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1 Introduction

In atomic spectroscopy, a powerful mathematical tool for theoretical study of electron cor-
relation effects as well as the atomic parity violation, ultra-cold collisions and much greater
of many-electron problems, is based on irreducible tensor formalisms and, consequently, on
symmetry principles, simplifying various expressions, thus considerably reducing amount of
further on theoretical calculations of desirable physical quantities. The mathematical formu-
lation of irreducible tensor operators gained appropriate grade in modern physics due to well-
developed theories of group representations. Namely, in the manner of representations, the
group operations are accomplished on vector spaces over real, complex, etc. fields, defining
vector-valued functions and their behaviour under various transformations. Therein the fun-
damental connection between measurable physical quantities and abstract operators on Hilbert
space—particularly those transforming under irreducible representations—is realised through
the bilinear functionals which ascertain, in general, the mapping from the Kronecker product of
vector spaces into some given unitary or Euclidean vector space. In physical applications, these
bilinear forms, usually called the matrix elements on given basis, are selected to be self-adjoint.

The physical processes and various spectroscopic magnitudes, such as, for example, elec-
tron transition probability, energy width of level or lifetime of state of level, electron interac-
tions and many more, are uniformly estimated by the corresponding operator matrix elements
on the basis of eigenfunctions of the Hamiltonian which characterises the studied process. To
this day, the most widely used method to construct the basis functions is based on the atomic
shell model suggested by N. Bohr [1] and later adapted to the nuclear shell model that was first
proposed by M. G. Mayer and J. H. D. Jensen [2—4]. In this model, electron states in atom are
characterised by the nonnegative integers which in their turn form the set of quantum numbers
describing the Hamiltonian of a local or stationary system. For the most part, the nonnegative
integers that describe the dynamics of such system simply mark off the irreducible group rep-
resentations if the group operators commute with a Hamiltonian. Particularly, in the atomic
central-field approximation, the Hamiltonian is invariant under reflection and rotation in R?,
thus the eigenstate of such Hamiltonian is characterised by the parity II of configuration and
by the SO(3)—irreducible representation L, also known as the angular momentum. Within the
framework of the last approximation, the atomic Hamiltonian may be constructed by making
it the SU(2)—invariant, since SU(2) is a double covering group of SO(3). Then the eigenstate
is characterised additionally by the SU(2)—irreducible representation .J, also known as the total
angular momentum. The theory of angular momentum was first offered by E. U. Condon, G.
H. Shortley [5] and later much more extended by E. Wigner, G. Racah [6-9] and A. P. Jucys
et. al. [10-12]. Although the methods to reduce the Kronecker products of the irreducible
representations which label, particularly, the irreducible tensor operators, are extensively de-
veloped by many researchers until now [13-17], still there are a lot of predicaments to choose
a convenient reduction scheme which ought to diminish the time resources for a large scale
of theoretical calculations. The problems to prepare the effective techniques of reduction are
dominant especially in the studies of open-shell atoms, when dealing with the physical as well
as the effective none scalar irreducible tensor operators and their matrix elements on the basis
of complex configuration functions.

A total eigenfunction of atomic stationary Hamiltonian is built up beyond the central-field
approach and it is, by the origin, the major object of the many-body theories. Unfortunately, the
exact eigenstates can not be found, thus the final results that characterise the dynamics of such
complex system are not yet possible. From the mathematical point of view, the eigenstates of
Hamiltonian form some linear space. If the spectrum of Hamiltonian is described by discrete
levels, then the eigenstates characterised by the nonnegative integers form a separable Hilbert
space; otherwise, the linear space is, in general, non-separable. Through ignorance of the struc-
ture of exact eigenstates, there are formed the linear combinations of the basis functions that are
usually far from the exact picture. The basis functions are selected to be the eigenstates of the
central-field Hamiltonian. This yields various versions of the multi-configuration Hartree—Fock
(MCHEF) approach based on the variation of the energy functional with respect to single-electron
wave functions. In this approach, a huge number of admixed configurations together with high
order of energy matrices need to be taken into account [18-20]. By the mathematical formu-
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lation, the multi-configuration function is considered as the superposition of the configuration
state functions (CSF), thus the present approximation is confined to be in operation on a single
many-particle Hilbert space. Contrary to this model, there exists another extremely different
method to build the exact eigenfunction of many-particle system. Of special interest is the
atomic many-body perturbation theory (MBPT) that accounts for a variable number of many-
particle Hilbert spaces simultaneously. Therefore, the latter approximation is in operation on a
Fock space.

