
Optics Communications 284 (2011) 5008–5019

Contents lists available at ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom
Quantifying metarefraction with confocal lenslet arrays

Tautvydas Maceina a, Gediminas Juzeliūnas a, Johannes Courtial b,⁎
a Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gos ̈tauto 12, LT-01108 Vilnius, Lithuania
b School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
⁎ Corresponding author. Tel.: +44-141-330-6081; fa
E-mail address: johannes.courtial@glasgow.ac.uk (J.

0030-4018/$ – see front matter. Crown Copyright © 20
doi:10.1016/j.optcom.2011.06.058
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 May 2011
Received in revised form 24 June 2011
Accepted 27 June 2011
Available online 12 July 2011

Keywords:
Confocal lenslet arrays
METATOYs
Field of view
Geometrical optics
Optical materials
METATOYs can change the direction of light in ways that appear to, but do not actually, contravene the laws of
wave optics. This direction change applies only to part of the transmitted light beam; the remainder gets re-
directed differently. For a specific example, namely confocal pairs of rectangular lenslet arrays with no dead
area between lenslets, we calculate here the fractions of power of a uniform-intensity light beam incident
from a specific (but arbitrary) direction that get re-directed in different ways, and we derive an equation
describing this redirection. This will facilitate assessment of the suitability of METATOYs for applications such
as solar concentration. Finally, we discuss similarities between the multiple refraction of light at the lenslet
arrays and multiple refraction and reflection of cold atoms at a barrier in the presence of the light fields.
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1. Introduction

METATOYs [1] can be described as windows that “refract” (change
the direction of) transmitted light rays. This direction change can be,
for example, a rotation around the window normal [2], or indeed
around any other direction [3]; a flipping (sign change) of one of the
transverse direction components [4]; negative refraction that leads to
pseudoscopic imaging [5]; and a variation of Snell's law in which sines
are replaced by tangents [6] (and a generalisation thereof [7]). It can
be shown that most of these light-ray-direction changes can lead to
light-ray fields that cannot be represented wave-optically [1,8]. How-
ever, this is not actually the case, and this apparent conflict with wave
optics is resolved by introducing discontinuities into the wave front
[9].

The wave-front discontinuities introduced by METATOYs result in
only part of the light being redirected as advertised; the remainder
undergoes a different direction change. This imperfection can be
remedied by more careful optical design, for example insertion of
arrays of field lenses into the common focal plane of confocal lenslet
arrays (CLAs) [10], which are examples of METATOYs [6]. Neverthe-
less, it compromises the performance of METATOYs as components in
visual optical instruments and in instruments for light-shaping
applications.

One timely application of light shaping is solar concentration [11].
Testing whether or not METATOYs can offer anything new in this
x: +44-141-330-2893.
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important area is an obvious task, one for which it is crucial to
understand how much light undergoes what direction change.

Here we address this point for simple CLAs [6] (Fig. 1). Note that
lenslet (ormicrolens) arrays are already being investigated as away of
improving the efficiency of photovoltaic cells (e.g. [12]). We build on
previous work on the mechanism behind, and qualitative effect of,
different parts of a light beam being refracted differently. Specifically,
we calculate the fraction of a uniform-intensity light beam, incident
from a specific (but arbitrary) direction, that undergoes the “correct”
direction change upon transmission through the CLAs; we call this
fraction ζ. We also calculate the fractions ζm of transmitted light that
undergo other direction changes. Our calculation is two-dimensional
and directly describes confocal arrays of cylindrical lenslets that are
invariant to translation in one direction (for example the y direction;
Fig. 2(a)), but the calculation also describes – separately – the relevant
lateral projections1 of light passing through rectangular arrays of
lenslets with rectangular apertures (Fig. 2(b)). If ζxz is the fraction of
the power of the incident light that undergoes the correct direction
change in the xz projection, and ζyz is the corresponding fraction in the
yz projection, then the overall fraction of the power of incident light
that undergoes the correct direction change is ζxzζyz. Our calculation
makes approximations by assuming that there is no dead area
between neighbouring lenslets, and that each lenslet redirects light
rays like an ideal thin lens.2 Our results are important as they can be
used to answer the question whether or not CLAs, along with realising
1 If the lenslet arrays are parallel to the xy plane and periodic in the x and y
directions, then the relevant lateral projections are into the xz and yz planes.

