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a b s t r a c t

The dynamics of the generalized CEV process dXt = aXn
t dt + bXm

t dWt(gCEV ) is due to
an interplay of two feedback mechanisms: State-to-Drift and State-to-Diffusion, whose
degrees are n and m respectively. We particularly show that the gCEV, in which both
feedback mechanisms are positive, i.e. n,m > 1, admits a stationary probability
distribution P provided that n < 2m − 1. In this case the stationary pdf asymptotically
decays as a power law P(x) ∼

1
xµ with tail exponent µ = 2m > 2. Furthermore the

power spectral density obeys S(f ) ∼
1
f β , where β = 2 −

1+ϵ
2(m−1) , ϵ > 0. The tail behavior

of the stationary pdf as well as of the power-spectral density thus are both independent
of the drift feedback degree n but governed by the diffusion feedback degree m. Bursting
behavior of the gCEV is investigated numerically. Burst intensity S and burst duration T are
shown to be related by S ∼ T 2.

© 2010 Elsevier B.V. All rights reserved.

The dynamics of the state Xt of a system which is open to a rapidly fluctuating environment can be described by the
non-linear stochastic differential equation

dXt = f (Xt)dt + g(Xt)dWt , (1)

Wt the standardWiener process, under the assumption that (1) noise enters linearly, and (2) theWhite Noise approximation
is valid, see Ref. [1]. The drift and the diffusion ‘coefficients’ depend on the recent state Xt and hence represent ‘State-to-Drift’
or ‘State-to-Diffusion’ feedbacks, respectively. The resulting dynamics, and consequently properties such as the stationary
pdf of the gCEV, the spectral density, and burst statistics, are shown to be due to the interplay between these two feedback
mechanisms.

The following (informal) argument shows that if both feedback mechanisms f (Xt) and g(Xt) have a particular functional
relation to each other, given by

f (Xt) = αg(Xt)g ′(Xt) (2)

then their interaction generates a power-law like stationary probability distribution – if it exists – in that

P(x) ∼
1

g(x)2(1−α)
. (3)

(Here, and in the following, the notation F(x) ∼ f (x) means that the function F(x) = f (x) for large x.) Note that
the proportionality factor α enters the coefficient of the power-law tail. The process considered in Ref. [2], dXt =

b2

m −

λ
2


X2m−1
t dt+bXm

t dWt , corresponds to g(X) = Xm
t and α = 1−

λ
2m so that the stationary pdf decays as a power-law

according to P(x) ∼
1
xλ .
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1. The generalized CEV process (gCEV)

In the following we consider a particular setting, which is that the drift and diffusion coefficients obey f (Xt) = aXn
t and

g(Xt) = bXm
t . In this case one obtains the Ito diffusion process with positive drift and diffusion parameters a, b given by

dXt = aXn
t dt + bXm

t dWt , n,m > 0. (4)

This process is a generalization of the Constant – Elasticity – of – Variance model, dXt = aXtdt + bXm
t dWt , which was

originally proposed by Cox, Ingersoll and Ross to describe the dynamics of interest rates in an equilibrium economy and
which plays an important role inMathematical Finance, see references below. The gCEV process, Eq. (4), describes dynamics
by the superposition of two different feedback scenarios: One is the State-to-Drift feedback incorporated in the deterministic
part of the gCEV

dXt

dt
= aXn

t , (5)

while the other one concerns State-to-Diffusion feedback due to

dXt = bXm
t dWt . (6)

In the following, we will focus on the case where both dynamical components exhibits positive feedback simultaneously, in
that we require

1 < n, m < ∞. (7)

In this case gCEV dynamics results from the interplay of two positive feedback scenarios, each of which generates self-
amplifiction, i.e. ‘explosive’ behavior in itself. This is easily seen in that the drift term with positive feedback gives rise to
a Finite-Time-Singularity, i.e. Xt → ∞ as t → tc , where tc =

1
n−1X

1−n
0 , while the solution on the finite interval [0, tc] is

Xt ∝
1

(tc−t)
1

n−1
. Positive feedback in the state-to-diffusion term also leads to bursting behavior, in that Xt can attain arbitrary

large values while it always remains finite. This follows from the fact that the solution of Eq. (6) is the inverse power of a
d-dimensional Bessel process Xt ∝

1

‖B‖

1
m−1
2

, where B is a d-dimensional Brownian motion, where d =
2m−1
m−1 > 2, for details

see Ref. [3]. Since therefore d(m) > 2, it follows from the transitivity of Bt , that Bt escapes to ∞ for t → ∞ slower than t
a.s., see Ref. [4], while the origin 0 is polar, i.e. it will not be touched by Bt . On the other hand Bt has a positive probability to
visit any finite ϵ-neighborhood of the origin before escaping. Consequently the dynamics exhibits arbitrary high but finite
excursions.

