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Abstract

The secular problem for the common Hückel type Hamiltonian matrix of alternant hy-

drocarbons (AHs) is studied by means of an alternative approach based on an initial

reformulating of the problem itself in order to reveal the structures of eigenfunctions

instead of the standard imposing of the zero- determinant condition and search for eigen-

values. As a result, a new representation is obtained for molecular orbitals (MOs) of AHs

in the form of linear combinations of non- orthogonal local- structure- determined basis

orbitals, each of them embracing a definite fragment of the whole system. Coefficients of

these combinations are shown to follow from eigenvectors of the so-called interfragmental

adjacency matrices, the latter being expressible in terms of entire submatrices (blocks) of

respective initial Hamiltonian matrices. The above-specified basis orbitals, in turn, prove

to be related to the usual MOs of respective fragments of the given AH. The principal

outcome of passing to this new representation for MOs consists in revealing three types

of elementary fragments in AHs (viz. ethenes, allyls and trimethylenemethanes) that are

bound one with another in a uniform manner in addition. This result implies the AHs to

meet the definition of a class of chemical compounds. A new mental image of electronic

structures of AHs also is among the principal achievements. The results obtained are

illustrated by consideration of specific examples.

1. Introduction

Molecular orbitals (MOs) are among the most popular quantum-chemical characteris-

tics of organic compounds determining their spectral properties (see e.g. [1,2]) and chem-

ical reactivity. The latter aspect may be illustrated by the well-known HOMO/LUMO

concept [3,4] and the famous Woodward- Hoffmann rule [5]. Conjugated (aliphatic) and
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aromatic (benzenoid) hydrocarbons are no exceptions in this respect. Moreover, MOs of

these hydrocarbons actually coincide with eigenvectors of adjacency matrices (AMs) of

the relevant graphs of C-skeletons in the framework of the simple Hückel model (HMO

theory) [6–8]. Inasmuch as the above-specified graphs represent the topological structure

of the given system, some information about molecular topology is expected to be con-

tained within MOs too. Regularities of this type are under an intensive search [9–17]. In

particular, the so-called net sign approach [11–13] proved to be efficient for interpretation

of overall nodal properties of Hückel MOs (HMOs) and their ordering in the energy scale.

Again, select eigenvectors of AMs may be often traced back to subspectral fragments

(subgraphs) embedded in the given graph [15–17].

Another perspective on constitution of MOs (HMOs) originates from the well-known

perturbational MO (PMO) theory [18]. Indeed, this theory allows the MOs of an ex-

tended compound to be constructed in the form of linear combinations of orbitals of

certain elementary fragments, often referred to as fragmental orbitals (FOs). [In terms

of molecular graphs, elementary fragments coincide with subgraphs]. Besides, choice of

particular fragments is usually based on chemical intuition. For example, the HMOs of

butadiene take the form of normalized sums and differences of MOs of separate ethene

fragments (C=C bonds). This simple approach provides us with mental images of elec-

tronic structures of composite molecules and thereby forms the basis for the qualitative

chemical thinking. In general, specific FOs and coefficients of their linear combinations

are correspondingly determined by constitution of underlying fragments and by the way

these are bound together in the PMO theory. Accordingly, MOs of similar compounds

prove to be interrelated. This especially refers to molecular systems of the same chemical

class [Let us recall that a lot of molecules is usually understood to belong to the same

class if common groups of atoms (elementary fragments) reveal themselves there and

these are bound one with another in a uniform manner in addition].

Unfortunately, the very PMO theory is of a rather limited scope of applicability. So

far as composite compounds are concerned, validity of this theory is restricted to the case

of relatively weak interfragmental interactions vs. the intrafragmental ones. It is evident

that the majority of molecules (including the benzenoid hydrocarbons) do not meet this

requirement. Another and even more problematic point is that the nature of fragments

themselves cannot be revealed straightforwardly in the respective chemical formulae. As
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for instance, if we try to distinguish separate double (C=C) bonds in the C-skeleton of

benzene, we have to confine ourselves to a single Kekule structure of this molecule. The

same state of things refers to any benzenoid hydrocarbon. Again, there are no doubts

that these compounds consist of some repeated local substructures. This promotes an

expectation that information about these substructures (elementary fragments) may be

extracted from the relevant MOs (HMOs). To achieve this end, representation of the

latter as linear combinations of FOs should be extended to the case of comparable (or

even uniform) intra- and interfragmental interactions (resonance parameters), i.e. beyond

the limits of the PMO theory. The present study adresses just this task.

We will dwell here on the case of alternant hydrocarbons (AHs) [6, 18] embracing the

majority of the above-discussed conjugated and benzenoid systems. In other words, we

are about to confine ourselves to hydrocarbons, the C-skeletons of which are representable

by bipartite graphs [6–8]. It also deserves emphasizing here that several types of systems

under current focus also belong to AHs, e.g. polyenes [19–22], polynuclear benzenoids

[23–26], some hydrocarbon dendrimers [27] and most of carbon nanotubes [28–30]. Wide

areas of both actual and potential applications of these systems exidently promote an

interest in the underlying substructures (fragments). Another (and even more important)

motive of our choice consists in constructability of a single Hückel type Hamiltonian

matrix for C-skeletons of all AHs in the basis of 2pz AOs of carbon atoms [6,31,32] and

thereby representability of the consequent properties of their electronic structures in the

form of general rules [6,18,31,33–39]. For illustration, rules governing both constitutions

of the usual (canonical) molecular orbitals of these hydrocarbons and the relevant one-

electron energies deserve mentioning [6,33,34]. Common properties of charge-bond order

matrices of AHs [31,34,35,38] also belong to achievements of the same type. Finally, rules

underlying the formation of non-canonical (localized) MOs of the same systems [38, 39]

may be added here too.

On the whole, the above-enumerated peculiarities of AHs give us a hint about exis-

tance of common elementary fragments in these systems. Given that this is the case, an

important question arises whether the AHs may be regarded as a separate class of chemi-

cal compounds. Thus, we will look for common elementary fragments within C-skeletons

of AHs by analyzing constitutions of their HMOs. In an attempt to represent the MOs

concerned as linear combinations of certain FOs, we will study the secular equation for
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the above-specified common Hamiltonian matrix of AHs. The overall methodology to be

invoked resembles that suggested previously for alkanes [40, 41]. It is discussed in the

next Section in a more detail.

