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1 Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2,
D-30167 Hannover, Germany
2 SUPA, School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK
3 Institute of Theoretical Physics and Astronomy of Vilnius University,
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Abstract. The Landau levels of cold atomic gases in non-Abelian gauge fields
are analyzed. In particular we identify effects on the energy spectrum and density
distribution which are purely due to the non-Abelian character of the fields.
We investigate in detail non-Abelian generalizations of both the Landau and
the symmetric gauge. Finally, we discuss how these non-Abelian Landau and
symmetric gauges may be generated by means of realistically feasible lasers in a
tripod scheme.
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1. Introduction

Gauge potentials are crucial for the understanding of fundamental forces between subatomic
particles. A simple example of a gauge potential is provided by the vector potential in the theory
of electromagnetism [1]. In this example the different vector components are scalars, and hence
they commute with each other. If the vector components of the gauge field are not scalars, but
insteadN × N matrices, withN > 1, then it is in principle possible to have a situation where the
different vector components do not commute. However, non-Abelian gauge fields are scarce in
nature. Candidates so far have mainly been restricted to molecular systems [2] which are largely
approachable only through spectroscopic means. Other systems are liquid crystals which show
the required non-Abelian symmetries [3].

Experiments on cold quantum gases have reached an unprecedented degree of control,
offering thus extraordinary possibilities for the analysis of the effects of gauge fields on
atomic systems. A simple way of generating a gauge field in ultracold gases is by rotating
Bose–Einstein condensates with an angular frequency�ẑ (where we employ cylindrical
coordinates{ρ, ϕ, z}). In the corresponding rotating frame the Hamiltonian describing the
rotating system becomes one of a system subject to a symmetric gauge fieldEA = −m�ρϕ̂,
wherem is the atomic mass [4]. Thus, a rotating condensate resembles a gas under the influence
of a constant magnetic fieldB0 = m�, and as a consequence many interesting phenomena,
including, e.g., Landau level physics and quantum-Hall-like phenomena have been studied in
rotating quantum gases [5]–[8].

Due to their internal structure, ultracold atoms offer as well the possibility of creating
non-Abelian gauge fields. A surprising and astoundingly elegant derivation and description of
the emergence of non-Abelian gauge potentials was presented by Wilczek and Zee [9]. It was
shown by these authors that in the presence of a general adiabatic motion of a quantum system
with degenerate states, gauge potentials will appear which are traditionally only encountered in
high energy physics to describe the interactions between elementary particles. Ultracold atomic
clouds are particularly promising candidates for realizing such scenarios, since the access to
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physical parameters is, from an experimental point of view, unprecedented. Extending the ideas
of Wilczek and Zee, it was recently proposed that properly tailored laser beams coupled to
degenerate internal electronic states can be employed to induce Abelian as well as non-Abelian
gauge fields in cold-atom experiments [10]–[13]. Alternatively, such gauge potentials can be
constructed in an optical lattice using laser assisted state sensitive tunneling [14]–[17].

With the implementation of these proposals, ultracold atoms would offer a unique testbed
for the analysis of nontrivial effects on the properties of multicomponent cold atomic systems in
the presence of non-Abelian gauge fields. To the best of our knowledge these effects have been
scarcely studied in the literature [12, 13, 15, 18]. This paper is devoted to the analysis of non-
Abelian effects on the spectral properties of ultracold atomic systems. In particular, we show
how purely non-Abelian effects lead to the eventual destruction of the Landau level structure,
and may significantly modify the ground state density profile of ideal quantum gases.

The structure of the paper is as follows: in section2 we study the generation of different
forms of non-Abelian gauge fields, including non-Abelian constant fields, as well as the non-
Abelian generalization of the Landau gauge. Section3 is devoted to the analysis of constant non-
Abelian gauge fields. Section4 discusses the non-Abelian Landau gauge, and in particular the
destruction of the Landau level structure and the corresponding modified de Haas–van Alphen
effect. In Section5, we discuss the non-Abelian symmetric gauge. Finally in section6, we
conclude and discuss some future promising directions.