Hence, for n,m > 1, both singularities are entirely different: While positive feedback in the state-to-drift component
leads to a ‘real’ Finite-Time-Singularity in that Xt → ∞within [0, tc], Xt remains finite even if feedback in state-to-diffusion
is positive. Nonetheless, if both positive feedbacks play in concert, the process exhibits a fat-tailed stationary probability
distribution, provided that the State-to-Diffusion feedback is positive (m > 1) and strong enough with respect to the State-
to-Drift feedback, i.e.m > 1

2 (n+1). Bursting behavior is reflected in that the stationary pdf decays as a power law P(x) ∼
1
xµ

for large x, with an exponent obeying µ = 2m > 2. For large x, the tail exponent only depends on the state-to-diffusion
feedback parameterm, while the state-to-drift feedback parameter n determines the pdf only for small x.

2. Stationary pdf of a generalized CEV process

2.1. The CEV process

The standard CEV process is obtained from Eq. (4) for n = 1

dXt = aXtdt + bXm
t dWt , a, b > 0. (8)

A typical time series generated by the CEV process form =
3
2 is shown in Fig. 1. An extensive discussion of the CEV process

and its relation to other processes, including Bessel processes, can be found in Ref. [5,4].Whilemost prior research on the CEV
process has been restricted to the case 0 < m < 1, we instead focus on the case that state-to-diffusion is subject to positive
feedback m > 1. A detailed discussion of this process and the following theorem, as well its proof, can be found in Ref. [3].
As shown there, a CEV process with m > 1 is equivalent to a radial Ornstein–Uhlenbeck process for order ν(m) =

1
2(m−1)

and hence admits a closed form analytical solution given below:

Result 1 (Solution of the CEV Process for m > 1). The unique and strong solution of the CIR-CEV model, Eq. (8), with m > 1 is

X(t) = c(m)
1

‖M(t)‖1/(m−1)
2

, (9)
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Fig. 1. Time trail of the CEV process dX = aX
4
3
t + bX

3
2
t dWt with a = b = 1. Number of iterations is 50.000.

with c(m) =


b(m − 1)

 1
1−m

, where M(t) is a d-dimensional mean-reverting Ornstein–Uhlenbeck process, whose dimension is
a function of the feedback parameter m given by

δ(m) = 2 +
1

m − 1
≥ 2. (10)

Its components obey dMi(t) = −µMidt + dBi(t) with a ≥ 0 and B(t) the standard Wiener process, while its square norm is
‖M(t)‖2.

The proof is based on the observation that the Lamberti transform of this process (8) takes the form of a radial Ornstein
Uhlenbeck process of order ν(m) =

1
2(m−1) , see Ref. [3]. In this note we show that the CEV process Eq. (8) with positive state-

to-diffusion feedback (m > 1) admits a stationary probability distribution, which is uni-modal and asymptotically decays as
a power-law with its tail exponent proportional tom only.

Result 2 (Stationary Pdf for the CEV Process for m > 1). Let dXt = aXtdt + bXm
t dWt [CEV] be defined on the non-negative

reals [0, ∞) with a, b > 0 and Wt the Standard Wiener process. Then, if m > 1 a stationary probability distribution exists and
is similar (not equal) to a Type-2 Gumbel distribution

P(x) = N x−2me−cx−2(m−1)
, (11)

where c =
2a
b2

1
2(m−1) > 0 and N =

2(m−1)
c−µΓ (µ)

< ∞ is a normalization constant with γ =
2m−1
2(m−1) > 1. The stationary pdf takes

its unique maximum in x∗ =


b2
a

m
m−1

−ν(m)

, where ν(m) =
1

2(m−1) is the index of radial Ornstein Uhlenbeck process equivalent
to Eq. (8).