2. Eigenvalue- dependent basis orbitals for alternant hydrocarbons and their

interpretation

Let us start with a brief description of the approach to be applied.

The experience of dealing with secular problems (eigenvalue equations) for Hamiltonian

matrices of molecules shows that it is the decision upon the first step when solving the

problem that determines the terms in which the results are expressed and interpreted

[42]. The eigenfunctions (MOs) is no exception here. The first step of the standard

solution procedure coincides with imposing the zero-determinant requirement and search

for eigenvalues, whereas the second one lies in obtaining the eigenfunctions. As a result,

the usual LCAO form is obtained for MOs. By contrast, the approach [42] to be applied

below starts with reformulating the secular problem itself in order to reveal the structures

of eigenfunctions, whilst the eigenvalues follow from the second step. A large part of the

MO LCAO coefficients being sought is then initially eliminated from the original secular

equation before specifying the energy variable (eigenvalue) ε. Consequently, the resulting

MOs take the form of linear combinations of certain ε−dependent basis orbitals, the total

number of which is much less than that of AOs. Moreover, these new basis functions

appear to be strictly localized on separate local regions of systems under study. Hence,

an alternative representation of MOs follows that is likely to provide us with information

about underlying fragments. It deserves an additional emphasizing that no additional

requirements are invoked here concerning relative values of intra- and interfragmental

interactions.

Before turning to application of the above-described approach to the common Hückel

type Hamiltonian matrix of AHs, let us dwell first on constructing the latter. Let us

confine ourselves to the most common case of even AHs containing 2n carbon atoms.

The relevant 2n−dimensional basis set {χ} consists of 2pz AOs of these atoms and

always may be divided into two n−dimensional subsets {χ∗} and {χ◦} so that the

intrasubset resonance parameters take zero values [6, 31, 32]. It happens so because the

neighboring pairs of AOs referring to chemical bonds (and thereby characterized by non-
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zero resonance parameters in the Hückel model) get into different subsets. Moreover, the

Coulomb parameters representing AOs usually are assumed to take uniform values α and

the equality α = 0 is accepted for convenience. As a result, the Hamiltonian matrices of

our systems acquire a common form containing zero submatrices (blocks) in its diagonal

positions, viz.

H =

∣∣∣∣ 0 B
B+ 0

∣∣∣∣ . (1)

Again, B and B+ are n× n−dimensional off-diagonal blocks containing intersubset res-

onance parameters. Non-zero elements of these blocks represent the neighboring pairs of

2pz AOs. The mean value of the latter β will be used here as a (negative) energy unit

by accepting the equality β = 1. The superscript + of Eq.(1) designates the transposed

matrix B [Note that B �= B+ in the general case]. Besides, the matrix H of Eq.(1)

actually coincides with the AM of a bipartite graph [6].

Let us turn now to the eigenvalue equation for the matrix H and represent it explicitly

as follows ∣∣∣∣ 0 B
B+ 0

∣∣∣∣
∣∣∣∣ UV

∣∣∣∣ = ε

∣∣∣∣ UV
∣∣∣∣ , (2)

where U and V are column- matrices of eigenvectors (MO LCAO coefficients) referring to

subsets {χ∗} and {χ◦}, respectively, and ε is the eigenvalue being sought. Two equations

follow immediately from Eq.(2), viz.

BV = εU, B+U =εV. (3)

Let us assume now that ε �= 0 [Note that no zero eigenvalues are peculiar to even AHs [31]].

The column-matrixV may be then expressed on the basis of the second relation of Eq.(3),

i.e.

V =ε−1B+U. (4)

After substituting Eq.(4) into the first relation of Eq.(3), we obtain

(BB+)U =ε2U, (5)

i.e. a secular equation for the n × n−dimensional Hermitian (symmetric) matrix BB+,

where ε2 playes the role of the eigenvalue. An analogous elimination of the column-matrix

U yields the secular equation for the matrix B+B, viz.

(B+B)V =ε2V. (6)
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Moreover, matrices BB+ and B+B are similar [43] and thereby isospectral. The above

two matrix equations have been originally derived a long time ago [44].

As is seen from Eqs.(5) and (6), the column- matrices U and V consist of coefficients

of eigenvectors of Hermitian matrices. Thus, let us impose the following normalization

conditions for elements Ui and Vk [31], viz.

n∑
i=1

U2
i =

n∑
k=1

V 2
k = 1. (7)

Molecular orbitals of our AHs are then expressible as follows

ψ =
1√
2
[(χ∗)U+ (χ◦)V] ≡ 1√

2
[

n∑
i=1

χ∗
iUi +

n∑
k=1

χ◦
kVk], (8)

where (χ∗) and (χ◦) stand for row-matrices of AOs of subsets {χ∗} and {χ◦}, respectively.
Let us substitute now the relation of Eq.(4) into Eq.(8). We then obtain

ψ∗(ε) =
1√
2
[(χ∗)+ε−1(χ◦)B+]U, (9)

i.e. a certain unified eigenvalue- dependent form for all MOs, wherein the MO LCAO

coefficients Vk(k = 1, 2, 3...n) are no longer present. [Themeaning of the additional super-

script * of the left-hand side is clarified below]. The function ψ∗(ε) may be conveniently

called the generalized MO (GMO) of AHs. An alternative form of the same GMO is as

follows

ψ∗(ε) =
1√
2

n∑
i=1

ϕ∗
i (ε)Ui, (10)

where

ϕ∗
i (ε) = χ∗

i + ε−1

n∑
k=1

χ◦
kB

+
ki (11)

stands for an eigenvalue-dependent (generalized) basis orbital. It is seen that the GMO of

AHs takes the form of a linear combination of these new basis orbitals. It also deserves a

separate mentioning that no zero-determinant requirement concerning the initial secular

problem of Eq.(2) is imposed hitherto. Moreover, no need for this requirement actually

arises because both coefficients (Ui) of Eq.(10) and the eigenvalues are conditioned by

the secular equation for the n × n−dimensional matrix BB+ (i.e. by Eq.(5)). Finally,

after substituting a particular eigenvalue εm along with the respective elements Uim of

the appropriate column- matrix Um, the expression of Eq.(10) is naturally expected to

yield the MO ψm, viz.