2. Laser-induced non-Abelian gauge fields

In this section, we discuss the generation of (possibly non-Abelian) gauge fields as those
discussed in the following sections. There are at least two alternatives for the creation of
non-Abelian gauge fields. One consists of employing two-component atoms in state-dependent
optical lattices in the presence of appropriate laser arrangements [14, 15]. A second possibility,
which we shall explore in this paper, was recently proposed in [12].

In this second alternative, a non-Abelian gauge potential is constructed for atoms with
a tripod electronic structure [19, 20]5. Three lasers with appropriate polarizations couple
the excited electronic state|0〉 and the ground states| j = 1,2,3〉, with corresponding
Rabi frequencies� j (Er ) which parametrize in the form:�1 =� sinθ cosφ eiS1, �2 =

� sinθ sinφ eiS2, �3 =� cosθ eiS3. For a fixed positionEr the Hamiltonian describing the
laser–atom interaction may be diagonalized to give a set of dressed states. Under appropriate
adiabatic conditions two dressed states, so-called dark states, become decoupled from the other
states:

|D1〉 = sinφeiS31|1〉 − cosφeiS32|2〉, (1)

|D2〉 = cosθ cosφeiS31|1〉 + cosθ sinφeiS32|2〉 − sinθ |3〉, (2)

with Si j = Si − Sj . The dark states have zero eigenvalues and are separated by the energyh̄�
from the remaining eigenstates. The adiabatic approximation is justified if� is sufficiently large
compared to the two-photon detuning due to the laser mismatch and/or Doppler shift. In that
case the internal state of an atom evolves within the dark state manifold. The state of the atom

5 For example, using the transition 23S1 ↔ 23P0 in 4He∗, or transition 5S1/2 (F = 1) ↔ 5P3/2 (F = 0) in 87Rb.
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can therefore be expanded in the dark state basis as|8〉 =91(Er ) |D1(Er )〉 +92(Er ) |D2(Er )〉. The
two-component spinorE9 = {91, 92}

T obeys a spinor Schrödinger equation of the form

ih̄
∂

∂t
E9 =

[
1

2m
(−ih̄ E∇ − Â)2 + V̂ + 8̂

]
E9. (3)

In this equation we observe the appearance of a 2× 2 vector potential of the form

Â11 = h̄
(
cos2φ E∇S23 + sin2φ E∇S13

)
,

Â12 = h̄ cosθ
(

1
2 sin(2φ) E∇S12 − i E∇φ

)
, (4)

Â22 = h̄ cos2 θ
(
cos2φ E∇S13 + sin2φ E∇S23

)
.

The systems also present a scalar potential of the form8i j =
h̄2

2m Eκ∗

i · Eκ j , where

Eκ1 = sinθ
(

1
2 sin(2φ) E∇S12 + i E∇φ

)
, (5)

Eκ2 =
1
2 sin(2θ)(cos2φ E∇S13 + sin2φ E∇S23)− i E∇θ. (6)

Finally, if the original states| j = 1,2,3〉 experience an external potentialU j (Er ), then

V11 = U2 cos2φ +U1 sin2φ, (7)

V12 =
U1 −U2

2
cosθ sin(2φ), (8)

V22 = (U1 cos2φ +U2 sin2φ) cos2 θ +U3 sin2 θ. (9)

Recent advances in shaping both the phase and the intensity of light beams make it possible
to achieve a remarkable versatility in controlling the gauge fields [21, 22], provided the
corresponding light fields obey Maxwell’s equations.

In the following we shall assume that the atoms are strongly trapped in thez-direction,
hence they are confined to thexy-plane. Given two orthogonal vectorsEξ and Eη on thexy-
plane, we shall be interested in non-Abelian situations, in whichÂξ ≡ Â · Eξ and Âη ≡ Â · Eη,
fulfill [ Âξ , Âη] 6= 0. This condition demands(Eu × E∇φ)z 6= 0 and/or (Eu × E∇S12)z 6= 0, and/or
( E∇S12 × E∇φ)z 6= 0, with Eu = (cos2φ− cos2 θ sin2 θ) E∇S23 + (sin2φ− cos2 θ cos2φ) E∇S13.