The MBPT—due to its versatility—is widespread until nowadays not only in atomic physics.
Namely, the main idea of present approximation has been appropriated, as it became usual, from
the theory of nucleus followed by the works of K. A. Brueckner and J. Goldstone [21-23], and
afterwards adapted to atomic physics and quantum chemistry [24—33]. In most general case, the
eigenfunction of many-particle Hamiltonian is generated by the exponential ansatz which acts
on the unit vector of the entire Hilbert space, also known as the genuine vacuum. In perturbation
theory (PT), the exponential ansatz is frequently defined to obey the form of the so-called wave
operator acting on a reference function or else the physical vacuum. Such formulation is fol-
lowed by the Fock space theory, studied in detail by W. Kutzelnigg [31] and by the particle-hole
picture, recently exploited by many authors in modern MBPT [34-38]. For the closed-shell
atoms, the reference function simply denotes a single Slater determinant which represents an
eigenfunction of the central-field Hamiltonian. Attempts to construct the reference function for
the open-shell atoms lead to a much more complicated task. By traditional procedure, the entire
Hilbert space is partitioned into two subspaces, where the first one is spanned by the multi-
configuration state functions associated with the eigenvalues of the central-field Hamiltonian,
and the second one is formed from the functions which are absent in the first subspace. The
reason for such partitioning is that for open-shell atoms the energy levels are degenerate and
the full set of reference functions is not always determined initially. Therefore the number of
selected functions denotes the dimension of a subspace usually called the model space [39].
A universal algorithm to form the model space in open-shell MBPT is yet impossible and the
problem under consideration still insists on further studies.

A significant advantage of the MBPT is that the exact eigenvalues of atomic Hamiltonian
are obtained even without knowing the exact eigenfunctions. The number of solutions for en-
ergies is made dependent on a dimension of model space. To solve this task, the eigenvalue
equation is addressed to finding the operator which acts on chosen model space. The form of
the latter operator, called the effective Hamiltonian [34], is closely related to the form of wave
operator. Usually, there are distinguished Hilbert-space and Fock-space approaches, in order
to specify this operator. In the Hilbert-space approach, the model space is chosen to include
a fixed number of electrons. Then the wave operator is determined by eigenvalue equation of
atomic Hamiltonian for a single many-particle Hilbert space only. In this sense, it is similar
to the multi-configuration approach. In the Fock-space approach, the wave operator is repre-
sented equally on all many-particle Hilbert spaces which are formed by the functions with a
variable number of valence electrons of open-shell atom. By the mathematical formulation, the
Fock-space approximation is based on the occupation-number representation. Consequently,
this treatment suggests the possibility of simultaneously taking into account for the effects that
are conditioned by the variable number of particles. Starting from this point of view, several
variations to construct the effective interaction operator on a model space are separated resulting
in different versions of the PT. Nevertheless, a general idea embodied in all perturbation theories
states that the Hamiltonian of many-particle system splits up into the unperturbed Hamiltonian
and the perturbation which characterises the inhomogeneity of system. In atomic physics, the
unperturbed Hamiltonian stands for a usual central-field Hamiltonian. The major difficulties
arise due to the perturbation. In various versions of PT, the techniques to account for the per-
turbation differ. The Rayleigh—Schrodinger (RS) and coupled-cluster (CC) theories combined
with the second quantisation representation (SQR) are the most common approaches used in
theoretical atomic physics. The perturbation series is built by using the Wick’s theorem [40]
which makes it possible to evaluate the products of the Fock space operators. The number of
these products grows rapidly as the order of perturbation increases. For this reason, the RSPT
is applied to a finite-order perturbation, when constructing the many-electron wave function
of a fixed order m, starting from m = 0 step by step [36,37,41]. In CC theory, the initially



1 Introduction 10

given exponential ansatz is represented, in general, as an infinite sum of Taylor series. The total
eigenfunction is then expressed by the sum of all-order n—particle (n = 0,1, 2, ...) functions,
denoting zero-, single-, double-, etc. excitations [35,42]. However, in practical applications, the
sum of terms is also finite. To this day, the progressive attempts to evaluate the terms of atomic
PT by using the computer algebra systems have been reported by a number of authors [43—45].
One more problem ordinary to open-shell MBPT is to handle the generated terms of PT. In
addition to a large number of terms from given scale, each term has to be separately worked
up for a convenient usage, in order to calculate the energy corrections efficiently. This is done
by using the angular momentum theory (AMT) combined with the tensor formalism. In atomic
spectroscopy, the theoretical foundation of tensor operator technique has been built by Judd et.
al. [46—49] and later extended by Rudzikas et. al. [S0-55]. In the occupation-number represen-
tation, the terms of PT are reduced to the effective n—particle operators. In most cases, authors
account for the zeroth, single and double (n = 0, 1, 2) particle-hole excitations. First of all, this
is due to their biggest part of contribution to the correlation energy. Secondly, it is determined
by the complexity of structure of the irreducible tensor operators that act on more than four
open shells (n > 2). For example, in his study of the wave functions for atomic beryllium [56],
Bunge calculated that the contribution of double excitations to the correlation energy for the
Be atom represented about 95%, while the triple excitations made approximately 1% of the
contribution. On the other hand, in modern physics, the high-level accuracy measured bellow
0.1% is desirable especially in the studies of atomic parity violation [57] or when accounting for
radiative corrections of hyperfine splittings in alkali metals or highly charged ions [58]. Such
level of accuracy is obtained when the triple excitations are involved in the series of the PT, as
demonstrated by Porsev et. al. [42]. This indicates that the mathematical techniques applied to
the reduction of the tensor products of the Fock space operators still are urgent and inevitable.