ψm =
1√
2

n∑
i=1

ϕ∗
i (εm)Uim, (12)
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where

ϕ∗
i (εm) = χ∗

i + ε−1
m

n∑
k=1

χ◦
kB

+
ki (13)

coincides with the ith adjusted basis orbital [Adjustment here and below implies em-

ployment of the specific eigenvalue εm instead of the energy parameter ε of Eq.(11)].

This anticipation is verified in Section 3 in a detail. Let us turn now to analysis of

Eqs.(10)-(13).

First, one-to-one correspondence between AOs of the first subset χ∗
i and the general-

ized basis orbitals (GBOs) ϕ∗
i (ε) follows from Eq.(11). Just this fact is reflected by the

superscript *. Alternative basis orbitals ϕ◦
k(ε) attached to AOs of the second subset χ◦

k

may be obtained analogously. The relevant GMO ψ◦(ε) also is expressible in the form

like that of Eq.(10), wherein (1/
√
2)Vk play the role of coefficients. Since the subsets

{χ∗} and {χ◦} are entirely equivalent in even AHs, expressions of Eqs.(10)-(13) actually

are sufficient for our further purposes.

Second, the dependence of the shape of the GBO ϕ∗
i (ε) upon the one-electron energy ε

deserves attention. In particular, basis orbitals of bonding nature correspond to occupied

MOs of AHs characterized by positive energies (ε > 0) and vice versa. Since MOs of

these hydrocarbons appear in pairs described by one-electron energies ±ε [6], the same

refers also to the relevant basis orbitals. Moreover, the extent of localization of GBOs

ϕ∗
i (ε) over their principal AOs χ∗

i grows with the increasing absolute value of the energy

ε. Hence, more delocalized basis orbitals underly the so-called frontier MOs (i.e. the

HOMO and the LUMO), as the latter are characterized by lowest absolute values of ε.

Third, the extent of localization of a certain GBO ϕ∗
i (ε) depends on the structure of the

nearest environment of the respective principal AO χ∗
i . Indeed, an AO of the second subset

(say χ◦
k) contributes to the basis orbital ϕ∗

i (ε) and/or ϕ
∗
i (εm), only if B+

ki = Bik �= 0, i.e.

if AOs χ∗
i and χ◦

k are characterized by a non-zero resonance parameter, and the relative

value of this contribution is proportional to this particular parameter in addition. Non-

zero resonance parameters, in turn, are usually ascribed to first-neighboring (chemically-

bound) pairs of atoms and/or AOs in the standard Hückel model [6,45,47]. Consequently,

the actual number of ε−dependent contributions to the GBO ϕ∗
i (ε) depends on that of

the first neighbors of the AO χ∗
i and thereby on valency of the Ith carbon atom (the AO

χ∗
i is localized on). Since one-, two- and three-valent carbon atoms are present in AHs,
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three types of GBOs may be accordingly distinguished, viz.

ϕ∗
i(1)(ε) = χ∗

i +
1

ε
Bikχ

◦
k, (14)

ϕ∗
i(2)(ε) = χ∗

i +
1

ε
(Bikχ

◦
k + Bilχ

◦
l ), (15)

ϕ∗
i(3)(ε) = χ∗

i +
1

ε
(Bikχ

◦
k + Bilχ

◦
l + Bisχ

◦
s), (16)

where the respective valencies are represented by subscripts (1), (2) and (3) of the left-

hand sides of Eqs.(14)-(16) and equalities B+
ki = Bik are invoked in addition. It is seen

that two-, three- and four-center GBOs are actually obtained here.

The fourth point of our discussion concerns non-orthogonality of GBOs. Let us assume

for example that the AOs χ∗
i and χ∗

j possess a common neighbor χ◦
k as it is typical in AHs.

Consequently, the relevant two GBOs ϕ∗
i (ε) and ϕ∗

j(ε) contain contributions of the same

AO χ◦
k and thereby overlap one with another. Moreover, the relevant overlap integral

is inversally proportional to the square of the one-electron energy ε. Thus, the overall

extents of non-orthogonality of GBOs take the highest values for frontier MOs (HOMO

and LUMO). Since AOs of the first subset and of the second one alternately reveal

themselves in AHs in accordance with the definition of these hydrocarbons [6, 18, 33–36,

45], the GBOs of any AH form a continuously- overlapping set of basis functions. Finally,

an interrelation deserves mentioning between the above-discussed shapes of GBOs and

overlap integrals of their adjacent pairs: More delocalized GBOs (underlying the frontier

MOs) overlap one with another more significantly and vice versa.

Let us turn now to interpretation of GBOs. To this end, let us start with consideration

of the simplest AH, namely of the ethene molecule containing two 2pz AOs χ∗
1 and χ◦

2

(Fig.1a). One-dimensional quantities (B12, U1 and V2) play the role of matrices (B,U

and V, respectively) within Eqs.(2)-(6) in this case and we obtain

V2 = ε−1B12U1 (17)

instead of Eq.(4). Substituting the above relation into the usual MO LCAO expression

for ethene, viz.

ψe =
1√
2
(U1χ

∗
1 + V2χ

◦
2) (18)

yields the relevant ε−dependent form

ψe(ε) =
1√
2
(χ∗

1 +
B12

ε
χ◦
2), (19)
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where Eq.(7) also is invoked. It is seen that the function ψe(ε) turns into the bonding MO

of ethene if ε = B12 and coincides with its antibonding counterpart if ε = −B12. Thus, the

ε−dependent orbital ψe(ε) actually is the generalized MO of ethene. Again, comparison

of Eqs.(14) and (19) indicates these formulae to contain the same orbital to within the

normalization factor 1/
√
2. Hence, the GBO ϕ∗

i(1)(ε) of Eq.(14) may be interpreted as

the generalized MO of the two-center (ethene-like) fragment of an AH involving the AOs

χ∗
i and χ◦

k.

