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Abstract. The Landau levels of cold atomic gases in non-Abelian gauge fields
are analyzed. In particular we identify effects on the energy spectrum and density
distribution which are purely due to the non-Abelian character of the fields.
We investigate in detail non-Abelian generalizations of both the Landau and
the symmetric gauge. Finally, we discuss how these non-Abelian Landau and
symmetric gauges may be generated by means of realistically feasible lasers in a
tripod scheme.
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1. Introduction

Gauge potentials are crucial for the understanding of fundamental forces between subatomic
particles. A simple example of a gauge potential is provided by the vector potential in the theory
of electromagnetismil]. In this example the different vector components are scalars, and hence
they commute with each other. If the vector components of the gauge field are not scalars, but
insteadN x N matrices, withN > 1, thenitis in principle possible to have a situation where the
different vector components do not commute. However, non-Abelian gauge fields are scarce in
nature. Candidates so far have mainly been restricted to molecular sy&tevhsch are largely
approachable only through spectroscopic means. Other systems are liquid crystals which show
the required non-Abelian symmetried.[

Experiments on cold quantum gases have reached an unprecedented degree of control,
offering thus extraordinary possibilities for the analysis of the effects of gauge fields on
atomic systems. A simple way of generating a gauge field in ultracold gases is by rotating
Bose—Einstein condensates with an angular frequeRZy(where we employ cylindrical
coordinates{p, ¢, z}). In the corresponding rotating frame the Hamiltonian describing the
rotating system becomes one of a system subject to a symmetric gaugé fieldmQp ¢,
wherem is the atomic masgl]. Thus, a rotating condensate resembles a gas under the influence
of a constant magnetic fielBy = mQ2, and as a consequence many interesting phenomena,
including, e.g., Landau level physics and quantum-Hall-like phenomena have been studied in
rotating quantum gaseS|{[8].

Due to their internal structure, ultracold atoms offer as well the possibility of creating
non-Abelian gauge fields. A surprising and astoundingly elegant derivation and description of
the emergence of non-Abelian gauge potentials was presented by Wilczek ard]. 2ee/ds
shown by these authors that in the presence of a general adiabatic motion of a quantum system
with degenerate states, gauge potentials will appear which are traditionally only encountered in
high energy physics to describe the interactions between elementary particles. Ultracold atomic
clouds are particularly promising candidates for realizing such scenarios, since the access to
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physical parameters is, from an experimental point of view, unprecedented. Extending the ideas
of Wilczek and Zee, it was recently proposed that properly tailored laser beams coupled to
degenerate internal electronic states can be employed to induce Abelian as well as non-Abelian
gauge fields in cold-atom experimentOF-[13]. Alternatively, such gauge potentials can be
constructed in an optical lattice using laser assisted state sensitive tundd]idd 7].

With the implementation of these proposals, ultracold atoms would offer a unique testbed
for the analysis of nontrivial effects on the properties of multicomponent cold atomic systems in
the presence of non-Abelian gauge fields. To the best of our knowledge these effects have been
scarcely studied in the literatur&d, 13, 15, 18]. This paper is devoted to the analysis of non-
Abelian effects on the spectral properties of ultracold atomic systems. In particular, we show
how purely non-Abelian effects lead to the eventual destruction of the Landau level structure,
and may significantly modify the ground state density profile of ideal quantum gases.

The structure of the paper is as follows: in sectiwe study the generation of different
forms of non-Abelian gauge fields, including non-Abelian constant fields, as well as the non-
Abelian generalization of the Landau gauge. Sec3imdevoted to the analysis of constant non-
Abelian gauge fields. Sectighdiscusses the non-Abelian Landau gauge, and in particular the
destruction of the Landau level structure and the corresponding modified de Haas—van Alphen
effect. In Sectionb, we discuss the non-Abelian symmetric gauge. Finally in sediowe
conclude and discuss some future promising directions.