2.1. Constant intensities

We will consider first homogeneous intensity profiles, i.e. bothφ and θ are now space
independent. We choose the particular case withφ = θ = π/4. For constantφ the non-Abelian
character demandsE∇S23 × E∇S13 6= 0. A simple laser arrangement fulfilling this condition is
Sj 3 = α j x +β j y, whereα j , β j are constants such thatα2β1 6= α1β2. The correspondingx andy
components of the vector potential are of the form

Âx =
1

8
(α1 +α2)(31̂ + σ̂ z)+

1

2
√

2
(α1 −α2)σ̂ x, (10)

Ây =
1

8
(β1 +β2)(31̂ + σ̂ z)+

1

2
√

2
(β1 −β2)σ̂ x. (11)
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On the other hand, by choosingVj (Er )=1E j +U (Er ), with 1E1 = −(h̄2/16m)[(α2
1 −α2

2)+
(β2

1 −β2
2)] = −1E2, and1E3 = −(h̄2/16m)[(α2

1 +α2
2)+ (β2

1 +β2
2)], one can prove that (up

to an irrelevant constant)̂V + φ̂ = U (Er ) with U (Er ) a common trapping potential for all
components.

A gauge transformation eliminates the terms proportional to the identity matrix inÂx

and Ây. Let h̄κy = (β1 −β2)/2
√

2, h̄qy = (β1 +β2)/8, h̄κx = (α1 −α2)/2
√

2 andh̄qy = (α1 +
α2)/8. A rotation σ̂ x → cosησ̂ x + sinησ̂ z, σ̂ x → − sinησ̂ x + cosησ̂ z, with tan2η = κy/qy,
provides Ây = h̄q̃yσ̂ z, with q̃y = cos 2φqy + sin 2φκy, and Âx = h̄κ̃xσ̂ x + h̄q̃xσ̂ z, with κ̃x =

(cos 2φκx − sin 2φqx) andq̃x = (cos 2φqx + sin 2φκx). Hence, we recover exactly the same form
as discussed in section3.

2.2. Landau-like gauge

In this subsection we shall consider the caseS13 = S23 = S. In that case the non-Abelian
character demands( E∇S× E∇φ)z 6= 0. We will choose the phaseS= κx, andφ = qy, which gives
a non-Abelian gauge potential unlessκ = 0 or q = 0. In addition we take cosθ = x/Rc, where
R2

c = x2 + (z− zc)
2, such that for the relevantx-range,|x| � zc is fulfilled. As a consequence,

and up to first order in(x/zc) we obtain:

Â ' h̄κ(1̂ + σ̂ z)x̂ + B0xσ̂ y ŷ. (12)

whereB0 = q/zc. Note that althoughx � zc, B0 can actually have large values. In addition, and
again up to first order in(x/zc), we obtainV̂ + φ̂ = U (Er ), if V1(Er )= V2(Er )= h̄2q2/2m+U (Er )
and V3(Er )= h̄2/2mz2

c. Using a simple gauge transformation9 → exp iκx9 to eliminate the
identity matrix term in Âx, and applying a unitary spin transformationU † ÂU, with U =

(σ̂ z + σ̂ y)/
√

2, we obtain Â ' h̄κσ̂ yx̂ + B0xσ̂ zŷ, which is indeed exactly the same Landau-
like gauge that we employ in section4. A simple laser arrangement which would lead to this
particular gauge is provided by

�1 =� cosqyeiκ(x+y+z)/2, (13)

�2 =� sinqyeiκ(x+y+z)/2, (14)

�3 =�
x

zc
eiκ(x−y+z)/2, (15)

where we assume the illuminated atoms are confined to a region for which|x| � zc holds.