2 This assumption implies that the individual lenslets have flat fields.
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Fig. 1. Confocal lenslet arrays (CLAs). The focal lengths of the lenslets in the left and
right array are respectively f1 and f2. (a) Example of a light ray passing through
corresponding lenslets (solid arrow) and non-corresponding lenslets (dashed arrow).
α and β are the angles of incidence and refraction, respectively, of the former light ray.
(b) Imaging properties of light rays that pass through corresponding lenslets in planar
CLAs.
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Fig. 2. Geometries of CLAs to which our calculation applies. (a) Confocal arrays of
cylindrical lenslets; (b) confocal rectangular arrays of spherical lenslets with
rectangular apertures. In both cases, f1 and f2 is the focal length of the lenslets in the
back array and the front array, respectively, and there is no dead area between
neighbouring lenslets. For clarity, a pair of lenslets that occupies corresponding
positions in the two lenslet arrays is highlighted in both diagrams.
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previously forbidden refraction qualitatively, can also overcome
previously established quantitative limits.

2. Confocal lenslet arrays (CLAs)

CLAs (Fig. 1) are formed by two parallel arrays of lenslets (or
microlenses), separated by the sum of their focal lengths [6]. In the
simplest case, which we consider here, the lenslets' optical axes are
perpendicular to both array planes, and each lenslet in one array has a
corresponding lenslet in the other array with which it shares an
optical axis. Corresponding lenslets can be seen as tiny two-lens
telescopes, so CLAs are simply arrays of telescopes. Note that there is a
generalisation of CLAs [7], but we do not consider it here.

When a light ray is transmitted through a telescope, its transverse
positions on entering and on exiting the telescope are generally
different. This transverse offset occurs also in CLAs, but by miniaturis-
ing the telescopes the offset can be made small.3 Each telescope then
acts like a pixel of the window formed by the CLAs; under the right
conditions, the pixellation can be as unnoticeable as a computer
monitor's. That this approach works has been demonstrated exper-
imentally [13].

The change in direction of light rays that pass through a telescope
consisting of lenses with focal lengths f1 and f2 can be described by the
following equation, which describes the relationship between the
angles of the light ray with the optical axis on the two sides of the
telescope, α and β (Fig. 1):

f1tan α = −f2tan β: ð1Þ

As transmission through CLAs is transmission through telescopes,
CLAs therefore refract light rays according to this law of refraction,
which is remarkably similar to Snell's law [6].

The law of refraction given by Eq. (1) is interesting as it leads to
perfect imaging (Fig. 1(b)) [6]. Obviously, if it is realised experimen-
tally with CLAs, then the imaging can only be as good as the offset is
small, and as good as the lenslets redirect light like ideal thin lenses.
The case f1= f2 corresponds to refraction between media with
refractive indices of equal magnitude and opposite sign [14,15].

Strictly speaking, Eq. (1) applies only to light rays that pass
through corresponding lenslets, that is, light rays that exit the same
telescope that they entered [16]. Provided this is the case, the
direction change is independent of the precise position where the ray
hits the first lenslet. The direction change such light rays undergo is
called standard refraction; light rays that enter one lenslet and exit a
non-corresponding lenslet (like the dashed light ray in Fig. 1(a))
undergo a different direction change called non-standard refraction
[16]. In this paper we consider only CLAs with a particularly simple
geometry: the aperture width of each lenslet is the same in both
arrays, and there is no dead area between neighbouring lenslets
(i.e. the centre-to-centre separation between neighbouring lenslets
equals the aperture width). We describe such CLAs in terms of the
dimensionless focal-length ratio [6],

η = − f2
f1
; ð2Þ

and the f-number of the left lenslets,

N =
f1
2r

; ð3Þ

where r is half the lenslets' aperture width.
Our analysis considers light travelling from left to right, and

assumes that the effect of transmission through the two lenslets can
3 The limit of useful miniaturisation has been exceeded when wave-optical effects
begin to dominate.
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be described by first taking into account the effect of the lenslet with
focal length f1 and then that of the lenslet with focal length f2. In other
words, it assumes that the lenslet with focal length f1 is to the left of
the lenslet with focal length f2, or that the two are in (or imaged into)
the same plane, which is only the case if f1+ f2≥0. In terms of η and N,
this becomes

N 1−ηð Þ≥0 ð4Þ

(as rN0, by definition). The values of η and N are therefore restricted
to combinations that satisfy this condition.

3. Light undergoing standard refraction

First we calculate the fraction of incident power that undergoes
standard refraction. For simplicity, we consider here (and in the
following sections) the incident light to consist of parallel rays, all of
the same brightness; the angle of incidence is α. Wave-optically, this
is a uniform plane wave.

3.1. The case |η|≤1

First we treat the case |η|≤1, which corresponds to f1≥ | f2|. For
this case, condition (4) is satisfied provided that N≥0. It is convenient
to treat the ranges −1≤η≤0 and 0≤η≤1 separately.