2. Laser-induced non-Abelian gauge fields

In this section, we discuss the generation of (possibly non-Abelian) gauge fields as those
discussed in the following sections. There are at least two alternatives for the creation of
non-Abelian gauge fields. One consists of employing two-component atoms in state-dependent
optical lattices in the presence of appropriate laser arrangeniehtsy. A second possibility,
which we shall explore in this paper, was recently proposedzh [

In this second alternative, a non-Abelian gauge potential is constructed for atoms with
a tripod electronic structurel®, 20]°. Three lasers with appropriate polarizations couple
the excited electronic stat@)) and the ground stateg] =1, 2, 3), with corresponding
Rabi frequenciesQ;(r) which parametrize in the form<2; = Qsinf cos¢ €S Q, =
Qsind sing €%, Q3 = Q cosd €=, For a fixed position” the Hamiltonian describing the
laser—atom interaction may be diagonalized to give a set of dressed states. Under appropriate
adiabatic conditions two dressed states, so-called dark states, become decoupled from the other
states:

|D1) = singe®:|1) — cospe =2(2), (1)
|D,) = cost cosgpe=t|1) + cosd singe=2|2) — sind|3), (2)

with §; = § — §;. The dark states have zero eigenvalues and are separated by theteRergy
from the remaining eigenstates. The adiabatic approximation is justifidaisufficiently large
compared to the two-photon detuning due to the laser mismatctoaBppler shift. In that

case the internal state of an atom evolves within the dark state manifold. The state of the atom

® For example, using the transitioAR <> 23P, in *He*, or transition %/, (F = 1) <> 5P52 (F = 0) in 8'Rb.
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can therefore be expanded in the dark state bagi®)as Wi(r) |D1(7)) + Wo () | Do(1)). The
two-component splnoif = {W¥,, W,}T obeys a spinor Schrddinger equation of the form

. _": iy -’_ AN2 o oy =g
|hat\11 [Zm( ihv — A) +V+d>}\ll. (3)

In this equation we observe the appearance ok&2ector potential of the form
A =h (co§ HV Spa+ Sir? qﬁsm) ,
A, = hcosd (% SiN(2¢)V Spp — iﬁqs) , (4)
As, = hco6 <c0§ YV Siz+ Sir? qﬁSzg) .

. 2 5 -
The systems also present a scalar potential of the b= ;—m/ci* -k, Where

K1=sing (% Sin(2¢)V S + i§¢) , (5)

K2 = 1sin(20)(cog ¢V Si3+Sirf gV S3) — V6. (6)
Finally, if the original state$j = 1, 2, 3) experience an external potentiy ('), then

Vi1 = U2C0§¢+U1$ir\2¢, (7)

Vip = Yi—U: e sin(2¢), (8)

Vs, = (U; €0 ¢ + U, sir? ¢) cos 6 + Uz sir? 6. (9)

Recent advances in shaping both the phase and the intensity of light beams make it possible
to achieve a remarkable versatility in controlling the gauge fieRls p2], provided the
corresponding light fields obey Maxwell’'s equations.
In the following we shall assume that the atoms are strongly trapped iz-direction,
hence they are confined to thxg-plane. Given two orthogonal vectoésand ; on the xy-
plane, we shall be interested in non-Abelian situations, in whiighk= A- § and A, = A7,
fulfill [ As A,] # 0. This condition demandi x qu)z 0 andor (i x VSy), # 0, angor
(VS x V), # 0, with G = (COL ¢ — cOL 0 Sirf 6)V Sz + (Sirf ¢ — coL 6 cof ¢)V Sia.

2.1. Constant intensities

We will consider first homogeneous intensity profiles, i.e. bgttand 6 are now space
independent. We choose the particular case witho = /4. For constany the non-Abelian
character demand§’823 X VSlg;é 0. A simple laser arrangement fulfilling this condition is
Sis =ajXx+ By, wherew;, §; are constants such thafs; # o18,. The corresponding andy
components of the vector potential are of the form

A= %(a1+az)(3i +6,)+ Z—jz(al — 0t2)0 x, (10)
Ay = 2(8u+ ) (B 469 + —— (B — B)6 (11)
y—8 1 2 z 2\/2 1 2)O x-
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On the other hand, by choosing (©) = AE; +U(F'), with AE; = —(h?/16m)[(a? — a3) +
(B2 — B3)] = —AE,, and AEz = —(h2/16m)[(a1 +a3) + (B2 + B5)], one can prove that (up
to an irrelevant constanty +é = U () with U(F) a common trapping potential for all
components.