Proof. As shown in Ref. [3] the solution of the CEV process [CEV] is an inverse power of a radial Ornstein Uhlenbeck process
(rOU) of dimension d =

2m−1
m−1 > 2 for 1 < m < ∞, given by Xt ∝

1

‖M‖

1
m−1
2

, whose components obey dMi = −aMidt + dWi.

Since 0 < ‖M‖2 < ∞, 0 and ∞ are natural boundaries for the CEV process with m > 1, thus the probability current over
these boundaries is zero. �

Form =
3
2 the stationary probability distribution asymptotically decays as a power law P(x) ∼

1
x3

for large x, more precisely

P(x) =
2a
b2

1
x3

e−
2a
b2

1
x ∼

1
x3

. (12)

The pdf is shown in Fig. 3.
The equivalence between the CEV model with m > 1 and the rOU process of index ν(m) =

1
2(m−1) also shows up in the

functional form of the stationary pdf. In fact the distribution can be rewritten as

P(x) ∝ x−(2+1/ν(m)) exp

−ν(m)x−

1
ν(m)

1
x


which shows that the exponential part of the pdf is controlled by the order of the corresponding rOU process. Furthermore,
the stationary probability distribution belonging to the CEV process with m > 1 is uni-modal for all b and decays for large
x as a power-law, i.e. P(x) ∼

1
x2m

. Its graph is sketched in Fig. 2. As an immediate consequence we have
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Fig. 2. The stationary pdf belonging to the Ito process dX = aXdt + bXmdW form = 3/2 and m =
5
2 , see Eq. (11), defined on the non-negative reals.
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Fig. 3. The stationary pdf belonging to the CEV process dX = aXdt + bX
3
2 dW , with positive feedback on ‘state-to-diffusion’. Simulated data are in red,

while the green dotted line is the distribution due to Eq. (12). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Result 3. Given the CEV process with feedback parameter m > 1 and let ν(m) =
1

2(m−1) . Then

S(f ) ∼
1
f β

, β(m) = 2 − (1 + ϵ)ν(m), (13)

where ϵ > 0 is a small constant. Consequently −∞ < β(m) < 2 for 1 < m < ∞.

This follows from the more general case, see below. Note that for m = 3/2 and c = 0, β = 1, so that in this case S(f ) ∼
1
f ,

see Fig. 4.

2.2. The generalized CEV process with positive feedback n,m > 1

The interplay between state-to-price feedback and state-to-diffusion becomes obvious when considering the
Fokker–Planck equation belonging to the gCEV process. Note that by transforming Xt into Yt =

1
b(m−1)

1
Xm−1 , the gCEV process

becomes dYt = ã(Yt) + dWt with drift

ã(Yt) =
1
b

[
a

b(m − 1)Yt

 n−m
1−m

−
m

m − 1
1
Yt

]
. (14)

The corresponding potential U(y) =
 y ã(y′)dy′ of the corresponding Fokker–Planck equation is of the form

U(y) ∝
1
η
yη

− ln y
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Fig. 4. The power spectral density of the CEV process dX = aXdt + bX
3
2 dW . Simulated density in red, while the green dashed lines is the 1/f decay.

2

0

-2

-4

-6

-8

U
(y

)

y
1 2 3 4 5 6 7 8 9 10

Fig. 5. Potential U(y) of the Lamperti transformed gCEV process; the upper curve corresponds to n < n∗ , while the lower one is for n > n∗ .

where η =
n−(2m−1)

1−m ≥ 0 if n ≤ 2m − 1 and positive otherwise. Thus there is a bifurcation occurring at n∗ = 2m − 1, such
that U(y) is convex for n < n∗ and concave for n > n∗, see Fig. 5. Particularly, for n < n∗, 0 and ∞ are repelling and the
potential has a unique minimum. On the other hand, for n > n∗, both 0 and ∞ are attracting, while U(y) ∼ −

1
yc → −∞

with some positive c for y approaching 0. In terms of X this means that for n > n∗, that small Xt → 0, while large Xt → ∞.
For illustration, Figs. 1 and 6 show cGEV trails for n =

4
3 and n =

5
2 , while in both cases m =

3
2 . Due to the ∧-shape of the

Fokker–Planck potential for n =
5
2 , Xt either tends to 0 or does diverge, see Fig. 6. Simulation is done for 15.000 iteration

steps.
While for n < n∗ the gCEV process can be regarded as a diffusion trapped in a convex potential, i.e. behaves locally similar

to an Ornstein–Uhlenbeck process, one can expect that in this case it admits a stationary probability density.