Before calculating the fraction of the light that passes through the
first (left) lenslet, which then passes through the corresponding
(right) lenslet, we briefly discuss what we expect to happen for
different values of the angle of incidence.
αc-2αc-3(b)
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Fig. 3. (a) Geometry of and (b) critical beam paths through confocal lenslet arrays for the p
lenslets from the left, inclined by an angle α with respect to the common optical axis. The
marked by solid red lines. The half-width of the lenslets is r. Counter-clockwise angles are p
areas for beams incident at critical angles. The part of the beam that passes through correspo
part of the beam that enters through the left lenslet and exits through the lenslet above (below
dots).
Key throughout is the dependence of the light in the plane of the
right lenslet array, described by the parameters a and b, on the angle
of incidence, α (see Figs. 3(a) and 4(a)). To derive this relationship, we
start with the equations

tan γ =
r + x
f1

=
a−x
f2

; tan β =
r−x
f1

=
b + x
f2

; ð5Þ

and so

a =
rf2 + x f1 + f2ð Þ

f1
; ð6Þ

b =
rf2−x f1 + f2ð Þ

f1
: ð7Þ

With x= f1tan α, these expressions become the sought-for equa-
tions describing the dependence of a and b on α:

a = rf2 = f1 + f1 + f2ð Þtan α; ð8Þ

b = rf2 = f1− f1 + f2ð Þtan α: ð9Þ

For normal incidence (α=0°), a and b take on the value
a=b=rf2/f1. Specifically, |a|, |b|≤r, which means that all of the light
that enters through the left lenslet exits again through the cor-
responding right lenslet.

As α is increased to a “critical angle” αc2, the upper edge of the
beam hits the upper edge of the right lenslet. In Ref. [16], αc2 is called
the “second critical angle of incidence”; we will encounter the other
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nding lenslets is filled in solid light red and its edges are marked by solid red lines. The
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Fig. 4. (a) Geometry of and (b) critical beam paths through confocal lenslet arrays in the parameter range 0≤η≤1. See the caption of Fig. 3 for further details.

5011T. Maceina et al. / Optics Communications 284 (2011) 5008–5019
critical angles in due course. For−1≤η≤0, αc2 is reached when a=r
(see Fig. 3(b)). Substitution into Eq. (8) gives

tan αc2 =
r f1−f2ð Þ
f1 f1 + f2ð Þ =

1
2N

1 + η
1−η

η≤0ð Þ: ð10Þ

For 0≤η≤1, αc2 is reached when b=−r (see Fig. 4(b)); sub-
stitution into Eq. (9) gives

tan αc2 =
r
f1

=
1
2N

η≥0ð Þ: ð11Þ

Any further increase in α means that part of the beam misses the
corresponding right lenslet. Another critical angle, αc3 (the third cri-
tical angle of incidence, according to the definition in Ref. [16]), is
reached when the lower edge of the beam passes through the upper
edge of the right lenslet. For −1≤η≤0, this happens when b=− r
(see Fig. 3(b)); substitution into Eq. (9) yields

tan αc3 =
r f2 = f1 + 1ð Þ

f1 + f2
=

r
f1

=
1
2N

η≤0ð Þ: ð12Þ

For 0≤η≤1, it happens when a=r (see Fig. 4(b)); substitution
into Eq. (8) gives

tan αc3 =
r f1−f2ð Þ
f1 f1 + f2ð Þ =

1
2N

1 + η
1−η

η≥0ð Þ: ð13Þ

For any value α≥αc3, none of the beam passes through the cor-
responding right lenslet.

It is perhaps worth noting that the expressions for αc3 for
−1≤η≤0 (Eq. (12)) and for αc2 for 0≤η≤1 (Eq. (11)) are identical,
and so are the expressions for αc2 for−1≤η≤0 (Eq. (10)) and for αc3

for 0≤η≤1 (Eq. (13)).
So far we have only discussed positive angles of incidence. What

happens for negative values of α? For symmetry reasons, the same as
what happens for positive values of αwith the samemodulus. Starting
again from normal incidence and this time decreasing the value of α,
the beam will again start to be clipped as another critical angle, αc−2,
is reached. If α is decreased further, the fraction of the beam inter-
secting the corresponding right lenslet decreases until it reaches zero,
at the critical angle αc−3. From the symmetry, and from Figs. 3(b) and
4(b), it can be seen that

αc−2 = −αc2
;αc−3 = −αc3

: ð14Þ

Now we calculate the power fraction of a uniform plane-wave
beam of light that passes through corresponding lenslets. As before,
the beam is incident from the left; we consider the part of the beam
that has passed through a specific lenslet in the left lenslet array.
In the plane of the corresponding right lenslet, the height of the beam
is |a+b|. In the diagrams shown in Figs. 3(a) and 4(a), this is also the
part of the corresponding right lenslet that is illuminated by this
beam. The reason is that those diagrams are drawn for cases in which
all light that passes through the left lenslet also passes through the
right lenslet, that is, an angle of incidence α between αc−2 and αc2.
For angles of incidence outside this range, the height of the second
lenslet that is illuminated by the beam is less than the height of the
beam, as some of the beam now misses the second lenslet. Generally,
we can calculate the fraction ζ of power that undergoes standard
refraction as the fraction of the height of the right lenslet that is
illuminated by the beam and the height of the beam in the plane of the
right lenslet, |a+b|.