A gauge transformation eliminates the terms proportional to the identity matri, in
and Ay. Let hiy = (B1— B2)/2v/2, hay = (B1+ B2) /8, ey = (a1 — a2) /24/2 andhqy = (g +
a)/8. A rotation 6 — COSnGy +SiNNG,, dx — —SiNnay +cosns,, with tan) = «y/qy,
provides A, = h§,é,, with &, = cos 2bqy +sin 2pi,, and A, = hiydx + a6, with i =
(cos 2pky — Sin 2pQy) andqy = (COS 2qy + Sin 2pky). Hence, we recover exactly the same form
as discussed in sectién

2.2. Landau-like gauge

In this subsection _we spall consider the c&e= S3=S. In that case the non-Abelian
character demand¥ S x V¢), # 0. We will choose the phase= kX, andgy = qy, which gives
a non-Abelian gauge potential unless= 0 org = 0. In addition we take cas= x/R., where
R? = x2+(z— z:)?, such that for the relevantrange,|x| < z; is fulfilled. As a consequence,
and up to first order irix/z;) we obtain:

A~ hic(1+6 )%+ Box6 9. (12)
whereBy = /7. Note that althought « Z, Bo can actually have large values. In addition, and
again up to first order ix/z;), we obtainV +¢=U (), if Vi(F) = Vu(F) = h? g?/2m+U (1)
and V(') = h?/2mZ. Using a simple gauge transformatign— expicx¥ to eliminate the
identity matrix term inA,, and applying a unitary spin transformatiah’ AU, with U =
(62+6y)/2, we obtainA:h/afy)H Boxa,y, which is indeed exactly the same Landau-

like gauge that we employ in secti@gn A simple laser arrangement which would lead to this
particular gauge is provided by

Q1 = Q cosqyer /2, (13)

Q, = Qsinqye«**y*2/2, (14)
X .

Qg — QZeIK(X_y+Z)/2, (15)

where we assume the illuminated atoms are confined to a region for ywhigh z. holds.

3. Constant non-Abelian gauge

Let us consider a constant matrix gauge of the fdkme (A,, Ay, 0). We have already shown
that these fields can be generated in a tripod scheme using a simple laser arrangement. Then,
the Hamiltonian of the 2D system becomes:

A .
H = o [(Ber Ao?+ (B + A2 (16)

In the Abelian case Ay, Ay] = 0. We can therefore choose a common eigenbasis for both
matrices:Ay /h = diag{Gux, Gox} and Ay/h = diag{auy, Opy}. AS a consequence, we recover two
independently displaced quadratic spedsek) = (h?/2m)(k +q)?, whereq; = (Qjx, Jjy)-
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In the non-Abelian case, on the other hand, we cannot simultaneously diagonalize both
matrices, and as a consequence the spectrum becomes distorted. Let us consider a simple, but
representative, case, nam@ly Oxdx, Ay = Qyd .. Employing the Fourier-like transformation

X, e"‘yy‘”(
VX, y) = kZ 7

with ky,=27n,,/L, we may transform the time-independent Schrodinger equation
Ev(x,y) = Hy (x,y) into

2mE- - -

Pk ky) = [k o+ (ky + )" Pk Ky) + 20k (ke —key). (18)

Diagonalizing the system of equations #xk,, +ky), we obtain two eigenenergies

2mE.
b= kZ+qZ + k2 +q7 £ 2, /kq2 + k2q2. (19)

Note that in the Abelian situatiogy = 0 (or gy = 0), and, as expected, there is no coupling
between momenta in different directions. However, due to the non-Abelian character, even for
a constant gauge there is a nontrivial coupling between the different directions.

