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1. INTRODUCTION

Atomic Bose–Einstein condensates (BECs) [1] have
proven to be a remarkable medium for studying phe-
nomena in areas ranging from fundamental atomic
physics to cosmological aspects [2]. Recently, several
experimental groups have also succeeded in trapping
and cooling atomic fermions [3, 4] well below the
Fermi temperature. Fermi systems are well known from
the study of electron properties in materials. On the
other hand, a BEC often acts like the real-life model
concept encountered in standard textbooks. A good
example is the BEC in optical lattices, where atomic
physics meets solid state physics.

The concept of a BEC as a superfluid makes it
tempting to try to find analogies between these quan-
tum gases and the properties of superconductors. One
example is the Meissner effect [5] in superconductors,
where the magnetic field penetrates the sample and
induces vortices. At first glance, it is certainly not clear
how to obtain a similar situation in a BEC since the
Meissner effect relies on the properties of the vector
potential that describes the magnetic field.

A BEC consists of neutral atoms and is therefore not
affected by the magnetic field as in a superconductor. It
is, however, possible to have a vector potential–like
term in a BEC or a degenerate Fermi gas if the atomic
gases interact with control and probe beams of light in
an electromagnetically induced transparency (EIT)
configuration [6]. Application of the control beam is
known to lead to a dramatic reduction of the group
velocity of the probe beam, which can be as low as
meters per second [7–9]. The coupling between the
slow light and the atoms can give rise to some remark-
able effects, such as dragging of the light [10–12] and
complete coherent freezing of the pulse [13–15]. In a
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similar manner, the control and probe beams should
affect the atomic motion.

In this paper, we consider the influence of the con-
trol and probe beams of light on the mechanical prop-
erties of atomic BECs or degenerate Fermi gases of
atoms. The theory is fully microscopic and is based on
the explicit analysis of the quantum dynamics of ultra-
cold atoms coupled to two beams of light. We show that
the application of a probe beam with an orbital angular
momentum [16, 17] leads to an effective magnetic field
that acts on the electrically neutral atoms. This opens
up the possibility of studying magnetic phenomena
well known from solid state and condensed matter
physics with all the benefits given by trapped atoms,
where a range of experimental parameters such as
atom–atom interactions, particle numbers, the shape of
the trapping potential, etc., can easily be manipulated.
As an example, we show how an optical analogue of the
Meissner effect comes about in atomic BECs.

2. FORMULATION

Consider an ensemble of cold atoms characterized
by two hyperfine ground levels 1 and 2, as well as an
electronic excited level 3 (Fig. 1). Initially, the atoms
occupy the lowest level 1. We shall describe the atoms
in terms of the field operators 
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) representing the
second-quantized wave function for the translational
motion of atoms in the 
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th electronic state, with 
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) can obey either Bose–Einstein or Fermi–
Dirac commutation relationships depending on the type
of atoms involved. The atoms interact with two laser
beams: A control laser drives the transition 
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whereas a probe field is coupled with the transition
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 (Fig. 1). In such a situation, the propagation
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of a weak probe field can be slowed down [7–9] by
means of EIT [18–21], a phenomenon based on quan-
tum interference between the control and the probe
fields.

The control laser has a frequency 

 

ω

 

c

 

, a wave vector

 

k

 

c

 

, and a Rabi frequency

(1)

where  is a slowly varying amplitude. The probe
field, on the other hand, is characterized by a central
frequency 

 

ω

 

p

 

 = 

 

ck

 

p

 

, a wave vector 

 

k

 

p

 

 = , and a Rabi
frequency

(2)

where  is a slowly varying amplitude and 

 

φ

 

 is the
azimuthal angle. In writing Eq. (2), we have allowed
the probe photons to have an orbital angular momentum

 

�

 

l

 

 along the propagation axis 

 

z

 

 [16, 17].
Let us introduce the slowly varying atomic field

operators 
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. Adopting the rotating wave approxi-
mation, one can write the following equations of
motion for the atomic field operators:
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the energies of the detuning from the two- and single-
photon resonances, �ωj being the electronic energy of
the atomic level j.

Equations of motion (3)–(5) do not accommodate
collisions between the ground state atoms. This is legit-
imate for the degenerate Fermi gas, in which s-wave
scattering is forbidden and only weak p-wave scattering
is present [3, 22–24]. If the atoms in ground electronic
state 1 form a BEC, the atomic collisions can be
included replacing Eq. (3) by the following mean field
equation of the condensate wave function Φ1:

(6)

where g1 = 4π�2a1/m and a1 is the s-wave scattering
length for the atoms in electronic state 1.

3. ADIABATIC APPROXIMATION

Suppose that the two-photon detuning �21 is suffi-
ciently small. Neglecting the terms with Φ3, ∇2Φ3, and

 in Eq. (4), one arrives at the adiabatic condition
[18–21] that relates Φ2 to Φ1:

(7)

where ζ ≡ Ωp/Ωc. Condition (7) holds if  +

 – �31 –  � �|ΩpΦ1 |. This can by

achieved if the spatial variation of the frequencies of the
two-photon recoil and the two-photon Doppler shift is
less than the Rabi frequency |Ωc |, as one can see from
subsequent equation (8).