1.1 The main goals of present work

1. To work out the versatile disposition methods and forms pertinent to the tensor products of the
irreducible tensor operators which represent either physical or effective interactions considered
in the atomic open-shell many-body perturbation theory.

2. To create a symbolic computer algebra package that handles complex algebraic manipula-
tions used in modern theoretical atomic spectroscopy.

3. Making use of the symbolic computer algebra and mathematical techniques, to explore the
terms of atomic open-shell many-body perturbation theory in a Fock-space approach, paying
special attention to the construction of a model space and the development of angular reduc-
tion of terms that fit a fixed-order perturbation. Meanwhile, to elaborate the reduction scheme
suitable for an arbitrary order perturbation or a coupled-cluster expansion.

1.2 The main tasks

1. To find regularities responsible for the behaviour of operators on various subspaces of the
entire Fock space. To study the properties and consequential causes made dependent on the
condition that a set of eigenvalues of Hamiltonian on the infinite-dimensional Hilbert space
contains a subset of eigenvalues of Hamiltonian projected onto the finite-dimensional subspace.

2. To classify the totally antisymmetric tensors determined by the Fock space operator string
of any length. To determine the transfer attributes of irreducible tensor operators associated to
distinct angular reduction schemes.

3. To generate the terms of the second-order wave operator and the third-order effective Hamil-
tonian on the constructed finite-dimensional subspace by using a produced symbolic computer
algebra package. To develop the approach of many-particle effective matrix elements so that
the projection-independent parts could be easy to vary remaining steady the tensor structure of
expansion terms.
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1.3 The scientific novelty

1. Opposed to the usual Slater-type orbitals, the SU(2)—irreducible matrix representations have
been demonstrated to be a convenient basis for the calculation of matrix elements of atomic
quantities. A prominent part of such type of computations is in debt to the newly found SO(3)-
irreducible tensor operators.

2. Bearing in mind that the theoretical interpretation concerned with the model space in open-
shell many-body perturbation theory is poorly defined so far, attempts to give rise to more
clarity have been initiated. The key result which causes to diminish the number of expansion
terms is that only a fixed number of types of the Hilbert space operators with respect to the
single-electron states attach the non-zero effective operators on the constructed model space.

3. The algorithm to classify the operators observed in the applications of effective operator
approach to the atomic open-shell many-body perturbation theory has been produced. The
classification of three-particle effective operators that act on 2, 3, 4, 5, 6 electron shells of atom
has been performed expressly. As a result, the calculation of matrix elements of three-particle
operators associated to any angular reduction scheme becomes easily performed.

4. The angular reduction of terms of the third-order effective Hamiltonian on the constructed
model space has been performed in extremely different way than it has been done so far. To
compare with a usual diagrammatic formulation of atomic perturbation theory, the principal
advantages of such technique are: (i) the ability to vary the amplitudes of electron excitation
suitable for special cases of interest — the tensor structure is free from the change; (i) the ability
to enclose a number of Goldstone diagrams by the sole tensor structure. As a result, the problem
of evaluation of each separate diagram is eliminated.

1.4 Statements to be defended

1. The integrals over S? of the SO(3)-irreducible matrix representation parametrised by the
coordinates of S? x S? constitute a set of components of SO(3)—irreducible tensor operator.

2. There exists a finite-dimensional subspace of infinite-dimensional many-electron Hilbert
space such that the non-zero terms of effective atomic Hamiltonian on the subspace are gen-
erated by a maximum of eight types of the n—body parts of wave operator with respect to the
single-electron states for all nonnegative integers n.

3. The method developed by making use of the S,—irreducible representations, the tuples and
the commutative diagrams of maps associating distinct angular reduction schemes makes it
possible to classify the angular reduction schemes of antisymmetric tensors of any length in
an easy to use form that stipulates an efficiency of calculation of matrix elements of complex
irreducible tensor operators.