) &k, k) a7)

4. Landau-like non-Abelian gauge

4.1. Periodic boundary conditions

We consider in the following a matrix generalization of the Landau gauge, narnely
(hic My, BoM y% 0) (the usual Landau gauge is of the fot Byx, 0)). We will assume that
the matricedVl, andM are constant. Then the Hamiltonian of the 2D system becomes:

A

1
|:(px+hKMx) +(py+BO yx)] (20)

We first discuss the typical textbook situation, in which the particles (which are assumed
to be confined on thgy-plane) are considered as confined in a 2D box of &iddgth periodic
boundary conditions (i.e. a toroidal configuration). We are particularly interested in how the
non-Abelian character of the fields destroys the usual Landau-level structure of the energy
eigenstates. In the following subsection we shall discuss a slightly different scenario closer
to actual experimental conditions.

As in sectiong, if [ M., I\7Iy] =0, one can find a common eigenbafs €,}, such that in
this basisvl, = diag{y1, v2} andl\?ly = diag{A1, A»}, and hence the Hamiltonian is also diagonal
in this basis. Since we assume periodic boundary conditions we can thus consider wavefunctions
of the form

Yy =) @ Omyriay (ny )8, (21)
Ny
such that
If)2 1
Evij(q) = ot me % | v (@). (22)
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whereq = x + (2rhny/LBo};), p= —ihd/dq, andw; = By|A;|/mis the cyclotron frequency
for the statej. Hence, for the Abelian case we obtain two different sets of Landau levels with
energiesE; (n) = hw; (n+1/2), and degeneracieg = BoA;L?/27h. Note that if|A;| = |A2],
as is the case favly = 4, then the two sets of Landau levels are degenerate.
Let us now discuss what happens if on the contraty,[M y] # 0. We work (without lack
of generality) in the basis in whickl, = 5,. Note that the ansatz

Y =) &gy, x), (23)
Ny
also fulfills periodic boundary conditions. We insert this ansatz in the eigenvalue equation to
obtain

M2 h2 /2 By \?
Ed(ny, X)=[ + < nnnyFoX) }G(ny,x)

om 2m\ L

A A2 A u(ny, X) — G(—ny, X)
o[6.062.5,] [ - ] , (24)

wherelIl = Py +hi M. For the Abelian caseMy, 6,] = 0, the last term vanishes, and we get
the same equation as previously. However, for the non-Abelian case, the last term introduces a
coupling between the modes withh and—ny, and hence there is an explicit dependence,on
As a consequence of that, the degeneracy of the Landau levels is lifted.
For the particular case ofl, = gy, we get the following set of coupled equations
(e = E —h%?/2m):

A 2
02 | BB (o 2T e
eli(ny, X) = [2m+2m X + BoL a(ny, X) + - Pxayl(—ny, X), (25)
A 2
. p2 B3 27hny . he . . .
u(=ny,X) = —+—X— —= u(—=ny, X)+— u(ny, X). (26
eu( yo ) |:2m m BoL ( Y ) m Pxoy ( yo ). (26)

The coupling prevents the re-absorptiomefin the definition of a nevg variable, as was done

in the Abelian case, and hence the spectrum explicitly dependg dtote that we are imposing
periodic boundary conditions, and hences in a ring of perimetet. In this sense;:L /2 are

the same point, and this must be taken into account when considering the harmonic oscillator
potential in each equation.

Note that the previous equations involve the coupling of harmonic oscillator wavefunctions
centered atExc(|ny|), with x.(Iny|) = 27hiny|/BoL. Hence, the smaller the overlapping
between coupled wavefunctions, i.e. the larggr the smaller the coupling, and as a
consequence only sufficiently small values wf will be affected by the non-Abelian
coupling. This point becomes clear after performing first-order perturbation theory assuming
a small couplinge. A straightforward calculation shows that the lowest Landau levels, which
correspond to the lowest eigenvalues of each harmonic oscillator, experience a maximal energy
shift

AE n 2/ An2
_ | y e_ny/Any’ 27
heog = (klc) AN, (27)

wherel2 = h/ma, is the magnetic length, andn, = \/g/2r, with g the degeneracy of the
unperturbed Landau levels. Note that fgr= 0 the first correction should be quadratickn
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Figure 1. Lowest eigenvalue/w. as a function oy, for g =128 andxl. =
0,0.2,0.4, 0.6, 0.8, 1.0 (from the uppermost to the lowermost curve).

whereas fomy # 0 it should be linear. Clearly, the relative importance of the non-Abelian
corrections should decrease g5/b. In particular, the maximal energy shifth E) averaged
over the differenty, can be approximated && E) /hw. >~ (klc) /+/27 Q.