3. Constant non-Abelian gauge

Let us consider a constant matrix gauge of the formÂ = (Âx, Ây,0). We have already shown
that these fields can be generated in a tripod scheme using a simple laser arrangement. Then,
the Hamiltonian of the 2D system becomes:

Ĥ =
1

2m

[
( p̂x + Âx)

2 + ( p̂y + Ây)
2
]
. (16)

In the Abelian case [̂Ax, Ây] = 0. We can therefore choose a common eigenbasis for both
matrices:Âx/h̄ = diag{q1x,q2x} and Ây/h̄ = diag{q1y,q2y}. As a consequence, we recover two
independently displaced quadratic spectraE j (Ek)= (h̄2/2m)(Ek + Eq)2, whereEq j = (q j x ,q j y).
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In the non-Abelian case, on the other hand, we cannot simultaneously diagonalize both
matrices, and as a consequence the spectrum becomes distorted. Let us consider a simple, but
representative, case, namelyÂx = qxσ̂ x, Ây = qyσ̂ z. Employing the Fourier-like transformation

Eψ(x, y)=

∑
kx,ky

eiky yσ̂ z

(
1 + iσ̂ y

√
2

)
eikxxσ̂ z Eφ(kx, ky) (17)

with kx,y = 2πnx,y/L, we may transform the time-independent Schrödinger equation
E Eψ(x, y)= Ĥ Eψ(x, y) into

2mE

h̄2
Eφ(kx, ky)=

[
k2

x + q2
x + (ky + qy)

2
]

Eφ(kx, ky)+ 2qxkx Eφ(kx,−ky). (18)

Diagonalizing the system of equations forφ(kx,±ky), we obtain two eigenenergies

2mE±

h̄2 = k2
x + q2

x + k2
y + q2

y ± 2
√

k2
xq

2
x + k2

yq
2
y. (19)

Note that in the Abelian situationqx = 0 (or qy = 0), and, as expected, there is no coupling
between momenta in different directions. However, due to the non-Abelian character, even for
a constant gauge there is a nontrivial coupling between the different directions.

4. Landau-like non-Abelian gauge

4.1. Periodic boundary conditions

We consider in the following a matrix generalization of the Landau gauge, namelyÂ =

(h̄κ M̂ x, B0M̂ yx,0) (the usual Landau gauge is of the form(0, B0x,0)). We will assume that
the matricesM̂ x andM̂ y are constant. Then the Hamiltonian of the 2D system becomes:

Ĥ =
1

2m

[
( p̂x + h̄κ M̂ x)

2 + ( p̂y + B0M̂ yx)2
]
. (20)

We first discuss the typical textbook situation, in which the particles (which are assumed
to be confined on thexy-plane) are considered as confined in a 2D box of sideL with periodic
boundary conditions (i.e. a toroidal configuration). We are particularly interested in how the
non-Abelian character of the fields destroys the usual Landau-level structure of the energy
eigenstates. In the following subsection we shall discuss a slightly different scenario closer
to actual experimental conditions.

As in section3, if [ M̂ x, M̂ y] = 0, one can find a common eigenbasis{Ee1, Ee2}, such that in
this basisM̂ x = diag{γ1, γ2} andM̂ y = diag{λ1, λ2}, and hence the Hamiltonian is also diagonal
in this basis. Since we assume periodic boundary conditions we can thus consider wavefunctions
of the form

Eψ j (Er )=

∑
ny

ei(2π/L)ny y+iκγ j qv j (ny, x)Eej , (21)

such that

Ev j (q)=

[
p̂2

2m
+

1

2
mω2

j q
2

]
v j (q). (22)
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whereq = x + (2π h̄ny/L B0λ j ), p = −ih̄∂/∂q, andω j = B0|λ j |/m is the cyclotron frequency
for the statej . Hence, for the Abelian case we obtain two different sets of Landau levels with
energiesE j (n)= h̄ω j (n + 1/2), and degeneraciesg j = B0λ j L2/2π h̄. Note that if |λ1| = |λ2|,
as is the case forMy = σ̂ z, then the two sets of Landau levels are degenerate.