Result 4. The generalized CEV process admits a stationary probability distribution P(x) if m > 1 and n < 2m−1. The stationary
probability distribution yields P(x) = N 1

x2m
exp(−cx−(2m−n−1)), where c =

2a
b2

1
2m−n−1 > 0, with normalization constant

N =
2m+1−n
c−µΓ (µ)

, µ =
2m−1

(2m−1)−n and thus asymptotically decays as a power law with tail exponent µ > 2

P(x) ∼
1
xµ

, µ > 2.

The proof is a straightforward calculation.
The stationary probability density of the corresponding Fokker–Planck equation, see Ref. [6], is

P0(x) =
N

b2x2m
exp


2

∫ x axn

b2x2m
dx
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Fig. 6. Two realizations of the gCEV process both form =
3
2 and n =

5
2 > n∗ , while a = b = 1. Number of iterations is 15.000.
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Fig. 7. The stationary pdf belonging to the gCEV process dX = aX
4
3 dt + bX

3
2 dW , with positive feedback on both ‘state-to-drift’ and ‘state-to-diffusion’.

=
N
x2m

exp

2
a
b2

∫ x

xn−2mdx


=


N
x2m

exp

2a
b2

xn+1−2m

n + 1 − 2m


, n − 2m ≠ −1

Nx
2a
b2

−2m
, n = 2m − 1.

(15)

In the case n < 2m−1 one can easily integrate P0(x) to get normalization constantN . Note that this excludes the Geometric
Brownian Motion case [n = m = 1], while it includes the case that the process exhibits positive feedback of both: state-
to-drift feedback [n > 1] as well as state-to-diffusion [m > 1]. In fact, given the degree n > 1 of positive state-to-drift
feedback, then the degree of state-to-diffusion feedbackmmust be positive as well while sufficiently largem > 1

2 (n − 1).
Fig. 7 shows the simulated distribution P (red) compared to the analytical solution, see Eq. (11), (green dashed lines) for

the case m = 3/2 and n = 4/3, i.e. for the gCEV process in which both partial processes, Eqs. (5) and (6), exhibit positive
feedback.

The power spectrum density of a gCEV asymptotically decays as a poer-law with tail index β , which is a direct function
of the index ν of the related Bessel process and is, particularly independent of the feedback exponent n of the drift term.

Result 5. The gCVE process Eq. (8) with feedback parameters m > 1, n < 2m − 1 admits a power spectrum

S(f ) ∼
1
f β

, β = 2 − (1 + ϵ)ν(m), (16)

where ϵ > 0 and ν(m) =
1

2(m−1) is the index of the radial Ornstein–Uhlenbeck process equivalent to the CEV process with m > 1
and c > 0 is a small parameter.

Proof. The proof follows from results in Ref. [2] by noting that the gCEV process for large Xt can be approximated by
dXt = c(X)X2m−1

t dt + bXm
t dWt , where for n < 2m + 1 the coefficient c(X) =

a
mb2

Xn−(2m+1)
t is almost constant for large Xt
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Fig. 8. The power spectral density S(f ) ∼
1
f 1

belonging to the gCEV process dX = aX
4
3 dt + bX

3
2 dW .

and approaches 0 from above if Xt → ∞. Therefore approximating the gCEV process for large but finite X by

dXt = cX2m−1
t dt + bXm

t dWt , c > 0 (17)

we obtain Eq. 3 in Ref. [2] with the substitution c =

m −

ν
2


. According to Eq. 33 in Ref. [2], the spectral density reads

S(f ) ∼
1
f β , β = 1 +

ν−3
2(m−1) . Inserting ν = 2(m − c), we obtain that for the process in Eq. (17) β(m) = 2 −

1+2c
2(m−1) , which

gives the result Eq. (16), putting ν(m) =
1

2(m−1) and ϵ = 2c. �

Note that form =
3
2 and c = 0, the power-spectrum shows pure 1/f behavior, see Fig. 8, while form =

5
4 , the spectrum

is flat, β = 0. The n-dependence of the spectral density shows up only for small f . One can show that S(f ) for small f is an
increasing function of n.