For angles of incidence between 0∘ and the second critical angle,
αc2, the fraction ζ is simply 1; above the third critical angle, αc3, ζ=0.
For angles of incidence between αc2 and αc3, the top of the beam in the
plane of the right lenslet is above the top edge of that right lenslet. The
height of the beam illuminating the right lenslet is therefore r+b in
the case −1≤η≤0 and r-a in the case 0≤η≤1, and so

ζ =
r + b
a + b

=
η−1−2N η−1ð Þtanα

2η
�1≤η≤0ð Þ; ð15Þ

ζ =
r−a

−a−b
=

η + 1 + 2N η−1ð Þtan α
2η

0≤η≤1ð Þ: ð16Þ
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For negative angles of incidence, the fraction is the same as for a
positive angle with the same modulus. These results can be sum-
marised as follows:

ζ =

1 if jα j≤αc2
;

η + sgn ηð Þ 1 + 2N η−1ð Þtan jα j½ �
2η

if αc2≤ jα j≤αc3
;

0 if αc3≤ jα j ;

8>>>><
>>>>:

ð17Þ

where sgn(x) is the signum function, i.e

sgn xð Þ =
+ 1 if x > 0;
0 if x = 0;
−1 if x < 0:

8<
: ð18Þ
N
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Fig. 6. Dependence of ζ(α) on N, plotted for different values of η in the range −1≤
Fig. 5 shows an example plot of ζ as a function of the angle of
incidence, α. The role of the critical angles αc2 and αc3 as can clearly be
seen: ζ=1 for −αc2≤α≤αc2, and ζ=0 for |α|≥αc3.

Fig. 6 shows a number of such curves, plotted for different values N
and η. It is possible to observe compatibility with a number of trends
in those graphs, for example the monotonic growth of αc2 between
η=−1, where αc2=0, and η=0,where αc2=arctan(1/2N) while αc3

stays constant for any fixed value of N; the equality of αc2 and αc3 at
η=0; and the monotonic growth of αc3 between η=0 and η=1
while αc2 remains constant.

Another – not particularly surprising, but nevertheless impor-
tant – trend that can be seen in Fig. 6 is the narrowing of the ζ(α)
curve as |N| increases. This trend is easily explained: an increase in
the modulus of the f-number corresponds to a decrease in the
aperture width of all lenslets, and therefore a decrease in r, which
makes it easier for light that has passed through one lenslet to miss
the corresponding lenslet. This corresponds to a decrease in the
field of view, which we take to be the range of angles between
−αc3 and +αc3, i.e. the angle range for which standard refraction
occurs.
3.2. The case |η|≥1

Next we consider the case |η|≥1, i.e. |f1|≤ f2, which we treat
analogously to the previous case (Section 3.1). Condition (4) is
now satisfied provided that N≤0 if η≥1, or provided that N≥0 if
η≤−1.

The key quantities this time are a′ and b′, which describe the area
of the left lenslet through which a light beam with angle of incidence
α can enter for all of it to exit through the corresponding right lenslet
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αc3αc1αc-1αc-3(b)

(a)

α

fo
ca

l
pl

an
e

γ‘a‘
r

β‘

f1

x

f2

b‘

Fig. 7. (a) Geometry of and (b) critical beam paths through confocal lenslet arrays in the parameter range η≤−1. See the caption of Fig. 3 for further details.

5013T. Maceina et al. / Optics Communications 284 (2011) 5008–5019
(Figs. 7(a) and 8(a)). We derive expressions for these quantities from
the equations

tan γ′ =
b′ + x

f1
=

r−x
f2

; tan β′ =
a′−x
f1

=
r + x
f2

; ð19Þ

and with x= f1tanα (as before) we find

a′ =
f1
f2

r + f1 + f2ð Þ tanα½ �; ð20Þ
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Fig. 8. (a) Geometry of and (b) critical beam paths through confocal lenslet arra
b′ =
f1
f2

r− f1 + f2ð Þ tanα½ �: ð21Þ

Starting from normal incidence (α=0°) and increasing the angle
of incidence, what happens qualitatively? For normal incidence, a′=
b′= rf1/f2. In analogy to the previous case, |a′|, |b′|b r, but unlike in the
previous case this now implies that not all the light that enters through
the left lenslet exits through the corresponding right lenslet: only the
light rays that enter the left lenslet in the shaded region (which, for
α=0∘, is centred on the optical axis) exit through the corresponding
αc3αc1