Let us now discuss what happens if on the contrary [M̂ x, M̂ y] 6= 0. We work (without lack
of generality) in the basis in whichMy = σ̂ z. Note that the ansatz

Eψ(Er )=

∑
ny

ei2π/Lny yσ̂ z Eu(ny, x), (23)

also fulfills periodic boundary conditions. We insert this ansatz in the eigenvalue equation to
obtain

E Eu(ny, x)=

[
5̂2

2m
+

h̄2

2m

(
2πny

L
+

B0

h̄
x

)2
]

Eu(ny, x)

+
[
σ̂ z[5̂

2, σ̂ z]
] [

Eu(ny, x)− Eu(−ny, x)

4m

]
, (24)

where5̂= p̂x + h̄κ M̂ x. For the Abelian case, [̂M x, σ̂ z] = 0, the last term vanishes, and we get
the same equation as previously. However, for the non-Abelian case, the last term introduces a
coupling between the modes withny and−ny, and hence there is an explicit dependence onny.
As a consequence of that, the degeneracy of the Landau levels is lifted.

For the particular case ofM̂ x = σ̂ y, we get the following set of coupled equations
(ε = E − h̄2κ2/2m):

ε Eu(ny, x)=

[
p̂2

x

2m
+

B2
0

2m

(
x +

2π h̄ny

B0L

)2
]

Eu(ny, x)+
h̄κ

m
p̂xσ̂ y Eu(−ny, x), (25)

ε Eu(−ny, x)=

[
p̂2

x

2m
+

B2
0

2m

(
x −

2π h̄ny

B0L

)2
]

Eu(−ny, x)+
h̄κ

m
p̂xσ̂ y Eu(ny, x). (26)

The coupling prevents the re-absorption ofny in the definition of a newq variable, as was done
in the Abelian case, and hence the spectrum explicitly depends onny. Note that we are imposing
periodic boundary conditions, and hencex is in a ring of perimeterL. In this sense,±L/2 are
the same point, and this must be taken into account when considering the harmonic oscillator
potential in each equation.

Note that the previous equations involve the coupling of harmonic oscillator wavefunctions
centered at±xc(|ny|), with xc(|ny|)= 2π h̄|ny|/B0L. Hence, the smaller the overlapping
between coupled wavefunctions, i.e. the largerxc, the smaller the coupling, and as a
consequence only sufficiently small values ofny will be affected by the non-Abelian
coupling. This point becomes clear after performing first-order perturbation theory assuming
a small couplingκ. A straightforward calculation shows that the lowest Landau levels, which
correspond to the lowest eigenvalues of each harmonic oscillator, experience a maximal energy
shift

1E

h̄ωc
= (κlc)

ny

1ny
e−n2

y/1n2
y, (27)

wherel 2
c = h̄/mωc is the magnetic length, and1ny =

√
g/2π , with g the degeneracy of the

unperturbed Landau levels. Note that forny = 0 the first correction should be quadratic inκ,
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Figure 1. Lowest eigenvalueε/ωc as a function ofny, for g = 128 andκlc =

0,0.2,0.4,0.6,0.8,1.0 (from the uppermost to the lowermost curve).

whereas forny 6= 0 it should be linear. Clearly, the relative importance of the non-Abelian
corrections should decrease as 1/

√
g. In particular, the maximal energy shift〈1E〉 averaged

over the differentny can be approximated as〈1E〉/h̄ωc ' (κlc)/
√

2πg.
We have solved numerically for the eigenvalues of equations (25) and (26) imposing

periodic boundary conditions, for different values ofg which controls the strength of the
magnetic field applied, andκlc which provides the strength of the non-Abelian corrections.
The value ofL/ lc =