Condition (7) implies that the control and probe
beams have driven the atoms to the dark state |1〉 – ζ|2〉,
representing a special superposition of the two hyper-
fine ground states [18–21]. If the atoms are in the dark
state, the resonant control and probe beams cannot pop-
ulate upper atomic level 3 since the two beams contrib-
ute destructively to the absorption process due to quan-
tum interference [18–21].

Equation (7) shows that the orbital angular momen-
tum �l of the probe field Ωp ~ eilφ is transferred to the
orbital angular momentum of the center of mass motion
for atoms occupying electronic level 2. This goes along
with a general rule saying that the exchange of the
orbital angular momentum in the electric dipole
approximation occurs exclusively between the light and
the atomic center of mass motion [25]. The rule has
been implicitly assumed in the initial equations of
motion (3)–(5) and (6). These equations contain no
contributions due to exchange of the orbital angular
momentum between the internal atomic states and the
center of mass motion.
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Fig. 1. (a) The level scheme for the EIT involving the probe
beam Ωp and control beam Ωc. (b) Schematic representation
of the experimental setup with the two light beams incident
on the cloud of atoms. The probe field is of the form Ωp ~ eilφ,
so the probe photons are allowed to have an orbital angular
momentum �l along the propagation axis z.
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4. EFFECTIVE EQUATION 
OF MOTION FOR Φ1

Consider now the influence of the control and probe
beams on the dynamics of the ground state atoms.
Using Eqs. (5) and (7), one has

(8)

Relationships (3) and (8) provide the following closed
equation for the field operator Φ1:

(9)

where

(10)

and

(11)

are the effective vector and trapping potentials and the

dimensionless function ζ = eiS /  is character-
ized by a phase S = (kp – kc)r + lφ. Here �ω21 = �21 +
V2(r) – V1(r) is the modified energy of the two-photon
detuning, which includes the difference in trapping
potentials. In contrast to our previous paper [6], the
ratio |ζ |2 ≡ |Ωp/Ωc |2 can be arbitrarily large in Eqs. (9)–
(11). In other words, the intensity of the probe beam is
not necessarily smaller than that of the control beam.

It is instructive to note that the vector potential Aeff
describing an effective dynamics of atoms in electronic
state 1 is generally non-Hermitian. This is because the
probe and control beams reversibly transfer some
atomic population from level 1 to level 2 by means of
the two-photon Raman transition, as one can see from
the adiabatic condition given by Eq. (7). Therefore, the
non-Hermitian Aeff is an operator of an open subsystem.
The Hermitian contribution to Aeff is due to the changes
in the phase S, the non-Hermitian one being due to the
changes in the amplitude |ζ| ≡ |Ωp/Ωc |. The non-Hermi-
tian part of Aeff can be eliminated by a pseudogauge
transformation

(12)

It is noteworthy that transformation (12) is valid for
arbitrary values of |ζ |2; i.e., the parameter |ζ |2 is not
necessarily small. Note also that both the probe and the
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control fields (Ωp and Ωc) are considered to be incident
quantities not affected by the induced motion of the
ground state fermions. If |ζ |2 � 1, the probe field Ωp

experiences slow propagation at a group velocity vg ~
|Ωc |2 [18–21] in the z direction.

In the case of a BEC, the collisions between the
ground state atoms can be included replacing Eq. (3) by
Eq. (6). In such a situation, effective equation of motion
(9) is modified,

(13)

with g = g1/(1 + |ζ |2), where Aeff and Veff are the same
as in Eqs. (10) and (11).

The experimental situation is schematically
described in Fig. 1, where the incoming probe beam is
of the form Ωp ~ eilφ. In such a situation, we can create
an effective vector potential through the phase S ≡ lφ of
the incoming probe beam. With vector potential (10),
we can obtain an effective magnetic field strength

(14)

which is proportional to the orbital angular momentum
�l. The presence of an effective magnetic field will have
some important consequences. We are now in a position
to study phenomena using ultracold neutral atomic
gases, which have previously only been considered for
electrons and charged bosons. One example is the de
Haas–van Alphen effect, considered previously [6]. If
we trap atomic fermions and apply an effective mag-
netic field, the thermodynamic potentials will oscillate
as a function of the magnetic field strength [6]. Another
example is an optical analogue of the Meissner effect
that could come about in atomic BECs by means of the
effective magnetic field, as we shall see next.