4. The restriction of many-electron Hilbert space the wave operator acts on to its SU(2)-
irreducible subspaces guarantees the ability to enclose a number of Goldstone diagrams by
the sole tensor structure so that the amplitudes of electron excitation are easy to vary depending
on the specific cases of interest, but the tensor structure of expansion terms is fixed.
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2 Partitioning of function space and basis transformation properties

Two mathematical notions exploited in atomic physics are discussed: the first and second quan-
tisation representations. In the first representation, the basis transformation properties—fixed
to a convenient choice—are developed. In the second representation, many-electron systems
with variable particle number are studied—concentrating on partitioning techniques of function
space—to improve the efficiency of effective operator approach.

The key results are the composed SO(3)—irreducible tensor operators, the technique—based
on coordinate transformations—to calculate the integrals of many-electron angular parts, the
Fock space formulation of the generalised Bloch equation, the theorem that determines non-
zero effective operators on the bounded subspace of infinite-dimensional many-electron Hilbert
space.

This section is organised as follows. In Sec. 2.1, the widespread methods to construct a
total wave function of atomic many-body system are briefly presented. Sec. 2.2 studies the
SU(2)—irreducible matrix representations and their parametrisations. The inspiration for the
parametrisation of matrix representation in a specified form came from the properties charac-
teristic to irreducible tensor operators, usually studied in theoretical atomic spectroscopy. Sec.
2.2.2 demonstrates the application of method based on the properties of founded new set of
irreducible tensor operators. In Sec. 2.3, the second quantised formalism applied to the atomic
systems is developed. The advantages of perturbative methods to compare with the variational
approach are revealed. The effective operator approach, as a direct consequence of the so-called
partitioning technique (Sec. 2.3.1), is developed in Sec. 2.3.2.

2.1 The integrals of motion

The quantum mechanical interpretation of atomic many-body system is found to be closely
related to the construction of Hamiltonian /7. In a time-independent approach, this Hamiltonian
corresponds to the total energy F of system. To find F, the eigenvalue equation of H must be
solved. The eigenfunction W of H depends on the symmetries that are hidden in the many-body
system Hamiltonian. The group-theoretic formulation of the problem is to find the group G
such that the operators g € G commute with H. That is, if [H,g] = 0, then VU is characterised
by the irreducible representations (or «irrep» for short) of G. A well-known example is the
Bohr or central-field Hamiltonian Hy = 1" + U¢ of the N—electron atom, where 7T’ represents
the kinetic energy of electrons and U¢ denotes the Coulomb (electron-nucleus) potential. This
Hamiltonian is invariant under the rotation group G = SO(3) with § € {L1, L, L3} being the
infinitesimal operator or else the angular momentum operator. Consequently, the eigenfunctions
U are characterised by the irreducible representations L = 0,1, ... of SO(3) and by the indices
M= —-L,—L+1,...,L —1,L that mark off the eigenstates of Ez (2 = 1,2,3). In this case,
we write UV = W(I'LM |2y, 22, ...,xn) = V(I'LM), where ¢ = r¢ZT, denotes the radial 7
and spherical Z; = 6y, coordinates of the {th electron. The quantity I" denotes the rest of
numbers that append the other, if any, symmetry properties involved in H,. Particularly, the
Bohr Hamiltonian H|, is also invariant under the reflection characterised by the parity II. Thus
Hj implicates the symmetry group O(3).

The infinitesimal operators Zi form the B; Lie algebra (in Cartan’s classification) which is
isomorphic to the A; algebra formed by the generators j Besides, it is known [59, Sec. 5.5.2,
p. 99] that the angular momentum operator L is the sum of two independent A; Lie algebras
formed by J This implies that Hg is also invariant under SU(2) operations and thus ¥ may
be characterised by the SU(2)—irreducible representation J = 1/2,3/2, ... which particularly
characterises the spin-1/2 particles (electrons).

Regardless of well-defined symmetries appropriated by H, the central-field approximation
does not account for the interactions between electrons. In order to do so, the total Hamiltonian
H of N—electron system is written as follows

H=Hy+V, Hy=H,+U. 2.1)

The Hamiltonian H| pertains to the symmetry properties of f[o since U represents the central-
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field potential which has the meaning of the average Coulomb interaction of electron with the
other electrons in atom [34, Sec. 5.4, p. 114]. All electron interactions along with external
fields, if such exist, are drawn in the perturbation V. It seems to be obvious that the structure of
H is much more complicated than the structure of H,.

Having defined the Hamiltonian H and assuming that the eigenfunctions {¥;}2;, = X
form the infinite-dimensional Hilbert space H with the scalar product (, -, )3;: X x X — R,
the energy levels F; are expressed by (¥, - HW,;),, = (V,;|H|¥;). Since the functions V; are
unknown, usually they are expressed by the linear combination of some initially known basis
®;. With such definition, the relation reads

W(OILAM;) =Y ey p CILADM,),  cp g €R. (2.2)

r;
Here A;M; = L;S; My, Mg, or A;,M; = J;M;, depend on the symmetry group assuming that
the functions ®; represent the eigenfunctions of Hy. The real numbers cg 1 . are found by
diagonalizing the matrix of / on the basis ®;, where the entries of matrix are

it Ay Ay

If, particularly, H is the scalar operator, then the Hpip/i do not depend on M;.