√
2πg is chosen in all simulations. Figure1 shows the behavior of the

lowest eigenvalue as a function ofny for g = 128 andκlc = 0,0.2,0.4,0.6,0.8,1.0 (from the
uppermost to the lowermost curve). The figure follows approximately the perturbative result.
For ny = 0 a higher order contribution appears, but note that a quadratic law follows for small
κ, and not a linear one, as in the case forny 6= 0. As expected from the previous calculations
only values ofny up to the order of

√
g contribute significantly to the shift of the lowest Landau

level.
Figure2 shows the behavior of the Landau levels forg = 128, andκlc = 0 (left) and 0.6

(right). The figures are presented as histograms in intervals of 0.05h̄ωc, in order to reveal more
clearly the destruction of the Landau levels. Note that the gaps (of energyh̄ωc ) between the
Landau levels are filled, and the peaks in the density of states are progressively reduced. For
sufficiently largeκ the Landau level structure therefore disappears.

4.2. Absorbing boundary conditions

In the previous section, we discussed how the non-Abelian character of the gauge field
significantly modifies the textbook Landau level structure. In the following, we consider
a slightly different physical scenario which is closer to the actual experimental conditions
discussed in section2. The particular procedure devised for the generation of the non-Abelian
Landau gauge demands that thex-coordinate cannot be considered as periodic. We take the same
box configuration as for the previous subsection, but assume absorbing boundary conditions in
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Figure 2. Landau level structure for periodic boundary conditions,g = 128,
and κlc = 0 (left) and κlc = 0.6 (right). We employ (see text)M̂ x = σ̂ y and
M̂ y = σ̂ z.
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Figure 3. Same cases considered in figure2 but with absorbing boundary
conditions (see text).

thex-direction, while keeping for simplicity periodic boundary conditions in they-direction. We
consider exactly the same gauge discussed in the previous subsection. The spectrum is provided
by equations (25) and (26) but imposing absorbing boundary conditions. Figure3 shows the
lowest Landau levels for the same cases discussed in figure2.

Even for the Abelian case the Landau level structure is of course affected by the absorbing
boundary conditions. In the Abelian case, as discussed in the previous section, the problem
reduces to two decoupled equations for harmonic oscillators centered at±xc(|ny|). Clearly
when xc approachesL the levels of the resulting potential become greatly distorted, leading
to a significant modification of the Landau level structure whenny approachesg. This reduces
the effective degeneracy of the lowest Landau levels to values smaller thang. The effective
degeneracy, as shown in the figures, becomes smaller for higher Landau levels. The non-
Abelian effect leads, as in the previous subsection, to the eventual destruction of the Landau
level structure.
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same cases discussed in figure2, with κ = 0 (filled circles) andκ = 0.6 (hollow
circles).

4.3. Modified de Haas–van Alphen effect

The destruction of the Landau level structure has experimentally relevant consequences for
the behavior of cold atomic gases. As an example we can consider the case of an ideal two-
component Fermi gas under the previously mentioned non-Abelian gauge potential (we consider
a temperatureT � TF, whereTF is the Fermi temperature). Equivalent to the well-known de
Haas–van Alphen effect [23], we may study the energy per particle,Ē = E/N, of the Fermi
gas, as a function of the applied magnetic fieldB0, or equivalently ofg. This energy may be
monitored by measuring the released energy in time-of-flight experiments. Forκ = 0 (Abelian
case) d2Ē(B0)/dB2

0 presents a typical configuration of plateaux, due to the degeneracy of the
Landau levels. The destruction of the Landau level structure significantly distorts this picture,
rounding-off or eventually destroying this plateaux configuration (see figure4).