3. Bursts generated in the gCEV process

Regarding the transformed gCEV process Yt for n < n∗ as a diffusion being trapped in a convex potential U(y) as in Fig. 5,
makes it clear that the dynamics of Xt allows for a sequence of arbitrary high but finite outbursts even on short time scales,
in agreement with Fig. 1. Since the bursting behavior, i.e. Xt large, is governed by the state-to-diffusion feedback parameter
m, we can restrict ourselves to the case n = 1 for investigating statistical properties of burst. That is, we will numerically
consider the CEV process

dXt = aXtdt + bX
3
2
t dW (18)

in the following. Kaulakys and Alaburda [7] considered the case m = 2 in dX =
a
b2
x2m−1dt + xmdW , for x ≥ xm > 0.

Note that is the case X is distributed according to a power law with tail exponent 2

m −

a
b2


, as follows from Eq. (3). In

this particular setting they found numerical evidences for clear power-law statistics of bursts. Since in our case, power-law
behavior only exists asymptotically, we can expect power-law burst statistics only asymptotically.

A burst is regarded as a super-threshold event: Let (Xt) be the solution of a gCEV process. The burst interval Tk of the k-th
burst is defined as the time interval between crossing the threshold x > 0 from below and the smallest time at which the
threshold is crossed back from above. By a slight abuse of notation we also denote the length of this burst period by Tk. In
Fig. 9 its probability distributions Px(T ) = P(Tk = T | x) are shown for different threshold values: red x = 2, green x = 4,
blue x = 8. The distribution P(T ) of burst durations admits an intermediary power-law regime with 1

T
3
2
.

The size of a burst is defined as S =

T Xtdt , i.e. the integral over the super-threshold trajectory in the burst period T .

Size turns out to be related to the burst duration T by

S ∝ T 2 (19)

as can be seen in the double-logarithmic plot in Fig. 10, where the common slope is 2.

4. Conclusion

We studied a generalization of the well-known Constant-Elasticity-of-Volatility (CEV) process; the generalized CEV
process (gCEV) is given by dXt = aXn

t + bXm
t dWt , where a, b > 0. Dynamics following a gCEV process is due to the interplay
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Fig. 10. Size S of a burst and its duration T for three thresholds, x = 2 (red circles), x = 4 (green squares), x = 8 (blue triangles).

between two feedbacks: feedback in drift and feedback in diffusion. The emphasis was on the case that both feedback
mechanisms are positive, i.e. 1 < n,m < ∞. While, in general, positive feedback leads to singular behavior, we found
that both positive feedbacks can play together so that system dynamics has a stationary probability density function P(x).
This stationary pdf in fact exists if both positive feedbacks are ‘balanced’ in the sense that given a positive drift feedback
n > 1, the diffusion feedbackmust be sufficiently strong, i.e.m > 1

2 (n+1). In this case P(x) decays according to a power-law
for large x according to P(x) ∼

1
x2m

. For m = 3/2 one obtains that the stationary pdf obeys a cubic law.

P(x) ∼
1
x3

Consequently the power-spectral density of the gCEV process with n,m > 1 and n < 2m − 1 also decays as a power-law
asymptotically with S(f ) ∼

1
f β(m) , where b(m) ≤ 2 for m > 1 and increasing, see Eq. (16). Particularly, for m =

3
2 one

obtains asymptotic pure 1/f noise. The tail behavior of the stationary pdf as well as of the power-spectral density are both
independent of the drift feedback degree n but governed by the diffusion feedback degreem.

Finally we studied the ‘outburst’ behavior of gCEFV processes numerically. Since gCEV processes admit sequences of
arbitrary high but finite excursions, our interest was on the duration T of bursts and their intensity S. We found a simple
quadratic correspondence – in distribution –

S ∝ T 2.
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