The solutions ®; of central-field equation, the configuration state functions (CSF), are found
by making the antisymmetric products or Slater determinants [60, p. 1300] of single-electron
functions R(ngke|re)p(Aeme|Te), characterised by the numbers A\ = l¢1/2 or A\¢ = je, where
¢€=1,2,...,N,l¢=0,1,...and je = 1/2,3/2, .. .. The quantity ~, depends on the symmetry
group. For G = SO(3), ke = l¢; for G = SU(2), ke = l¢je, where l¢ = 2j¢ £ 1. The functions
d(Aeme|T¢) are transformed by the irreducible unitary matrix representations of G = SU(2).
These representations denote the matrix D*¢(g) of dimension dim D*¢(g) = 2\¢ + 1, where
g € G. That s,

D¥H(g)p(AemelTe) = D> D% (9)d(Neie Te)- (2.4)

mg

The explicit form of element D;:f5 e (g) depends on the parameters g and basis. The parametri-
sation of D;‘iE e (2) by the Euler angles 2 = (¢, ©, V) was first carried out by Wigner [61]

Ag
meme

() = exp (me® + M W) P, (cos ©). (2.5)

me

The properties of P:émg(z) were comprehensively studied by Vilenkin [62, p. 121]. Particu-

larly, for arbitrary k € Z* ork € Q" = {r+1/2,r € Z*}andq,¢' = —k, —k-+1,... k—1,k,
quq, (z) can be represented by

/ 1—=z =h 1+ 2\"
k —(_1)9—¢ /
P =0ratka) (1) T (5F)

min (k—q’,k+q)

n(1—=2\"
X Z bp(ka%Q)(l_'_z) I (26)

p=max (0,g—q")

a(k,q,q") =i/ (k+ )k — q)!(k + ¢)!(k — ¢, 2.7)

ef (_1)p
by(k,q.q') = . (2.8)
” Plo+qd -l k+q-plk—qg-p!
Eq. (2.4) associated to any finite unitary group G has a significant meaning in representa-
tion theory as well as in theoretical atomic spectroscopy. First of all, it allows one to find a

convenient basis for which the matrix elements in Eq. (2.3) appropriate the simplest form [63].
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Secondly, for a particular G = SU(2), the Kronecker product of irreducible matrix represen-
tations is reduced in accordance with the rule D*¢(g) x D*(g) = @®,D*(g) which makes it
possible to form the basis of the type

DANNM|Te, Be) = D S Neme|Te)d(Aeme|e) (AemeAeme| Am) (2.9)

meme
The coefficient (A¢meAcm¢|Am) that transforms one basis into another is called the Clebsch—

Gordan coefficient (CGC) of SU(2), also denoted as [ﬁfg ;,\f( nﬁ] [10, 12, 64]. The basis con-
structed by using Eq. (2.9) is convenient to calculate matrix elements if applying the Wigner—
Eckart theorem. In order to do so, the Hamiltonian H on H is represented by the sum of
irreducible tensor operators H” that act on the subspaces H* of H. For example, the Hamilto-
nian H, is obtained from H if H is confined to operate on H* = H° which is a scalar space
spanned by the functions ®;. On the other hand, Bhatia et. al. [65, Eq. (47)] demonstrated that
the angular part ®(Am|z;,xs) of two-electron wave function was found to be represented in
terms of D? - (). Conversely, such basis is inconvenient for the application of Wigner-Eckart
theorem. Moreover, to calculate matrix elements of irreducible tensor operator H*, the integral
of type

/ / d7,dZ, D) () H D) ,~.() (2.10)
S2

must be calculated. The integration becomes complicated since €2 depends on Z1, Z5. To per-
form the latter integration, the function (7, 7>) should be found. Afterwards it has to be
substituted in Eq. (2.5).

The last simple example suggests that the parametrisation of the irreducible matrix repre-
sentation D*(g) by the spherical coordinates of S? x S? makes sense. Here and elsewhere 52
denotes a 2—dimensional sphere.

2.2 Coordinate transformations
2.2.1 Spherical functions

Suppose given a map : S? x S? — SO(3) represented on R3, a 3-dimensional vector
space, by 7, = D(3,2)71, where 7; = 7;/r; = (sinf; cos p; sinb;sinp; cosf;)T. The 3 x 3
rotation matrix, D(3,2) € SO(3), is parametrised by the Euler angles ®, ©, ¥ [63, p. 84, Egs.
(7.24)-(7.25)]. In Ref. [66], it was proved that the map 2 is realised on S? C R? if

® =, + ag, O = B0y — 70s) + 210, U= —p; + 5% Yo (211)

Tab. 1: The values for parameters characteristic to the SU(2)-irreducible matrix representation
parametrised by the coordinates of S? x S?