Figure 1. Elementary fragments of AHs: ethene (a), allyl (b) and trimethylen-
emethane (c), as well as respective numberings of 2pz AOs of carbon
atoms.

Let us now consider an allyl system embracing three 2pz AOs χ∗
1, χ

◦
2 and χ◦

3 (Fig.1b).

The principal matrices of this system are as follows

B =
∣∣ B12 B13

∣∣ , U = U1, V =

∣∣∣∣ V2

V3

∣∣∣∣ . (20)

¿From Eq.(3), we then obtain

B12V2 + B13V3 = εU1, B+
21U1 = εV2, B+

31U1 = εV3, (21)

where B+
21 = B12 and B+

31 = B13. The second and the third relations of Eq.(21) easily

yield expressions for matrix elements V2 and V3 in terms of U1 as shown in Eq.(17). After

substituting these expressions into the relevant LCAO form of MOs of allyl (ψa), viz.

ψa =
1√
2
(U1χ

∗
1 + V2χ

◦
2 + V3χ

◦
3) (22)

we obtain

ψa(ε) =
1√
2
(χ∗

1 +
B12

ε
χ◦
2 +

B13

ε
χ◦
3), (23)

where U1 = 1 in accordance with Eq.(7). Equation (23) may be easily shown to yield the

bonding and the antibonding MOs of allyl (but not its non-bonding MO corresponding
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to ε = 0). The simplest way of doing this consists in accepting the usual equalities

B12 = B13 = 1 and in replacing the parameter ε by the respective one-electron energies

±√
2 [46]. Hence, the ε−dependent orbital ψa(ε) of Eq.(23) actually is the GMO of

allyl. Accordingly, comparison of functions exhibited in Eqs.(15) and (23) allows us to

interpret the GBO ϕ∗
i(2)(ε) as the GMO of an allyl-like fragment of AHs embracing the

2pz AOs χ∗
i , χ

◦
k and χ◦

l . Finally, an analogous consideration of the trimethylenemethane

containing four AOs χ∗
1, χ

◦
2, χ

◦
3 and χ◦

4 (Fig.1c) shows that the GBO ϕ∗
i(3)(ε) of Eq.(16) is

interpretable as the GMO of a four-center fragment covering the AOs χ∗
i , χ

◦
k, χ

◦
l and χ◦

s.

Hence, the newly-introduced eigenvalue-dependent representation for eigenfunctions of

matrices provides us with a generalization of the usual perturbation-theory-based expres-

sions for MOs as linear combinations of orbitals localized on separate fragments (FOs).

Moreover, GMOs of ethenes, allylls and trimethylenemethanes play the role of basis or-

bitals (FOs) in our linear combinations for GMOs of AHs exhibited in Eq.(10). That is

why the above-enumerated simple systems may be regarded as elementary fragments of

AHs. The decisive role of valencies of carbon atoms in the formation of particular sets of

elementary fragments also is among the conclusions.

It deserves adding here that ethene and allyl fragments are among substructures em-

bedded in benzenoid hydrocarbons [15–17]. For particular AHs, however, our elementary

fragments generally do not coincide with those embedded (Section 3). Such a conclusion

causes little surprise because of entirely different methodologies underlying the derive-

tions of these substructures (Embedding is based on the concept of subspectrality [15–17],

i.e. on search for substructures, the AMs of graphs of which possess eigenvalues common

to those of the total AM concerned).

As already mentioned, coefficients of our principal linear combination of Eq.(12) (Uim)

follow from eigenvectors of the matrix BB+ (see Eq.(5)). Thus, properties of this Hermi-

tian matrix also deserve attention here. To discuss them, let us start with the one-to-one

correspondence between diagonal elements of the matrix BB+ defined as follows

(BB+)ii =
n∑

k=1

(Bik)
2 (24)

and AOs χ∗
i of the first subset (the sum over k embraces here the AOs of the second subset

{χ◦} ). If we assume in addition that Bik = 1 for pairs of first-neighboring (adjacent) AOs

χ∗
i and χ◦

k and vanish elsewhere, the element (BB+)ii coincides with the total number

of first neighbors of the AO χ∗
i and thereby with the valency of the Ith carbon atom.
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Let us recall now that elementary fragments of AHs also were attached to AOs of the

first subset {χ∗}. Moreover, the nature of a certain fragment was determined by the

valency of the respective carbon atom. Thus, diagonal elements of the matrix BB+ may

be concluded to represent the respective set of elementary fragments of the given AH.

Accordingly, numbers 1,2 and 3 correspond to ethenes, allyls and trimethylenemethanes

in the principal diagonale. We may also conclude here that the higher is the valency of

the Ith carbon atom, the lower is the relative position of the given elementary fragment

in the energy scale. [Note that a negative energy unit is used in the present study].

Before passing to off-diagonal elements of the matrix BB+, let us define the so-called

adjacent elementary fragments as those embracing a common carbon atom. These frag-

ments are assumed to be attached to AOs χ∗
i and χ∗

j possessing a common first neighbor

χ◦
k . From the expression concerned, viz.

(BB+)ij =
n∑

k=1

BikBjk (25)

then it follows that the element (BB+)ij, i �= j coincides with 1, if the Ith and Jth

fragments are adjacent, otherwise it vanishes. Thus, the off-diagonal elements of the

matrix BB+ represent adjacencies of elementary fragments in the given AH. In this

connection, the whole matrix BB+ will be referred to as the interfragmental adjacency

matrix (IFAM). This matrix, in turn, may be represented by a certain graph, the latter

being called the interfragmental graph for simplicity.

Therefore, equations (10) and (12) really represent the GMOs and the MOs of AHs,

respectively, in terms of characteristics of elementary fragments. Again, a certain ad-

justment to the whole system under consideration also is peculiar to these fragments.

In particular, eigenvalues of the total Hamiltonian matrix of the given AH (εm) stand

instead of those of separate fragments in the linear combination of Eq.(12) for individ-

ual MOs (ψm). Nevertheless, orbitals of the same fragment prove to be recognizable in

different AHs as demonstrated in the next section.