γ‘

‘

ys in the parameter range η≥1. See the caption of Fig. 3 for further details.
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right lenslet. As α is increased, the part of the left lenslet through which
light rays have to enter to then exit through the corresponding lenslet
moves upwards, but does not change in size until one of its edges (the
upper side in Fig. 7(b), the lower side in Fig. 8(b)) reaches the edge of
the lenslet. The angle for which it happens is defined as the first critical
angle of incidence, αc1 [16]. If η≤−1, it can be calculated from the
condition a′=r (see Fig. 7(b)), giving

tan αc1 = − r
f1

f1−f2
f1 + f2

= − 1
2N

1 + η
1−η

η≤−1ð Þ: ð22Þ
N = -2

N
 =

 -0
.2

5
N

 =
 0

.2
5
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Fig. 10. Dependence of ζ(α) on N, plotted for different values of η in the range |η|≥1. The cur
for η≥1, in steps of 0.25 in both cases.
If η≥1, the relevant condition is a′=−r (see Fig. 8(b)), and so

tan αc1 = − r
f1

= − 1
2N

η≥1ð Þ: ð23Þ

As the angle of incidence is increased further, the part of the lenslet
through which light rays have to enter to exit through the cor-
responding lenslet decreases in size until its size is zero. If η≤−1, this
happens when b′=−r (see Fig. 7(b)), i.e. when

tan αc3 =
r
f1

=
1
2N

η≤−1ð Þ; ð24Þ

if η≥1, the condition is b′= r (see Fig. 8(b)), and so

tan αc3 =
r
f1

f1−f2
f1 + f2

=
1
2N

1 + η
1−η

η≥1ð Þ: ð25Þ

As before, negative values of α behave like their positive counter-
parts with the samemodulus. The relevant critical angles (see Figs. 7(b)
and 8(b)) are

αc−1 = −αc1
;αc−3 = −αc3

: ð26Þ

The power fraction of a uniform plane-wave beam that passes
through corresponding lenslets is now the width of the left lenslet
through which the beam passes, divided by the width of the lenslet.
For αc−1≤α≤αc1, this fraction is |a′+b′|/(2r)=|f1/f2|=|η|−1; for
N = -2
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α≤αc−3 and α≥αc3, it is zero. In between, i.e. for αc−3≤α≤αc−1

and αc1≤α≤αc3, it is given by

ζ =
f2 + f1
2f2

− f1 f1 + f2ð Þ
2rf2

tan jαj = η−1−N η−1ð Þ tanα
2η

η≤−1ð Þ;

ð27Þ

ζ =
f2−f1
2f2

+
f1 f1 + f2ð Þ

2rf2
tan jαj = η + 1 + N η−1ð Þ tanα

2η
η≥1ð Þ:

ð28Þ

In summary,

ζ =

jη j−1 if jα j≤αc1

η + sgn ηð Þ 1 + N η−1ð Þtan jα j½ �
2η

ifαc1≤ jα j≤αc3

0 ifαc3≤ jα j :

8>>>><
>>>>:

ð29Þ

Fig. 9 shows an example of a plot of ζ as a function of α, calculated
according to Eq. (29). The main difference with the corresponding
plot for the case |η|≤1 (Fig. 5) is that the maximum value ζ reaches is
not 1, but 1/|η|. As before, the role of the critical angles, this time αc1

and αc3 is apparent in the graph.
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Fig. 11. Law of non-standard refraction, Eq. (30), plotted for various values of η. The curves a
exits through non-corresponding lenslets shifted by m lenslets, i.e. that between the critica
Fig. 10 shows a number of such curves for different values N and η,
grouped together by their value of η. Obviously, the maximum value
of these curves is the same for values of η with opposite signs, and it
approaches the value 1 as η approaches ±1. The decrease in the field
of view, i.e. the range of angles between −αc3 and +αc3, with
increasing |N| is again apparent.

4. Light undergoing non-standard refraction

We now turn our attention to non-standard refraction [16]. Non-
standard refraction is defined as the direction change of light that
passes through non-corresponding lenslets, i.e. lenslets that do not
share an optical axis.