The maps a [ v 0 n Themaps a B v 0 n
OF QF QO + + + - 0 O Q + + - + 0
Qn, - + + +
Qr Q) + — + - Q - — — — 1
0Op, — — + +

with n,n’ € Z*. The parameters «, (3, 7y, 0, n are presented in Tab. 1. Then the spherical
function D’;q, (€2) is parametrised as follows

(nv n,; «, Ba s 5|§;\17 /x\2)]q€q/ :ianﬂSq, (_1)2(nk+n'q’)ﬁq’fqa<k7 q, q/)ei(qcpzfqltpl){cos [%(91 - ’702)]}2]6
%3 by (k. q.q/){tan [5(61 — 6)] 70, (2.12)
p
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2.2.1 Remark. The exploitation of Euler’s formula for the parameter (¢, — v6)/2 indicates the
following alternative of parametrisation

~ o~ 1 (v— ! i ’_
(na n/; a, ﬁa v (5’%1, x2)]¢§q’ :_l(a D+ (_1)2(nk+n I )ﬁq qa(kv 4, q/)h(Q7 ql>

4k:
X Z Mg =) exp {i[(r+5— k)b — ']}
x exp{—i[(r + s — k)v02 — qpal}, (2.13)

‘ ¢—q"\(2k—q+¢ 0(q —4q')

Wilg—q) = 1 +m(q.q ( )(

( )=l )" r (k — )k +q) g —q)

X6F5{—k+q —k—d %(q—qﬁl) Hg—q +2)
¢—4q 3(q—q —2k) 5(a—q¢ —2k+1)

(¢—¢ +r—2k) %(q—Q’+r—2k+1)

1 ! 1 !

sla—d —s+1) 3(¢—q —s5+2)
The function h(q,q") = 1if q¢ # ¢, otherwise h(q,q) = 1/2. The quantity 6(q — ¢') denotes
the Heaviside step function. The permutation operator (g, ¢') reverses g and ¢’ that are on the
right hand side of 7(q, ¢').

N[

: 1} . (2.14)

Proof. The Euler’s formula for € R reads e = cos x + isin z. Deduce

i a « o . 1 8 Jé; ﬁ .
e = (2) S0 (e ot = (1) 5 (7)ot

s=0 r=0
where the binomial formula for (e'” + e7*)¥ has been used. In this case (see Eq. (2.12)),

101 —702), a=2p+q —q, B=2k-2p—q +q.

These values are substituted in Eq. (2.12). The exponents with the parameters p vanish since
a X +2pand [ o< —2p. In addition, the summation over p can be proceeded for the construction

S (—1)7b,(k 4. q)) (Zp +;1’ — q) <2l<: - 2pr— J + q> |

p

By passing to Eq. (2.8), we get for ¢ > ¢/, the binomial series

O [ e

q)!
X6F5{—k’+q —k—q sla-d+1) 5(4-d+2)
qa—q 3(a—d—2k) j(a—d —2k+1)
Mg—q+r—2k) Lq—q+r—2k+1)
sla—d—s+1) 53— —s+2)
If ¢ < ¢/, the last expression remains irrelevant if replacing ¢ with ¢’. Thus for any ¢, ¢/, it is

convenient to use the Heaviside step functions 6(q — ¢’) and 6(¢' — ¢). This proves Remark
2.2.1. [

If follows from Eqs. (2.12)-(2.13) and Tab. 1 that the four spherical functions on S? x S?
serve for the irreducible matrix representation Df;q,(Q). Each of the function corresponds to

D’q’“q, (2) in distinct areas of S2. The spherical functions are considered as follows

i1

LX) = {po€[0,7];0, €0,61],n =1,2}

- : 2.15
L205) = {ps € [r,2n];60, € [0, 7],/ = 0,1} (=150)

+€§q/(f17§2) . {



2 Partitioning of function space and basis transformation properties 17

ek~ A L2(07) = {py€[0,7);6, € [0y, 7],n' = 1,2}
k (), T) : 1) = 1¥72 2 LT ’ ) 2.15b
Sao (71, 72) { L2(0h) % {0y € [, 27]: 65 € [0,61], 0/ = 0,1} (2150)
TCE (@1, 30) 1 LH) = {p2 €[0,37/2];0, € M, 0’ = 0,1}, (2.15¢)
Gy (FLT) 0 L) F {2 € [1/2,27)i0, € My, 0/ = 1,2}, 2.150)
The compacts M C [0, 7] are defined by
(0,71'] 91—07 ™, 01—0,

Mg = { 0, 0, =, Mg = { [0, 7], 0, =, (2.16)

(0,7 —64], 6, € (0,m) [ — 61,7, 6, € (0,m).