5. Symmetric gauge

In this section, we consider an ideal cold atomic sample in an isotropic harmonic trap of
frequencyω, in the presence of a non-Abelian generalization of the symmetric gauge of the form
Â = Âρ ρ̂ +ρ Âϕϕ̂. Although the tripod scheme is not suitable for the experimental realization
of this gauge, we include the analysis of this gauge field for completeness of our discussion.
Other ways of generating non-Abelian gauge fields, such as lattice techniques [15] should be
employed in this case. In the following we considerAρ = h̄κÛ ρ, Aϕ = B0Û ϕ, whereÛ ρ,ϕ are
linear combinations of{1̂, σ̂ x, σ̂ y, σ̂ z}.

The corresponding time-independent Schrödinger equation is of the form

E Eψ =
1

2m

[
−ih̄ E∇ + Â

]2
Eψ +

mω2

2
ρ2 Eψ. (28)
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Figure 5. Fock–Darwin spectrumE/h̄ω for the Abelian (left) and non-Abelian
(right) cases discussed in the text as a function ofb0 = ωc/ω.

Performing the gauge transformationEψ = exp[−i Âρρ/h̄] Eφ, the Schrödinger equation
transforms into

E Eψ =
1

2m

[
−ih̄ E∇ + ϕ̂Cϕ(ρ)ρ

]2
Eψ +

mω2

2
ρ2 Eψ, (29)

where

Cϕ(ρ)= ei Âρρ/h̄ Âϕe
−i Âρρ/h̄. (30)

Note thatCϕ becomesρ dependent and different from̂Aϕ if [ Âρ, Âϕ] 6= 0.
If we now consider the solutions with angular momentuml , Eφ = ERlρ

|l |eilϕ, we obtain

E ERl = −
1

2

[
d2

dρ2
ERl +

(2|l | + 1)

ρ

d

dρ
ERl

]
+

1

2

[
1 +Cϕ(ρ)

2
]
ρ2 ERl + l Ĉϕ(ρ) ERl , (31)

where we reduce the equations to a dimensionless form by employing oscillator units for
the energy (̄hω) and for the length (lho =

√
h̄/mω). In the previous equation̂Cϕ(ρ)≡

(ωc/ω)exp[iκÛ ρρ]Û ϕ exp[−iκÛ ρρ], where ωc = B0/m is the corresponding cyclotron
frequency.

As mentioned above, the non-Abelian character of the gauge field induces an additionalρ-
dependent potential. It severely distorts the standard Fock–Darwin spectrum which is expected
for the Landau-level structure in the presence of a symmetric gauge and a harmonic potential, as
shown in figure5. An inspection of the level structure shows that not only are the eigenenergies
modified, but also the ordering of the different eigenstates becomes distorted as a consequence
of the non-Abelian potential. As a consequence of this extraρ-dependent potential, an ideal
Fermi gas at zero temperature shows a significantly distorted density profile in the presence of
the non-Abelian gauge field, as shown in figure6.

6. Conclusions

In this paper, we have analyzed the physics of ultracold gases in the presence of a non-Abelian
gauge field. We have first studied how different types of non-Abelian fields may be created
by means of relatively simple laser arrangements with atoms described by an electronic tripod
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Figure 6. Comparison between the density profile for an ideal Fermi gas
occupying up to 56 eigenlevels at zero temperature for the Abelian (solid) and
non-Abelian cases discussed in the text with different values ofκ = 1 (dashed)
andκ = 5 (dotted).

level scheme, including a non-Abelian generalization of the Landau gauge. In a second part,
we have considered the nontrivial effects that the non-Abelian character has on the eigenlevel
structure of the cold atomic system. In particular, we have shown that exclusively due to the
non-Abelian character of the field, the usual Landau level structure is severely distorted, and
even eventually destroyed. We have shown that this effect may be observable in an equivalent
experiment to the well-known de Haas–van Alphen effect. The distortion of the Landau levels
leads to a significant modification of the usual plateaux-like signal characteristic for the de
Haas–van Alphen effect. Finally, we have completed our analysis of a non-Abelian version of
the symmetric gauge. We have shown that the Fock–Darwin spectrum is significantly distorted
in the presence of non-Abelian fields, due to the presence of an extra potential, which is a purely
non-Abelian effect.
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