3. Consideration of specific examples

3.1. The benzene molecule

Let us start with the π−electron system of benzene. This six-orbital system contains

carbon atoms of uniform valencies (equal to 2) and thereby it is among the simplest
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examples for illustration of our approach. Numbering of the relevant 2pz AOs is shown

in Fig.2a. Resonance parameters of all chemical bonds will be assumed to coincide with

our energy unit. The principal matrices B and BB+ of benzene are then as follows

B =

∣∣∣∣∣∣
1 0 1
1 1 0
0 1 1

∣∣∣∣∣∣ , BB+ =

∣∣∣∣∣∣
2 1 1
1 2 1
1 1 2

∣∣∣∣∣∣ . (26)

It is seen that diagonal elements of the IFAM BB+ coincide with 2 and thereby reflect

the valencies of carbon atoms. Furthermore, these elements indicate three uniform allyl

fragments to reveal themselves in benzene, namely C6-C1-C4, C4-C2-C5 and C5-C3-C6.

The off-diagonal elements of the same matrix, in turn, show all these fragments to be

adjacent and thereby interacting one with another in addition [Besides, the graph un-

derlying the matrix BB+ of Eq.(26) coincides with a symmetric triangle]. That is why

eigenvalues of the AM of an isolated allyl (±√
2) do not emerge in the spectrum of the

total AM of benzene (Benzene can be embedded by ethene and, consequently, possesses

an eigenvalue ε = 1 twice [16,17]. This embedding yields also an interpretation of one of

the corresponding eigenvectors). On the other hand, use of GMOs of three allyl fragments

(Section 2) provides us with interpretation of all HMOs of benzene.

Figure 2. Numberings of 2pz AOs of carbon atoms in benzene (a), butadiene (b)
and styrene (c).

To verify the above predictions, let us now consider the MOs of benzene. The relevant

three GBOs result from Eq.(15) and take the form

ϕ∗
1(2)(ε) = χ∗

1 +
1

ε
(χ◦

4 + χ◦
6),

ϕ∗
2(2)(ε) = χ∗

2 +
1

ε
(χ◦

4 + χ◦
5), (27)
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ϕ∗
3(2)(ε) = χ∗

3 +
1

ε
(χ◦

5 + χ◦
6).

Furthermore, substituting the eigenvalues (εm) and the coefficients of eigenvectors (Uim)

of the matrix BB+ into Eq.(12) yields representations for individual MOs of benzene. As

for instance, the lowest occupied MO ψ1 takes the form of a symmetric linear combination

of all GBOs, viz.

ψ1 =
1√
6
[ϕ∗

1(2)(2) + ϕ∗
2(2)(2) + ϕ∗

3(2)(2)], (28)

where the relevant eigenvalue coincides with 2. Meanwhile, the very adjusted GBOs of

Eq.(28) may be examplified as follows

ϕ∗
1(2) = χ∗

1 +
1

2
(χ◦

4 + χ◦
6) (29)

and prove to be recognizable as the lowest MOs of allyl in spite of adjustment [The MO of

allyl results from Eq.(23) after substituting the relations B12 = B13 = 1 and ε =
√
2 [46]

and thereby contains the fraction 1/
√
2 instead of 1/2 of Eq.(29)]. To make sure that

Eq.(28) really represents the lowest occupied MO of benzene, no more is required as to

substitute GBOs like that of Eq.(29). We then obtain

ψ1 =
1√
6
[χ∗

1 +
1

2
(χ◦

4 + χ◦
6) + χ∗

2 +
1

2
(χ◦

4 + χ◦
5) + χ∗

3 +
1

2
(χ◦

5 + χ◦
6)]. (30)

After summing up the increments of AOs of the second subset {χ◦}, the MO ψ1 takes

the form of a normalized sum of all six AOs of benzene in accordance with the standard

result [45–47].

Other MOs of benzene may be represented as linear combinations of adjusted GBOs

analogously. Thus, the remaining occupied MOs (ψ2 and ψ3) characterized by the degen-

erate eigenvalue (ε2 = ε3 = 1) are expressible as follows

ψ2 =
1

2
√
3
[2ϕ∗

1(2)(1)− ϕ∗
2(2)(1)− ϕ∗

3(2)(1)] (31)

and

ψ3 =
1

2
[ϕ∗

2(2)(1)− ϕ∗
3(2)(1)], (32)

where GBOs are now of a simple constitution, e.g.

ϕ∗
1(2) = χ∗

1 + χ◦
4 + χ◦

6. (33)

These GBOs also closely resemble the lowest MO of allyl. Finally, substituting basis

orbitals like that of Eq.(33) into Eqs.(31) and (32) allows us to derive the usual expressions
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for MOs ψ2 and ψ3. As for instance, from Eq.(31) we obtain

ψ2 =
1

2
√
3
[2(χ∗

1 + χ◦
4 + χ◦

6)− (χ∗
2 + χ◦

4 + χ◦
5)− (χ∗

3 + χ◦
5 + χ◦

6)] (34)

and this formula easily yields the usual form of the respective HOMO of benzene. Thus,

MOs of benzene are expressible as linear combinations of three uniform adjusted GBOs

representing the respective allyl fragments in accordance with our expectation.

Comparison of expressions for GBOs underlying different MOs also is of interest. As

is seen from Eqs.(29) and (33), more compact (less delocalized) GBOs refer to the lowest

MO ψ1 of benzene. Meanwhile, GBOs underlying the HOMOs ψ2 and ψ3 are relatively

more delocalized and thereby overlap one with another more significantly. Thus, just the

HOMOs may be concluded to be principally responsible for formation of the entire system

of π− electrons in benzene. Again, the lowest occupied MO ψ1 may be considered as being

delocalized mostly for symmetry reasons as it is usually the case with MOs consisting of

inner shell (e.g. 1s) AOs.

3.2. The butadiene molecule

The π−electron system of butadiene is a somewhat more involved example as com-

pared to benzene in two respects: First, this chain-like compound contains carbon atoms

of different valencies, namely both mono- and di-valent ones. Second, the initially-double

(C=C) bonds and the only initially-single (C-C) bond generally are characterized by

distinct resonance parameters. Just the latter circumstance allows us to study the de-

pendence of the actual shapes of GBOs upon the extent of conjugation of C=C bonds.