The spherical functions are related to each other by the phase factors: _équ, = (—1)77 s

—rk 2¢' + -k
o = (=120 g If

+_k koo ok k + ¢k
T € 1M0ys “Cordy ey €1 qq,, o) (2.17)
then the functions *7, satisfy
+. k —_k E —q £k
Tag  Togeq = Oqqry  FTy = (=0T 572 . (2.18)

q
The products of spherical functions are reducible by using the rule Tr%1 x *rF2 = @, £k
which is obvious since the *7%(Z|, Z5) represent the D*((2) in different areas £2(£2) C S2.

Example. Assume that 7; = (/6,7/4) and Ty = (~/3, 7). Possible rotations are realised on S?
by the angles §2}; = (37T/2 /6,57/4) and Q3 = (37/2,7/2,7/4). In accordance with Eq. (2.15), for
k =5/2,q = —1/2, ¢ = 3/2, the functions are

€ (oo m) = DY (e e, 5fa) = Y (—1)5(13 - By/3),
0/12/23/2( /6, T4, /3, TT) = 0/3/2 3/2(37r/277r/2’7r/4) — (—1) 1,

Obtained spherical functions 7 (Z1,75) are suitable for their direct realisation through

Eq. (2.4) which also makes it posmbfe to carry out the integration in Eq. (2.10) easily enough.
2.2.2 RCGC technique

It is natural to make use of the spherical functions T1,T9) in selection of a convenient
basis, as described in Eq. (2.4). The argument becomes more motivated recalling that the
irreducible tensor operators T*—being of special interest in atomic physics—also transform
under the irreducible matrix representations D*(€2). In general, the 2\ + 1 components Tﬁ\ of

T on ‘H* transform under the unitary matrix representation D*(g) as follows [64, p. 70, Eq.
(3.57)]

i/\(

TNT)T) =) D), (9)T). (2.19)

It is assumed that each invariant subspace H* is spanned by the orthonormal basis ¢(Au|Z,,),
for which Eq. (2.4) holds true. Alike the case of the basis in Eq. (2.9), for G = SU(2), Eq.
(2.19) allows each tensor product 7** x T2 to be reduced by

[T X TY]% = " T T2 (A dapiz| M), (2.20)
M1 2
where the irreducible tensor operator [T x T*2]* transforms under D*(€2).

Most of the physical operators 7*—basically studied in atomic spectroscopy—are expressed
in terms of D* and their various combinations. These are, for example, the normalised spherical
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harmonics Ck(@) =1*DE (), O = (q), ©,0) with ® = ¢ + /2, © = 0; the spherical harmon-
ics Y"C = (2k+1)/ 47TCk . The spin operator S', the angular momentum operator L'

are also expressed in terms of the 1rredueib1e matrix representation D!, as it was demonstrated
in Refs. [52,67]. The announced particular cases of T represent the operators that depend
on the coordinate system. Being more tight, these spherical tensor operators are in turn the
functions of ¥ = #y. With this in mind, we may write

T (72) Zi (Z1, )TN (7). (2.21)

Eq. (2.21) also applies for the basis gb()\u|x2 ). Then the following result is immediate

DA doAp|T1, 72) = (A ArdaA S 21, 2) (I)(AlA2XV|55\1)> (2.22)
(A Mg A) ( xl,xz) Pl Ao A}, (223)
v iz e M1 p2
(Al N A;asa,@)dzef GRS [Al 2 A], (2.24)
M1 p2 V — Hi M2V

T2
where the basis (A A\ A\u|Z7, Z7) is defined in Eq. (2.9) and GIOW )\QAy]fl) = O(M A AV|T1, T1)
is the transformed basis. The quantities (;)1 22 X T, xg) and (A /\1//>2>‘ 71, .172) are called rotated

Clebsch—Gordan coefficients (RCGC) of the first and second type [66, Sec. 6], respectively.
Particularly,

()\1 Az A 551,@\1) = lAl A2 )\} ; (A A1z 551751) = 0,50 (2.25)
mi o p2 vV H1 M2 V v ol
The RCGCs are reducible. For example,

T T T 1)\ Aetl ~
<)\1 /\2 A '/ZL’\l,jT\Z) ()\1 )\2 A ;@\1,52) _ ( Nl) Z(_1>A2[A2]1/2 Z(_l)PQ
Ao

Hio ple f v vy v [Ao]1/2 ~
p2p2
)\2 A2 }v\g oo /\1 /\2 A Xl ;\2 X /\2 ’>\V2 A2
X . . . 2.26
(—P2 My py ’xl’@) [Ml P2 K| |1 p2 V| [pe va M, (2.26)

The abbreviation [x]'/? = \/2x + 1.