First we derive the law of refraction for non-standard refraction.
We can do this by treating it a special case of refraction due to
generalised CLAs [7]: arrays of lenslets in which the telescopes formed
by pairs of corresponding lenslets have been modified, but always
such that they continue to share a common focal plane. Suitable
modifications can include, for example, a sideways translation of one
of the lenslets. In Ref. [7], such a translation is defined in terms of a
dimensionless parameter δ=d/f1, where d is the translation distance.
If the sideways translation is the only generalisation of standard CLAs
(Fig. 1), then the law of refraction describing transmission through
the CLAs is tanα=δ+ηtanβ. As expected, for δ=0, this equation
becomes the law of refraction for standard refraction, Eq. (1). As a
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re shown only in the range of incidence angles for which a non-zero fraction of the light
l angles αm

c−3 and αm
c3. In all cases, N=1; for plots of the dependence on N, see Fig. 12.
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non-corresponding lenslet can simply be seen as the corresponding
lenslet, but translated sideways through a distance d=m2r, where m
is an integer, non-standard refraction can be seen as a special case of
refractionwith generalised CLAs with δ=m2r/f1=m/N (and θ=0, i.e.
no rotation). Therefore the law of refraction for non-standard
refraction through non-corresponding lenslets is

tan α =
m
N

+ η tan β: ð30Þ

Figs. 11 and 12 showgraphs of the angle of refraction,β, as a function
of the angle of incidence, α, for a few combinations of η and m/N.

Next, we derive the power fraction of incident plane-wave light
that undergoes non-standard refraction with a given value of m. We
refer to Fig. 13, which sketches the geometry of light undergoing non-
standard refraction with n=1 in the four cases (−1≤η≤0, 0≤η≤1,
η≤−1, and η≥1) to which Figs. 3, 4, 7 and 8 refer. Like in the
calculation of the power fraction that undergoes standard refraction
(Section 3), the quantities a, b, a′ and b′ (see Fig. 13) are key to our
current calculation. a and b are still given by Eqs. (8), (9), but a′ and b′
are now dependent on m, which we indicate with a subscript m:

a′m =
f1
f2

1−2mð Þr + f1 + f2ð Þ tanα½ �; ð31Þ

b′m =
f1
f2

1 + 2mð Þr− f1 + f2ð Þ tan α½ �: ð32Þ

For m=0, these expressions reduce to the ones we used in
Section 3.2, Eqs. (20) and (21), as one would expect. The calculations
in this section generally follow the same outlines as those in
Sections 3.1 and 3.2, so we keep them brief.

The diagrams in Fig. 13 are drawn for values of the angle of
incidence, α, that have been chosen such that the maximum fraction
of the incident light undergoes non-standard refraction with m=1.
For |η|≤1, this power fraction is 1; for |η|≥1, it is 1/|η|, as before.
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Fig. 12. Law of non-standard refraction, Eq. (30), plotted for η=−1 and different values of
As α is increased, the transmitted power fraction stays constant
until the beam hits the top edge of the right lenslet (for |η|≤1) or the
left lenslet (for |η|≥1). This happens when a=(2m+1)r if
−1≤η≤0; when b=− (2m+1)r if 0≤η≤1; when am′= r if
η≤−1; and when am′=− r if η≥1. We take these conditions to
define critical angles; for |η|≤1,

tan αc2;m =

1
2N

2m + 1 + η
1−η

if −1≤η≤0;

1
2N

2m + 1−η
1−η

if 0≤η≤1;

8>>><
>>>:

ð33Þ

for |η|≥1,

tan αc1;m =

1
2N

2m−1−η
1−η

if η≤−1;

1
2N

2m−1 + η
1−η

if η≥1:

8>>><
>>>:

ð34Þ

As α is increased further, the power fraction reduces until it
reaches zero, when b=−(2m+1)r if −1≤η≤0; a=(2m+1)r if
0≤η≤1; bm′ =− r if η≤−1; bm′ =r if η≥1. These again define critical
angles:

tan αc3;m =

1
2N

2m + 1−η
1−η

if −1≤η≤0;

1
2N

2m + 1 + η
1−η

if 0≤η≤1;

1
2N

2m + 1−η
1−η

if η≤−1;

1
2N

2m + 1 + η
1−η

if η≥1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð35Þ
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Starting again from incidence angles for which the maximum
fraction of the incident light undergoes non-standard refraction
(angles such as the ones for which Fig. 13 is drawn), we now briefly
consider what happens when the angle of incidence is decreased.

The power fraction stays constant until the beam hits the bottom
edge of the right lenslet (for |η|≤1; see Figs. 3(b) and 4(b)) or the top
edge of the left lenslet (for |η|≥1; see Figs. 7(b) and 8(b)). This happens
when b=−(2m−1)r if −1≤η≤0; when a=(2m−1)r if 0≤η≤1;
when bm′ =r if η≤−1; andwhen bm′ =−r if η≥1. For |η|≤1,we call the
angle for which this happens αc−2, m, and calculate it to be

αc−2;m

1
2N

2m−1−η
1−η

if −1≤η≤0;

1
2N

2m−1 + η
1−η

if 0≤η≤1:

8>>><
>>>:

ð36Þ

As 2m−1=2(m−1)+1, αc−2, m=αc3, m−1 in both cases. For
|η|≥1, we call the relevant angle αc−1, m, and we find that

αc−1;m =

1
2N

2m + 1 + η
1−η

if η≤−1;