Let the relevant 2pz AOs to be enumerated as shown in Fig. 2b. Further, resonance

parameters B13 and B24 referring to C1=C3 and C2=C4 bonds will coincide with our

energy unit as previously (i.e. B13 = B24 = 1). Meanwhile, the same parameter of

the intervening (C2-C3) bond will be assumed to differ from the former one and will be

denoted by γ.

The analogue of Eq.(26) for butadiene takes the form

B =

∣∣∣∣ 1 0
γ 1

∣∣∣∣ , BB+ =

∣∣∣∣ 1 γ
γ 1 + γ2

∣∣∣∣ . (35)

The above-exhibited IFAM BB+ generally contains different diagonal elements 1 and 1+

γ2, respectively. This implies dissimilar elementary fragments to reveal themselves in the
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symmetric butadiene. Moreover, an analogous asymmetry embraces also the respective

ε−dependent basis orbitals. Indeed, the first GBO of butadiene ϕ∗
1(1)(ε) attached to

the terminal AO χ∗
1 possesses an additional tail over a single neighboring AO χ◦

3 only

whatever the parameter γ. The relevant expression follows from Eq.(14), viz.

ϕ∗
1(1)(ε) = χ∗

1 +
1

ε
χ◦
3. (36)

This orbital represents the ethene-like fragment C1=C3. Meanwhile, the second GBO

ϕ∗
2(2)(ε) generally embraces two neighboring AOs χ◦

3 and χ◦
4 along with the principal

orbital χ∗
2. Thus, from Eq.(15) we obtain

ϕ∗
2(1+γ2)(ε) = χ∗

2 +
1

ε
(χ◦

4 + γχ◦
3). (37)

It is seen that the shape of this GBO depends on the relative value of the resonance

parameter γ and thereby on the extent of conjugation of C=C bonds. Let us consider

this point in a more detail.

Let us assume for a moment that γ = 0. The increment of the AO χ◦
3 vanishes in the

GBO of Eq.(37) in this case and the very basis function then acquires a two-center form

like that of Eq.(36), viz.

ϕ∗
2(1)(ε) = χ∗

2 +
1

ε
χ◦
4. (38)

Thus, the two GBOs of a non-conjugated butadiene become similar and these represent

the uniform C=C bonds. Accordingly, the off-diagonal element of the IFAM BB+ of

Eq.(35) vanishes, whereas the diagonal elements become uniform and equal to 1. This

allows us to accept the equalities ε1 = ε2 = 1 and ε3 = ε4 = −1 for occupied and for

vacant MOs, respectively. As a result, the GBOs ϕ∗
1(1)(ε) and ϕ∗

2(1)(ε) of Eqs.(36) and

(38) turn into simple bonding and antibonding combinations of pairs of AOs of respective

C=C bonds, as it is the case in the standard PMO theory. Finally, the coefficients Uim

may be assumed to take the following values

U11 = U21 = U12 =
1√
2
, U22 = − 1√

2
. (39)

In summary, the occupied MOs of our non-conjugated butadiene (ψ1 and ψ2) are express-

ible as follows

ψ1 =
1

2
[ϕ∗

1(1)(1) + ϕ∗
2(1)(1)] =

1

2
[χ∗

1 + χ◦
3 + χ∗

2 + χ◦
4] (40)

and

ψ2 =
1

2
[ϕ∗

1(1)(1)− ϕ∗
2(1)(1)] =

1

2
[χ∗

1 + χ◦
3 − χ∗

2 − χ◦
4]. (41)
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These expressions also coincide with those resulting from the usual PMO theory [18,47].

Let us assume now that a certain small resonance parameter γ arises in our molecule.

Emergence of an additional tail over the AO χ◦
3 in the GBO of Eq.(37) then appears to be

the first sign of the starting conjugation. It is also seen that conjugation of two initially-

double (C=C) bonds is an unilateral effect in the present approach. Indeed, only one

of the two participating C=C bonds (namely C2=C4) ’extends its basis orbital’ towards

the another one (C1=C3) and, consequently, the overall model of butadiene gradually

becomes asymmetric. It deserves mentioning in this context that asymmetric models of

symmetric compounds is no novelty in organic chemistry. To illustrate this statement,

we may recall, for example, the Clar’s aromatic sextets for benzenoids [48] [A single

aromatic sextet and a diene-like subsystem are then distinguished in naphthalene]. Two

distinct localized molecular orbitals for the butadiene itself [38] serve as another example

of asymmetric models.

Let us turn finally to the case of a strongly- conjugated butadiene, where γ = 1. The

GBO of Eq.(37) then takes the form

ϕ∗
2(2)(ε) = χ∗

2 +
1

ε
(χ◦

3 + χ◦
4) (42)

and resembles a GBO of benzene shown in Eq.(27). This basis orbital represents a sym-

metric allyle fragment (C3-C2-C4) in accordance with the expectation. Diagonal IFAM

elements also differ one from another most significantly in this case and coincide with

1 and 2 for the ethene and allyle fragments, respectively. An analogous large extent of

asymmetry may be then expected to refer to coefficients U1m and U2m within linear com-

binations of Eq.(12) for MOs ψm. On the other hand, symmetry of the final MO LCAO

coefficients also is among natural anticipations. This implies asymmetric combinations

of two distinct GBOs of Eqs.(36) and (42) to yield symmetric MOs of the strongly-

conjugated butadiene after all. Let us dwell now just on this point.

