-
tron pairs is a result of a certain ’balance’ between positive and negative increments.
In other terms, any of the effects under study causes the respective counter-effect
upon the total energy:

First, formation of new non-neighboring bond orders between HAOs of different
bonds due to interbond interaction gives rise to stabilization of the system. This in-
terbond effect, however, necessarily causes a definite intrabond destabilization that
reduces twice the ’original’ stabilizing increment of non-neighboring bond orders.
Second, the above-mentioned destabilization is primarily due to the homolytic pre-
dissociation of bonds. To ensure the latter, however, a certain redistribution of
population necessarily takes place among bonds. As a result, the actual extent of
intrabond destabilization also becomes somewhat reduced against its original value.

5. COMPARISON OF THE RESULTS OBTAINED TO THOSE OF PREVIOUS
STUDIES. CONCLUDING REMARKS

1. The retransformation procedure suggested in this paper is applied to the total
one-electron density matrix of saturated organic molecules and not to its separate
submatrices as it was the case in Refs. [21,24]. Consequently, the total charge-
bond order matrix of these systems is obtained in the present study in contrast to
expressions for individual occupation numbers of HAOs derived previously [21]. This
allows us to consider alterations in both occupation numbers and bond orders caused
by the interbond interaction and to introduce the concepts of homo- and heterolytic
predissociation of bonds. Moreover, a certain analogy may be traced between the
latter concepts and those used when discussing alterations in internuclear distances
due to perturbation [33].
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2. The initial Hamiltonian matrix of the present study (see Eq.(1)) is a generaliza-
tion of that of hydrocarbons [20,22] to the case of non-uniform Coulomb parameters
and of dissimilar intrabond resonance parameters. The same evidently refers to
corresponding results too. In particular, the matrix Ω(2) defined by Eq.(16) proves
to be a generalization of the rebonding matrix of Ref.[23]. It is no surprise in this
connection that the homolytic predissociation of bonds defined in the present study
embraces the rebonding effect of Ref.[23], the latter consisting in reduction of the
neighboring bond orders in hydrocarbons due to formation of non-neighboring bond
orders.

3. Comparison of the results of the present study to those of Refs. [20,22,23]
shows that passing from hydrocarbons to heteroatom- containing systems is accom-
panied by emergence of an alternative way of (pre)dissociation of bonds, namely
of the heterolytic (pre)dissociation. This result evidently is not unexpected as the
heterolytic dissociation is peculiar to heteroatom- containing (heteropolar) bonds.
Redistribution of population among separate bonds (interbond charge transfer) in
heteroatom- containing systems following from our study also causes no surprise.

4. The expression for the intrabond component (ε
(α)
(2) ) of the second order energy

(ε(2)) derived in this paper and shown in Eq.(36) is an alternative form of Eq.(40)
of Ref. [18] representing the same energy increment in terms of charge redistrib-
ution among separate bond orbitals. Passing from this previous result to that of
Eq.(36) actually corresponds to reformulating of charge redistribution among BOs
in terms of contributions of separate bonds. In this context, cancellation of the
G(2)ii−containing terms when deriving Eq.(36) from Eq.(34) is a natural course of
things.
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