1
2N

2m + 1−η
1−η

if η≥1:

8>>><
>>>:

ð37Þ
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Fig. 13. Geometry of light undergoing non-standard refraction. In the examples sketched her
same optical axis. Instead, it exits through the mth lenslet above the corresponding lenslet.
As the angle of incidence is decreased further, the power fraction
decreases until it reaches zero, when a=(2m−1)r for −1≤η≤0;
b=−(2m−1)r for 0≤η≤1; am′ =− r for η≤−1; am′ =r for η≥1. The
corresponding critical angle, αc−3, m, is then

αc−3;m =

1
2N

2m−1 + η
1−η

if −1≤η≤0;

1
2N

2m−1−η
1−η

if 0≤η≤1;

1
2N

2m−1 + η
1−η

if η≤−1;

1
2N

2m−1−η
1−η

if η≥1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð38Þ

Finally, we are ready to calculate the power fraction of a uniform
plane wave incident at an angle α that enters through a lenslet in the
left array and exits through the lenslet in the right array that is m
lenslets above that corresponding to the entrance lenslet. We call this
power fraction ζm.

We start with the easy cases. For angles of incidence, α, below αm
c−3

and above αm
c3, ζm=0 irrespective of the value of η. If |η|≤1, then ζm=1

for αm
c−2≤α≤αm

c2; if |η|≥1, then ζm=1/|η| for αm
c−1≤α≤αm

c1.
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The remaining cases are slightly more complicated, and there
are a number of them. They can be calculated from the following
expressions.

1. For −1≤η≤0, ζm=[(2m+1)r+b]/(a+b) if αm
c2≤α≤αm

c3 and
ζm=[−(2m−1)r+a]/(a+b) if αm

c−3≤α≤αm
c−2;
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Fig. 15. Plots of the power fraction ζm (Eqs. (39) and (40)) as a function of the angle of incide
(dotted lines) are shown. All graphs were calculated for η=−0.5.
2. for 0≤η≤1, ζm=[(2m+1)r−a]/(−a−b) if αm
c2≤α≤αm

c3 and
ζm=[−(2m−1)r−b]/(−a−b) if αm

c−3≤α≤αm
c−2;

3. for η≤−1, ζm=[r+bm′ ]/(2r) if αm
c2≤α≤αm

c3 and ζm=[r+am′]/
(2r) if αm

c−3≤α≤αm
c−2;

4. and for η≥1, ζm=[r−bm′ ]/(2r) if αm
c2≤α≤αm

c3 and ζm=[r−am′]/
(2r) if αm
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The results can be summarised as follows. For −1≤η≤1,

ζm =

0 if α≤αc−3
m ;

η + sgn ηð Þ −1 + 2m−2 1−ηð ÞNtan α½ �
2η

if αc−3
m ≤α≤αc−2

m ;

1 if αc−2
m ≤α≤αc2

m ;

η + sgn ηð Þ −1−2m + 2 1−ηð ÞNtan α½ �
2η

if αc2
m ≤α≤αc3

m ;

0 if αc3
m ≤α;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð39Þ

for |η|≥1,

ζm =

0 if α≤αc−3
m ;

η + sgn ηð Þ 1−2m + 2 1−ηð ÞNtanα½ �
2η

if αc−3
m ≤α≤αc−1

m ;

1
jη j if αc−1

m ≤α≤αc1
m ;

η + sgn ηð Þ 1 + 2m−2 1−ηð ÞNtanα½ �
2η

if αc1
m ≤α≤αc3

m ;

0 if αc3
m ≤α:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð40Þ

Fig. 14 shows plots of ζm as a function of α for various different
values of η. A number of things can be seen in those graphs. Perhaps
most notably the curves suggest that the values of ζ for all values ofm
add up to one for all values of η and all angles of incidence α between
−90∘ and +90∘, and indeed we confirmed this numerically for a
number of cases. It can also be seen that the peak in the ζm curve
moves to greater values of α as m is increased (provided the other
parameters are unchanged).

All the curves in Fig. 14 were plotted for |N|=1. Fig. 15 shows how
the ζm curves change as N only is varied. As |N| is increased, the peaks
become narrower, and the peaks corresponding to greater values of
|m| move inwards.

5. Similarities with multiple refraction and reflection of cold
atoms in light fields

It is interesting to note that the law of refraction for light passing
through non-corresponding lenslets, Eq. (30), allows a link to recent
work on cold atoms. This works as follows.