5. MEISSNER-LIKE EFFECTS
IN AN ATOMIC BEC

Consider a condensate trapped in a cylindrical con-
tainer with radius R. Such an external trap can by cre-
ated by, for instance, high-order Bessel beams [26, 27].
Suppose that |ζ |2 = |Ωp |2/ |Ωc |2 � 1 and that the intensity
of the control beam |Ωc |2 does not vary considerably
within the atomic cloud. If the control and probe beams
are copropagating and we choose the intensity of the
probe beam of the form |Ωp |2 ~ r2 in the transversal
plane, we obtain the following effective vector poten-
tial:

(15)

where α0 = |ζ |2R2/r2 is the small ratio (typically less
than 0.1) between the probe beam and the control beam
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at radius R of the cylinder in which the gas is contained.
It is interesting to note here that, with this choice of
light, effective vector potential (15) corresponds to a
constant magnetic field in the z direction:

(16)

The strength of the effective magnetic field is given by
the orbital angular momentum of the probe photons �l
and can be controlled by applying suitable phase and
intensity holograms [28]. It is relatively straightforward
to create and control high angular momenta of the order
of l � 1000 that consequently control the effective mag-
netic field.

With the effective vector potential given by Eq. (15),
we obtain the expression for the total energy,

(17)

(18)

with β = α0l/R2, where we have allowed for the possi-
bility of a vortex solution, Ψ ≡ Φ1 ~ eiνφ. Here, we have
in addition chosen the external potential such that
Veff(r) = 0. From Eq. (18), we see that the effective vec-
tor potential induces a harmonic potential with the
cyclotron frequency

(19)

which acts like a localization potential. The higher the
orbital angular momentum �l, the stronger the induced
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E Ψ[ ] r
1

2m
------- i�∇ Aeff+( )Ψ 2 1

2
---g Ψ 4

+d∫=

=  r
�

2

2m
------- ∂rΨ

2
d∫

+
�

2

2m
------- βr

ν
r
---– 

  2

Ψ 2 1
2
---g Ψ 4

+ ,

ω �
m
----α0l

1

R
2

------,=

cyclotron frequency. If we assume that R � ,

where µ is the chemical potential of the condensate, we
see that the total energy of the condensate with winding
number ν is of the form

(20)

(21)

where ξ =  is the condensate healing length, ρ0

is the atomic density in the center of the trap with no
vortex present, and γ is a numerical constant of the
order of unity [29]. If we neglect the size of the vortex
core, we obtain the critical angular momentum of the
light,

(22)

where the right-hand side comes from the fact that we
consider weak localization. In Fig. 2, we show the
phase diagram for vortices as a function of R and α0l.
The localization effect studied in the previous section
will eventually distort the phase front of the light due to
the change in the density of the condensate. One way to
avoid this is to choose a different effective vector poten-
tial of the form where the phase is still the same as pre-
viously but the intensity of the light is constant,

(23)

The corresponding total energy is then of the form

(24)

where the induced potential now is of a centrifugal
form. From energy functional (24), it is clear that the
energy will be minimized whenever

(25)

In other words, vortex solutions will be favored
whenever the angular momentum times the quantity α0
is an integer value. It is, however, important to remem-
ber that for ν > 1 the vortex is not stable and will break
up into vortices with unit winding numbers [30].

The creation of vortices by using a vector potential
very much resembles the Meissner effect in type II
superconductors. In a condensate, however, the concept
of a penetration depth is not relevant since in our case
the light by definition propagates through the conden-
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Fig. 2. The phase diagram for vortices in the condensate as
a function of the size R and the strength of the effective vec-
tor potential α0l. The two lines correspond to the two limits
in Eq. (22).



OPTICS AND SPECTROSCOPY      Vol. 99      No. 3      2005

CREATION OF AN EFFECTIVE MAGNETIC FIELD 361

sate. The analogy lies in the fact that vortices are cre-
ated at a critical value for the effective magnetic field.
This, admittedly, is of course also the same as inducing
vorticity in the system.

It is interesting to note that the technique presented
here can also be used where the condensate is trapped
in a toroidal external trap. A torus trap can be created
using Laguerre–Gauss beams [27] or magnetic traps
[31]. The vortex state would in this case correspond to
a persistent current with the phase Ψ ~ eipφ, where p is
an integer. The situation can effectively be reduced to a
one-dimensional problem if the confinement is suffi-
ciently strong, µ � �ωt where ωt is the radial trapping
frequency in the torus.

6. CONCLUSIONS

In this paper, we have shown how the probe beam of
light with an orbital angular momentum can produce an
effective magnetic field in a degenerate gas of electri-
cally neutral atoms (fermions or bosons) using EIT. We
have derived an effective equation of atomic motion
containing vector potential–type interaction in the case
where the ratio between the intensities of the probe and
control beams is not necessarily small. We have demon-
strated that the effective vector potential can lead to an
optical analogue of the Meissner effect in an atomic
BEC. Our theory can be applied to other intriguing phe-
nomena that intrinsically depend on the magnetic field.
For instance, the quantum Hall effect can now be stud-
ied using a cold gas of electrically neutral atomic fermi-
ons. In addition, if the collisional interaction between
the atoms is taken into account, we can study the mag-
netic properties of a superfluid atomic Fermi gas [32].
Recent advances in spatial light modulator technology
enable us to consider rather exotic light beams [33].
This will allow us to study the effect of different forms
of vector potentials in quantum gases. In particular, the
combined dynamical system of light and matter [34]
could give an important insight into gauge theories in
general.
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