As with any Hermitian (symmetric) 2 × 2−dimensional matrix, the eigenvectors of

the matrix BB+ of Eq.(35) are expressible in terms of only two coefficients a and b (see

e.g. [49]). For γ = 1, we then obtain

U11 = U22 = a = 0.526, U21 = −U12 = b = 0.851. (43)

As a result, the lowest occupied MO of the strongly-conjugated butadiene takes the form

ψ1 =
1√
2
{a[χ∗

1 +
1

ε1
χ◦
3] + b[χ∗

2 +
1

ε1
(χ◦

3 + χ◦
4)]}, (44)
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where ε1 = 1.618. It is seen that the weight of the GBO of the allyle fragment exceeds

that of ethene in this MO in accordance with the higher value of the second diagonal

element of the IFAM vs. the first one. Moreover, the predominant GBO of allyle proves

to be localized mostly on its principal AO χ∗
2 in this MO, as it was the case in the lowest

occupied MO of benzene. As a result, the relevant overlap integral of the two GBOs is

insignificant. For the HOMO of the strongly- conjugated butadiene ψ2, we accordingly

obtain

ψ2 =
1√
2
{−b[χ∗

1 +
1

ε2
χ◦
3] + a[χ∗

2 +
1

ε2
(χ◦

3 + χ◦
4)]}, (45)

where ε2 = 0.618. As a result, the overlap integrals of the two GBOs is increased in this

frontier MO. Moreover, the increment of ethene exceeds that of allyle in this case. Never-

theless, it is the GBO of allyle that determines the actual ratios between contributions of

AOs χ∗
2 and χ◦

4 in both MOs. Furthermore, the following relations may be easily proven,

viz.
b

ε1
= a,

a+ b

ε1
= b,

a

ε2
= b,

a− b

ε2
= −a (46)

that ensure the appropriate symmetry properties of the final MO LCAO coefficients. It

also deserves mentioning here that a/
√
2 and b/

√
2 coincide with 0.372 and 0.602, i.e.

with the standard MO LCAO coefficients of the strongly- conjugated butadiene [46, 47].

It is seen, therefore, that MOs of butadiene generally take the form of asymmetric linear

combinations of two distinct adjusted GBOs representing dissimilar elementary fragments

of this hydrocarbon, namely the ethene fragment and the allyle one.

3.3. The styrene (phenylethene) molecule

An asymmetric model for a symmetric compound (butadiene) has been discussed in

the previous subsection. Now, we will have to do with an opposite case, i.e. with a

model of a higher extent of symmetry vs. that of the molecule concerned. The latter will

coincide with styrene (phenylethene), the 2pz AOs of which will be enumerated as shown

in Fig.2c. Choice of the principal set of AOs (i.e. of the subset {χ∗}) also proves to be

essential in this case. Indeed, the styrene system is characterized by distinct matrices

BB+ and B+B in contrast to benzene and butadiene. As a result, an interchange of

subsets {χ∗} and {χ◦} yields an alternative set of elementary fragments for styrene. In

the present subsection, we will dwell exclusively on the choice exhibited in Fig.2c, which
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ensures the most symmetric set of fragments. The relevant IFAM BB+ is then as follows

BB+ =

∣∣∣∣∣∣∣∣
2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 2

∣∣∣∣∣∣∣∣ (47)

and contains uniform diagonal elements equal to 2 as it was the case with benzene [see

Eq.(26) for comparison]. The off-diagonal elements of the same matrix coincide with 1

except for zero elements in the position 2,4(4,2). This implies four similar allyl fragments

to reveal themselves in styrene, namely C7-C1-C5, C5-C2-C6, C6-C3-C7 and C7-C4-C8.

Moreover, these fragments are adjacent except for the second and the fourth ones. [The

respective interfragmental graph then consists of two similar triangles 123 and 134 pos-

sessing a common edge 1-3, and vertices 2 and 4 take symmetric positions with respect to

this edge]. Accordingly, four uniform three-center GBOs like those exhibited previously

(see Eqs.(27) and (42)) participate in the relevant combinations of Eq.(12). Let these

GBOs to be denoted by ϕ∗
1(2)(ε), ϕ

∗
2(2)(ε), ϕ

∗
3(2)(ε) and ϕ∗

4(2)(ε), where the subscript i of

basis orbitals ϕ∗
i(2)(ε) refers to AOs of the first subset. On the whole, the new represen-

tation of styrene in terms of four allyl fragments and/or of the above-specified four GBOs

proves to be more symmetric as compared to the parent set of 2pz AOs. Analysis of MOs

of styrene may be carried out as previously. The increasing extent of delocalization of

GBOs and thereby of their overlaps when passing from the lowest occupied MO to the

highest one also may be concluded on the basis of Eqs. (27) and (42). Thus, we will

confine ourselves here to the relevant results:

The lowest occupied MO (ψ1) is representable as a bonding combination of the four

GBOs, viz.

ψ1 =
1

2
{c[ϕ∗

1(2)(ε1) + ϕ∗
3(2)(ε1)] + d[ϕ∗

2(2)(ε1) + ϕ∗
4(2)(ε1)]}, (48)

where c = 0.788, d = 0.615 and ε1 = 2.136. The GBOs of Eq.(48) are localized mostly

on their principal AOs in this case. After substituting the relevant expressions for GBOs

and summing up similar increments, we obtain

ψ1 =
1

2
[c(χ∗

1 + χ∗
3) + d(χ∗

2 + χ∗
4) +

c+ d

ε1
(χ◦

5 + χ◦
6) +

2c+ d

ε1
χ◦
7 +

d

ε1
χ◦
8], (49)

or

ψ1 =
1

2
[0.788(χ∗

1 + χ∗
3) + 0.615(χ∗

2 + χ∗
4) + 0.657(χ◦

5 + χ◦
6) + 1.026χ◦

7 + 0.288χ◦
8], (50)
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i.e. the standard form of the MO concerned. Uniform increments of 2pz AOs χ∗
2 and χ∗

4

peculiar to this MO may be traced back to the above-discussed symmetry properties of

the interfragmental graph of styrene. Furthermore, the highest value of the contribution

of the AO χ◦
7 to the same MO may be accounted for by three participating GBOs,

namely ϕ∗
1(2)(ε1), ϕ

∗
3(2)(ε1) and ϕ∗

4(2)(ε1). Analogously, the coefficient at the AO χ◦
8 takes

the smallest value because of a single contributing GBO ϕ∗
4(2)(ε1). It also deserves adding

here that the relative values of increments of AOs χ∗
4 and χ◦

8 are determined exclusively

by the shape of the GMO of the relevant allyle (ϕ∗
4(2)(ε)) at the appropriate one-electron

energy (ε = ε1).

The next occupied MO of styrene (ψ2) takes the form of an antisymmetric combination

of only two GBOs ϕ∗
2(2)(ε) and ϕ∗

4(2)(ε), i.e.