With a suitable choice of light fields, the centre-of-mass motion of
colds atoms can be described by the non-Abelian vector potential
term proportional to the spin-1/2 operator [17–20]. The atomic
motion is then characterised by two dispersion branches containing
the areas of both positive and negative slopes. In the low-energy part
of the spectrum for each frequency, there are two wave vectors
corresponding to the positive and negative group velocity, respec-
tively. As a consequence, the incident atomic wave may split into two
reflected waves at a barrier, one that undergoes specular reflection,
and an additional wave that undergoes non-specular reflection [20].
Note that a similar kind of double reflection can occur also for
electrons affected by the Rashba spin-orbit coupling [21,22]. On the
other hand, the transmitted wave experiences the negative refraction
for small angles of incidence [19], whereas for large angles of
incidence an additional positive refraction takes place [23]. The
former negative refraction is similar to that taking place by passing
the light through the corresponding lenses, whereas the latter
ordinary refraction corresponds to the light passing through non-
corresponding lenslets.
6. Conclusions

We have calculated the fraction of optical power that undergoes
standard refraction on transmission through CLAs. The calculation
requires different cases to be treated separately, making it slightly
cumbersome. The fruit of this drawn-out labour is a number of
equations describing the transmission of optical power through CLAs,
which can be used for assessing the suitability of CLAs for potential
applications.

But the fraction of power transmitted through CLAs is only one of a
number of considerations in potential applications. An example of an
additional consideration is the accuracy with which CLAs redirect
light rays, which is determined by how close the effect of each
individual lenslet is to that of an ideal thin lens. As lenslet arrays are
usually arrays of very basic lenses (typically bumps of glass or plastic),
they work best for rays passing close to the centre, i.e. for high f-
number. Our results show (not very surprisingly) that a CLA's field of
view is lower for higher f-numbers, and so a compromise needs to be
found that suits a particular application. Despite these complications,
we believe that our results will be the key to investigating the
suitability of CLAs for different potential applications, specifically solar
concentrators.
References

[1] A.C. Hamilton, J. Courtial, New J. Phys. 11 (2009) 013042.
[2] A.C. Hamilton, B. Sundar, J. Nelson, J. Courtial, J. Opt. A: Pure Appl. Opt. 11 (2009)

085705.
[3] A.C. Hamilton, B. Sundar, J. Courtial, J. Opt. 12 (2010) 095101.
[4] A.C. Hamilton, J. Courtial, J. Opt. A: Pure Appl. Opt. 10 (2008) 125302.
[5] J. Courtial, J. Nelson, New J. Phys. 10 (2008) 023028.
[6] J. Courtial, New J. Phys. 10 (2008) 083033.
[7] A.C. Hamilton, J. Courtial, J. Opt. A: Pure Appl. Opt. 11 (2009) 065502.
[8] J. Courtial, A. C. Hamilton, M. Šarbort, and T. Tyc, “Natural and unnatural

refraction,” in preparation (2011).
[9] T. Tyc, A. C. Hamilton, and J. Courtial, “METATOYs and optical vortices,” in

preparation (2011)
[10] R.F. Stevens, T.G. Harvey, J. Opt. A: Pure Appl. Opt. 4 (2002) S17.
[11] V.C. Coffey, , OPN, , 2011, p. 22.
[12] K. Tvingstedt, S.D. Zilio, O. Inganäs, M. Tormen, Opt. Express 16 (2008) 21608.
[13] J. Courtial, B.C. Kirkpatrick, E. Logean, T. Scharf, Opt. Lett. 35 (2010) 4060.
[14] V.G. Veselago, Sov. Phys. Usp. 10 (1968) 509.
[15] J.B. Pendry, Phys. Rev. Lett. 85 (2000) 3966.
[16] J. Courtial, Opt. Commun. 282 (2009) 2634.
[17] T.D. Stanescu, C. Zhang, V. Galitski, Phys. Rev. Lett. 99 (2007) 110403.
[18] J.Y. Vaishnav, C.W. Clark, Phys. Rev. Lett. 100 (2008) 153002.
[19] G. Juzeliūnas, J. Ruseckas, M. Lindberg, L. Santos, P. Öhberg, Phys. Rev. A 77 (R)

(2008) 011802.
[20] G. Juzeliūnas, J. Ruseckas, A. Jacob, L. Santos, P. Öhberg, Phys. Rev. Lett. 100 (2008)

200405.
[21] A. Dargys, Superlattice Microstruct. 48 (2010) 221.
[22] V. Teodorescu, R. Winkler, Phys. Rev. B 80 (R) (2009) 041311.
[23] G. Juzeliūnas, J. Ruseckas, J. Dalibard, Phys. Rev. A 81 (2010) 053403.


	Quantifying metarefraction with confocal lenslet arrays
	1. Introduction
	2. Confocal lenslet arrays (CLAs)
	3. Light undergoing standard refraction
	3.1. The case |η|≤1
	3.2. The case |η|≥1

	4. Light undergoing non-standard refraction
	5. Similarities with multiple refraction and reflection of cold atoms in light fields
	6. Conclusions
	References


