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We introduce the stochastic multiplicative model of time intervals between the events, defining 
multiplicative point process and analyze the statistical properties of the signal. Such a model system 
exhibits power-law spectral density S(f)~1/fβ, scaled as power of frequency for various values of β, 
including β=1/2, 1 and 3/2. Explicit expressions for the power spectrum in the low frequency limit and 
for the distribution density of the interevent time are obtained. The counting statistics of the events is 
analyzed as well. The specific interest of our analysis is related with the financial markets, where long-
range correlations of price fluctuations largely depend on the number of transactions.  

1. Introduction 

Stochastic point processes may be used for description of phenomena that occur as random 
sequences of events. Considerable part of such systems in physics, biomedicine, geophysics 
and economics are fractal as their statistics exhibit scaling. The scaling leads to the power-
law dependencies of the scaled quantities [1]. The aim of this contribution is to introduce the 
multiplicative stochastic model of the time interval between events in stochastic sequence 
defining the multiplicative point process. The model of 1/ f  noise based on the Brownian 
motion of the time interval between subsequent pulses proposed in Refs. [2,3] has been 
adopted for the reproduction of the spectral properties of trading activity in financial markets 
[4]. From the central limit theorem it follows that the simple additive Brownian model of the 
time interval between events should lead to the Gaussian probability distribution of the time 
interval. Therefore, we introduce the stochastic multiplicative model for the interevent time, 
defining the multiplicative point process [5]. The model exhibits the first and the second 
order power law statistics and serves as the theoretical description of the empirical financial 
time series [6]. Specific interest of our analysis is a relation between the origin of the power-
law distributions and power-law correlations in the financial time series. The model with the 
adjusted parameters reproduces the power spectra of trading activity and the exponent of the 
power-law probability distribution of the trading activity observed in the financial markets. 
[6]. Apparently, the multiplicative point process can be useful for the modeling of a wide 
variety of natural systems as well as of the processes in economics and finance. 

2. Multiplicative point process 

We consider a signal ( )I t  as a sequence of the random correlated pulses 
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where ka  is a contribution to the signal of one pulse at the time moment kt , for example, a 

contribution of one transaction to the financial data. When ka  is a constant, the process (1) 

is completely defined by the set of events { }kt  or equivalently by the set of interevent 

intervals { }k kt tτ = − . Kaulakys and Meskauskas [2-3] showed analytically that the 

relatively slow Brownian fluctuations of the interevent time kτ  exhibited 1/ f  fluctuations 

of the signal ( )I t . Power spectral density of the signal (1) can be written as  
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where T  is the observation time, ( ; ) k q kk q t t+∆ = −  is the difference of pulses occurrence 

times k q
t

+  and kt , a  denotes expectation of ka , while mink  and max
k  are minimal and 

maximal values of index k  in the time interval of observation T . 
 We will study the multiplicative processes defined by the stochastic iterative 
equation 
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 Here the interevent time kτ  fluctuates due to the external random perturbation by a 

sequence of uncorrelated normally distributed random variable kε  with a zero expectation 

and unit variance, σ  denotes the standard deviation of the white noise and 1γ =  is a 
damping constant. The diffusion described by Eq. (3) has to be restricted in some time 
interval min maxτ τ τ< < .  

Pure multiplicativity corresponds to the parameter 1µ = . Nevertheless, other 
values of µ  can produce power laws, as well, and the explicit expressions can be derived 
without the loss of generality. The iterative relation (3) can be rewritten as a continuous 
Langevine stochastic differential equation in k  space 
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where ( )
kk k kξ ξ δ′ ′= − . The stationary solution of the corresponding Fokker-Plank 

equation with a zero flow gives the long time probability distribution of τ  in the space k  

 ( )kP C α
ττ τ=  (5) 

where Cτ has to be defined from the normalization 
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3. Power spectral density and counting statistics 

The power spectral density is a well-established measure of long-time correlations and is 
widely used in stochastic systems. For the normal dis tribution of ( ; )k q∆  Eq. (2) takes the 

form 
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where ( ; )k q∆  can be expressed from the solution of the multiplicative stochastic equation 
(4),  
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Averaging over the normal distributions of jε  yields the explicit expressions for the mean 

( ; )k q∆  and variance 2 ( ; )k qσ ∆ , 
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In the low frequency limit Eqs. (6) and (8) yield the power spectral density  
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Here we introduce the scaled variable 3 2f
x µπ

τ
γ

−=  and τ  is the expectation of kτ . For 

min 0x →  and maxx → ∞  Eq. (10) yields the explicit form of the power spectrum  
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Eq. (11) proves that the multiplicative point process exhibits a general model of signals 
with the power spectral density ( )S f f β−∼ . The scaling exponent is  
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We suppose that this stochastic model with the parameters resulting in 1β ;  can be 

adopted for a wide variety of real systems. First of all we assume that 1a ≡  and the s ignal 



( )I t  counts the transactions in financial markets. Then the number of transactions in 

selected time window dτ  defined as ( ) ( )
dt

t
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= ∫  measures the trading activity. For 

the pure multiplicative model, 1µ = , Eqs. (7) and (8) define the relation between N  and 

τ . After substitution ,k q Nτ τ→ →  and ( ; )
d

k q τ→∆  we get 
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This relationship may be used for definition of the probability density function of N in a 
real time from the relation ( ) ( )

t t
P N dN P dτ τ= ,  
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In the case of pure multiplicativity, 1µ = , the model has only one parameter 22 /γ σ  
defining the scaling of the power spectral density, the power-law distributions of interevent 
time and the counting number N . 
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