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Generation and analysis of 1/f noise as consisting of pulses (point process) and

represented by fluctuating amplitude of the signal are presented. It is shown how one

type of the signal can be transformed into the other type with the same low frequency

power spectral density.

1. Introduction

Long time correlations have been observed in different systems from physics to
biology and sociology. The fact that 1/f noise is encountered in such a wide
variety of systems has led to the speculations that there might exist some generic
mechanism underlying the production of 1/f noise.

Recently [1, 2] we have shown that 1/f noise may be obtained in the point
process approach with the Brownian motion of the interevent time, resulting in the
clustering of the signal pulses [3, 4]. The purpose of this contribution is to relate
such a process generating 1/f noise with more usual stochastic signals represented
by fluctuating intensity (amplitude) of the signal.

2. Signals represented by pulses

The signal or intensity of a current of particles in some space cross section may be
represented as consisting from pulses Ak(t− tk),

I(t) =
∑

k

Ak(t− tk), (1)

with {tk} being a sequence of the pulses occurrence times tk. It has been shown
[1–4] that not for very long pulses Ak(t− tk) the intrinsic origin of 1/f noise may
be the Brownian motion of the interevent time τk = tk− tk−1, resulting sometimes
in the clustering of the signal pulses.

The simplest version of such a signal is a point process, i.e., the signal repre-
sented by the Dirac δ(t− tk) functions,

I(t) = a
∑

k

δ(t− tk), (2)

where a is the average area of the pulse.
The Brownian motion of the interevent time τk with some restrictions, e.g.,

with the relaxation to the average value τ̄ may be expressed as

τk = |τk−1 − γ(τk−1 − τ̄) + σεk| (3)



with {εk} being a sequence of uncorrelated normally distributed random variables
with zero expectation and unit variance and σ being the standard deviation of this
white noise. The pulse occurrence times tk are expressed as

tk = tk−1 + τk. (4)

The power spectrum of signal generated by Eqs. (2)-(4) for small parameters σ
and γ is 1/f -like in any desirably wide range of frequencies [1, 2].

It should be noted that any signal I(t) may be transformed into the point-like
process by the integrate-and-fire method procedure for generating occurrence times
tk from the integrals [5] ∫ t±k

tk−1

I(t)dt = ±a. (5)

Then the signal I(t) as a point process may be represented as

I(t) = a
∑

k

δ(t− t+k )− a
∑

k

δ(t− t−k ). (6)

Such a procedure and method have been used in the spectral analysis of the EKG
signals for the predictions of a sudden cardiac death [6].

3. Signals represented by fluctuating intensity

We can introduce the rate of the signal as νk = 1/τk. Then from Eq. (3) we obtain
the recurrent equation for the rate

νk =
νk−1

|1− γ(1− ν̄−1νk−1) + σνk−1εk| . (7)

Here ν̄ = 1/τ̄ and the occurrence time tk of the signal νk should be calculated as

tk =
k∑

l=1

τl =
k∑

l=1

ν−1
l . (8)

Linearization of Eq. (7) yields

νk =
∣∣νk−1 + γνk−1(1− ν̄−1νk−1) + σ2ν3

k−1 + σν2
k−1εk

∣∣ . (9)

From Eq. (9) we can derive the nonlinear Ito stochastic differential equation
for ν(t) as function of the actual time t, i.e.,

dν

dt
= γν2(1− ν̄−1ν) + σ2ν4 + σν5/2ξ(t). (10)

Here ξ(t) is δ-correlated, 〈ξ(t)ξ(t′)〉 = δ(t − t′), white noise. The intensity of the
signal is then I(t) = aν(t).

Therefore, the appropriate nonlinear stochastic differential equation may gen-
erate the signal with the 1/f power spectral density, the same as the point process
(2) with the fluctuating interevent time.
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Fig. 1. Power spectra calculated a) for the point process (2)-(4) and b) from the recurrent equation
for the signal (7).

Moreover, we can obtain the signal with the fluctuating amplitude from the
point process (2) representing every pulse by the function Ak(t− tk) of the definite
shape and duration, e.g., by the Gaussian overlapping pulses

I(t) =
a√

2πσp

∑

k

exp
{
− (t− tk)2

2σ2
p

}
. (11)

Here σ2
p is the dispersion of the Gaussian pulse. Calculations of the power spectrum

of the signal (11) by FFT yields at low frequencies the similar result as direct
calculation of power spectrum of the point process (2) according to the expression

Sδ(f) = lim
T→∞

〈
2a2

T

∣∣∣∣∣
∑

k

e−i2πftk

∣∣∣∣∣

2〉
(12)

with T being the observation time.
In general, the power spectral density of the signal (11) is

S(f) = Sp(f)Sδ(f) (13)

where Sp(f) = exp
{−(2πfσp)2

}
is the spectrum of the individual Gaussian pulse.

Therefore, we observe the cut of the spectrum of the signal (11) at f ≥ σ−1
p and the

spectrum without the shot noise. On the other hand, generation of the point-like
process by the integrate-and-fire method (5)-(6) yields appearance of the shot noise
at high frequencies. The low frequency noise in all cases is, however, the same.

Figure 1 represents the power spectral density of the signals generated by
different procedures. We see the similarity of the behavior of the power spectra of
the signals generated by different procedures and we demonstrate the possibility
of generation of 1/f noise from the recurrent equations for the signal as well as for
the interevent time.

4. Conclusions

The interrelation between the signals represented as consisting of pulses (point
process) and more usual stochastic signals represented by fluctuating intensity is
analyzed. It is shown how one type of the signal may be transformed into another
type of the signal with the same power spectral density at low frequencies. The



autoregressive equation for the interevent time τk of the point process may be
transformed to the nonlinear Ito stochastic differential equation for the rate of the
signal ν = 1/τk, resulting in the 1/f noise process. On the other hand, every signal
may be transformed into the point-like process by the integrate-and-fire method
for the generation of the occurrence times of the pulses. The low frequency noise
of all signals obtained after such transformations is the same.
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