ψ2 =
1

2
[ϕ∗

2(2)(ε2)− ϕ∗
4(2)(ε2)]. (51)

Moreover, the respective two allyl fragments (C5-C2-C6 and C7-C4-C8) possess no common

carbon atoms and, consequently, the GBOs of Eq.(51) do not overlap one with another.

It is no surprise in this connection that these fragments coincide with those embedded in

styrene [16,17]. Accordingly, eigenvalue (ε2) equals to
√
2 and thereby coincides with that

of the lowest occupied MO of an isolated allyl [46]. Accordingly, the GBOs of Eq.(51)

also take the form of the above-specified MO. Finally, invoking the expressions concerned

allows the MO ψ2 of styrene to be represented as follows

ψ2 =
1

2
[(χ∗

2 − χ∗
4) +

1√
2
(χ◦

5 + χ◦
6 − χ◦

7 − χ◦
8)]. (52)

It also deserves mentioning that the relative values of the MO LCAO coefficients of

Eq.(52) are determined by the shape of the lowest occupied MO of an isolated allyl in

this case.

The third occupied MO of styrene (ψ3) takes the form of an antisymmetric combination

of the remaining two GBOs, viz.

ψ3 =
1

2
[ϕ∗

1(2)(ε3)− ϕ∗
3(2)(ε3)], (53)

where ε3 = 1. Equation (53) easily yields the following expression

ψ3 =
1

2
[χ∗

1 + χ◦
5 − χ∗

3 − χ◦
6], (54)
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which coincides with the standard MO LCAO form for the HOMO of benzene following

from Eq.(32). It is evident that the ’external’ allyle fragment C7-C4-C8 does not partic-

ipate in the formation of the MO ψ3. That is why both the shape and the one-electron

energy of this MO are transferable from benzene to styrene.

Finally, the HOMO of styrene (ψ4) takes the form

ψ4 =
1

2
{d[ϕ∗

1(2)(ε4) + ϕ∗
3(2)(ε4)]− c[ϕ∗

2(2)(ε4) + ϕ∗
4(2)(ε4)]}, (55)

where coefficients c and d coincide with those of Eq.(48) and ε4 = 0.662. Moreover, the

adjacent GBOs of Eq.(55) overlap one with another most significantly. Thus, the MO

ψ4 may be concluded to be principally responsible for formation of the entire system of

π−electrons in styrene. After substituting the relevant formulae for GBOs, we obtain

ψ4 =
1

2
[0.615(χ∗

1 + χ∗
3)− 0.788(χ∗

2 + χ∗
4)− 0.261(χ◦

5 + χ◦
6) + 0.668χ◦

7 − 1.190χ◦
8], (56)

The smallest absolute values of coefficients at AOs χ◦
5 and χ◦

6 in this MOmay be accounted

for by opposite signs of increments of participating GBOs in the linear combination of

Eq.(55). In addition, the relative absolute values of contributions of AOs χ∗
4 and χ◦

8 are

determined exclusively by the shape of the GBO ϕ∗
4(2)(ε4) of the allyl fragment C7-C4-

C8 as it was the case with the MO ψ1. Thus, the expectation about four similar allyl

fragments revealing themselves in styrene is now supported by constitutions of the MOs

of this AH.

4. Conclusions

The principal methodological achievements of the present study are as follows: i) A

unified and energy-parameter-dependent representation is proposed for the whole set of

MOs of any AH, viz. the so-called generalized MO (GMO); ii) GMOs of all AHs are shown

to take a common form in the framework of the HMO theory; iii) The above-specified

common GMO of AHs is represented as a linear combination of GMOs of elementary

fragments contained within particular systems as shown in the principal expression of

Eq.(10); iv) Individual MOs of a certain AH are demonstrated to follow from the above-

mentioned general formula after substituting appropriate eigenvalues for the unspecified

energy parameter.

As a result of application of the above-outlined methodology, the usual MOs (HMOs)

of AHs prove to be expressed as linear combinations of adjusted MOs of elementary
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fragments. No small value condition is invoked in this approach for interfragmental in-

teractions vs. intrafragmental ones. Moreover, the newly-derived expressions for HMOs

of AHs turn into those of the PMO theory after imposing the above-specified condition.

Thus, we have to do here with a generalization of the perturbation-theory-based expres-

sions for MOs to the case of arbitrary values of intra- and interfragmental interactions.

Implications of the above-summarized achievements are as follows:

1. Three types of elementary fragments (namely, ethenes, allyls and trimethylen-

emethanes) are shown to reveal themselves in AHs. Moreover, the so-called adjacent

fragments may be distinguished that always embrace a single common carbon atom.

Thus, both elementary fragments and interfragmental bonds may be concluded to be

uniform in all AHs. The overall situation here closely resembles that of alkanes, where

five CHn groups (n=0,1,2,3,4) were shown previously [40, 41] to play the role of elemen-

tary fragments. On this basis, the alternant hydrocarbons also may be regarded as a

class of chemical compounds.

2. A new insight is given into the nature of the overall chemical bonding in AHs. Thus,

the frontier MOs (especially the highest-occupied MO (HOMO)) are shown to consist

of relatively extended and strongly-overlapping FOs and thereby to be responsible for

the formation of the entire system of π−electrons in AHs. Meanwhile, the remaining

MOs (including the lowest occupied ones) are made up of more compact and weakly-

overlapping FOs, as it is the case with inner shell orbitals in general.

3. A new mental image is suggested for conjugation of initially-double (C=C) bonds.

For example, formation of a strongly-conjugated butadiene system is shown to be accom-

panied by conversion of the usual two-center basis orbital of a single C=C bond (cf. the

bond orbital of the PMO theory) into a three-center basis function, embracing also the

adjacent carbon atom of the opposite C=C bond.

4. Basis orbitals of elementary fragments contained within the linear combinations for

MOs of AHs are shown to be characterized by numerous common properties. In particu-

lar, orbitals of a bonding nature underly the expressions for occupied (bonding) MOs and

vice versa. Moreover, a simple dependence is established between the shape of a certain

basis orbital and the valency of the carbon atom the given orbital is attached to. These

properties along with the very representability of MOs of AHs as linear combinations of

those of elementary fragments replenish the overall system of general rules governing the

electronic structures of these hydrocarbons.
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