We have solved numerically for the eigenvalues of equati@® &nd @6) imposing
periodic boundary conditions, for different values @fwhich controls the strength of the
magnetic field applied, andl, which provides the strength of the non-Abelian corrections.
The value ofL/l. = /27 g is chosen in all simulations. Figuteshows the behavior of the
lowest eigenvalue as a function f for g =128 andkl. =0, 0.2, 0.4, 0.6, 0.8, 1.0 (from the
uppermost to the lowermost curve). The figure follows approximately the perturbative result.
Forny = 0 a higher order contribution appears, but note that a quadratic law follows for small
k, and not a linear one, as in the caserige# 0. As expected from the previous calculations
only values oy up to the order of /g contribute significantly to the shift of the lowest Landau
level.

Figure 2 shows the behavior of the Landau levels §pe 128, andcl, = 0 (left) and 0.6
(right). The figures are presented as histograms in interval©8h&., in order to reveal more
clearly the destruction of the Landau levels. Note that the gaps (of ehergy between the
Landau levels are filled, and the peaks in the density of states are progressively reduced. For
sufficiently largex the Landau level structure therefore disappears.

4.2. Absorbing boundary conditions

In the previous section, we discussed how the non-Abelian character of the gauge field
significantly modifies the textbook Landau level structure. In the following, we consider
a slightly different physical scenario which is closer to the actual experimental conditions
discussed in sectiok The particular procedure devised for the generation of the non-Abelian
Landau gauge demands that #aeoordinate cannot be considered as periodic. We take the same
box configuration as for the previous subsection, but assume absorbing boundary conditions in
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Figure 2. Landau level structure for periodic boundary conditiogss 128,
and «lc =0 (left) and«l. = 0.6 (right). We employ (see textM, =4, and
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Figure 3. Same cases considered in figzebut with absorbing boundary
conditions (see text).

thex-direction, while keeping for simplicity periodic boundary conditions inykdirection. We
consider exactly the same gauge discussed in the previous subsection. The spectrum is provided
by equations Z5) and @6) but imposing absorbing boundary conditions. FigBrehows the
lowest Landau levels for the same cases discussed in figure

Even for the Abelian case the Landau level structure is of course affected by the absorbing
boundary conditions. In the Abelian case, as discussed in the previous section, the problem
reduces to two decoupled equations for harmonic oscillators centered.dny|). Clearly
when x. approaches. the levels of the resulting potential become greatly distorted, leading
to a significant modification of the Landau level structure whegapproacheg. This reduces
the effective degeneracy of the lowest Landau levels to values smallegthEme effective
degeneracy, as shown in the figures, becomes smaller for higher Landau levels. The non-
Abelian effect leads, as in the previous subsection, to the eventual destruction of the Landau

level structure.

New Journal of Physics 10 (2008) 045022 (http://www.njp.org/)


http://www.njp.org/

10 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

25
Vo
&
20F
15 °
(o =) °
5 10f o
i o
S o o
OW
o) ° o) 00008
0t o ° Do  AMRRARAY,
°
. L S
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4. Value of cFE/ng as a function of the applied magnetic fidg, for the
same cases discussed in fig@revith « = O (filled circles) andc = 0.6 (hollow
circles).

4.3. Modified de Haas—van Alphen effect

The destruction of the Landau level structure has experimentally relevant consequences for
the behavior of cold atomic gases. As an example we can consider the case of an ideal two-
component Fermi gas under the previously mentioned non-Abelian gauge potential (we consider
a temperaturd < Tg, whereTg is the Fermi temperature). Equivalent to the well-known de
Haas—van Alphen effecRp], we may study the energy per particle,= E/N, of the Fermi

gas, as a function of the applied magnetic fi8lg or equivalently ofg. This energy may be
monitored by measuring the released energy in time-of-flight experiments. £&r (Abelian

case) 6E(Bo)/dB§ presents a typical configuration of plateaux, due to the degeneracy of the
Landau levels. The destruction of the Landau level structure significantly distorts this picture,
rounding-off or eventually destroying this plateaux configuration (see fijure

5. Symmetric gauge

In this section, we consider an ideal cold atomic sample in an isotropic harmonic trap of
frequencw), in the presence of a non-Abelian generalization of the symmetric gauge of the form
A= App +,0A¢g0 Although the tripod scheme is not suitable for the experimental realization
of this gauge, we include the analysis of this gauge field for completeness of our discussion.
Other ways of generating non-Abelian gauge fields, such as lattice technidijieshipuld be
employed in this case. In the following we consider= h«U ,, A, = BoU,, whereU, , are
linear combinations ofi, 6. 6. & }.

The corresponding time-independent Schrodinger equation is of the form

Lol . 2. me? -
Ew_%[—th+A] U+ (28)
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Figure 5. Fock—Darwin spectrun /hw for the Abelian (left) and non-Abelian
(right) cases discussed in the text as a functiobyet w¢/w.

Performing the gauge transformatio&:exp[—iAp,o/h]q;, the Schrédinger equation
transforms into
2

> 1 A 25 Mo ,-
EY = o[-V +¢C, ()] ¥ + —-0%V. (29)
where
C,(p) = &Ar/NA g A/, (30)
Note thatC, becomes dependent and different fromy, if [ A,, A,] # 0.
If we now consider the solutions with angular momentygi = R, p!''é'?, we obtain

) 1IfTd® - @+ d-=7 1 oA
ER = —E |:d,02 R+ P %RC| +§ [1+C(p(,0)2] ,02R| +|C<p(p)RI, (31)

where we reduce the equations to a dimensionless form by employing oscillator units for
the energy fiw) and for the length I, = +/h/mw). In the previous equationéw(p) =

(wc/w) explicU ,p]U, exp[—ikU ,p], where w.= By/m is the corresponding cyclotron
frequency.

As mentioned above, the non-Abelian character of the gauge field induces an adg@Hional
dependent potential. It severely distorts the standard Fock—Darwin spectrum which is expected
for the Landau-level structure in the presence of a symmetric gauge and a harmonic potential, as
shown in figureb. An inspection of the level structure shows that not only are the eigenenergies
modified, but also the ordering of the different eigenstates becomes distorted as a consequence
of the non-Abelian potential. As a consequence of this extdependent potential, an ideal
Fermi gas at zero temperature shows a significantly distorted density profile in the presence of
the non-Abelian gauge field, as shown in figére

6. Conclusions

In this paper, we have analyzed the physics of ultracold gases in the presence of a non-Abelian
gauge field. We have first studied how different types of non-Abelian fields may be created
by means of relatively simple laser arrangements with atoms described by an electronic tripod
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30

Figure 6. Comparison between the density profile for an ideal Fermi gas
occupying up to 56 eigenlevels at zero temperature for the Abelian (solid) and
non-Abelian cases discussed in the text with different valuas-efl (dashed)
andx =5 (dotted).

level scheme, including a non-Abelian generalization of the Landau gauge. In a second part,
we have considered the nontrivial effects that the non-Abelian character has on the eigenlevel
structure of the cold atomic system. In particular, we have shown that exclusively due to the
non-Abelian character of the field, the usual Landau level structure is severely distorted, and
even eventually destroyed. We have shown that this effect may be observable in an equivalent
experiment to the well-known de Haas—van Alphen effect. The distortion of the Landau levels
leads to a significant modification of the usual plateaux-like signal characteristic for the de
Haas—van Alphen effect. Finally, we have completed our analysis of a hon-Abelian version of
the symmetric gauge. We have shown that the Fock—Darwin spectrum is significantly distorted
in the presence of non-Abelian fields, due to the presence of an extra potential, which is a purely
non-Abelian effect.
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