The specific feature of technique based on the coordinate transformations (or sim-
ply RCGC technique) is the ab1hty to transform the coordinate-dependence of the
basis ®(T'TIAM |71, T, ... .,Zx) in H” preserving its inner structure. The trans-

formed basis CID(FHAM \wg) in HA implicates the tensor structure of the initial ba-
sis ®(I'TIAM |y, Zo, . .., TN ), but the coordinate-dependence is represented by the
function of arbitrary Variable T¢, where £ acquires any value from 1,2, ..., N.

A particular case of the two-electron basis function in Eq. (2.22) along with the properties
of RCGCs (see Egs. (2.25)-(2.26)) initiates a possibility to change the calculation of multiple
integrals with the calculation of a single one. This argument also fits the integrals of the type
in Eq. (2.10). In a two-electron case, a simple evaluation indicates that the integration of
the operator [T%1(Z;) x T*2(Z,)]* (see Eq. (2.20)) on the basis ®(\; Ao Ai|Z1,To) (see Eq.
(2.9)) is transformed into a single integral of the transformed operator [T*1(Z;) x T*2(z)]*

on the transformed basis é(XleAmfl). The obtained single integral becomes even simpler
if TF acquires some special values. For instance, if T* = C*, then the transformed operator
equals to iF+R2=FCk(Z) (k; 0k0|k0). Moreover, if the basis ¢(\p1|Z1) is written in terms of
DY () [67, Eq. (38)], then the transformed basis reads DéO(Ql)<XIOX20\XO>. In addition,

0
duue1 to transformations, the three RCGCs II arise (see Eqs. (2.22)-(2.23)). Their product is
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reduced in accordance with Eqs. (2.23), (2.26). The obtained RCGC IT (4 A1d24 .7 7y) is
integrated over 7o, and the resultant function also depends on T only. It goes without saying
that the procedure of integration is suitable for the N—electron case. However, to improve the
applicability of this algorithm, the integrals of the RCGCs or, what is equivalent, the integrals
of spherical functions 7, (%1, ) should be calculated.

In Ref. [66, Sec. 5], 1t was proved that the integral of =7 (:1:1, To) over Ty € S? is the sum
of integrals determined in the areas £2(2). That is,

</ / ) dl’g (l’l,ZL‘Q)

£2(0F, £2(Q

+ ( / T / ) a7, € (71, %), (2.27)
£2(Q7;) £2(Q7,

where the measure dz7, = dpsdf; sin fy; a normalisation f 52 dry = 4. A direct integration
leads to

(‘”Tq”«—nq’ +1)alk g.q)e

x}jbqu IE(6150,00) + (=1)179 LIE (6161, 7)). (2.28)

The functions Ay (1) and pIl /(01 a,b) are defined by

Sk/(@1) =My (p1)it 7

!

—1)%, @1 €[0,7/2]
Ar(p) = 4 (1%, ¢ € (n/2,37/2] (2.29)
(=1)%" ¢, € (31/2,2n]
(Hl,a b) = 2{217(a,b) cos 0y + (I5(a,b) — I}(a,b))sinb, }, (2.30)
IP(a,b) = IP(tan [L(0, — b)]) — IP(tan [1(6; — a)]), s=0,1,2, (2.31)
»2p+q' —q+s+1
2p+q —q+s+1
o !

Xﬂa(%+q q+s+1 p+d —qg+s+3

HOE

k42 (2.32)

2 2 ’

It appears from Eqs. (2.28)-(2.32) that the function S(fq,(f) is represented by the sum of

Gauss’s hypergeometric functions. If, particularly, | € Z7, then S}, (%) = 0,0S},,(Z). Indeed,
it follows from Eq. (2.28) that for [ € Z™,

min (I,l—m) l
. y —1)? 1L (80, 7)
Sh(@) = 271/ (L + m)I(l = m)le ™) ( P Om2 . (2.33)
om () Vi mii—m) oy P+ M) = p)I(T = 1m0 = p)!
2.2.2 Definition. The functions
Sh(@) £ S,.(2) (2.34)

def

with [ € Z* form the set L; such that the cardinality #L; = 2l + 1, and the indices satisfy
m=—l,—l+1,...,0—1,1.

2.2.3 Proposition. For | € 77, the #L, functions S' (Z) constitute a set L; of components of
the SO(3)—irreducible tensor operator S'(7).

Proof. To prove the proposition, it sufﬁces to demonstrate that S, () transforms under D'()
(see Eq. (2.19)) or, equlvalently, under n'(Z1,T2) (see Egs. (2.17)-(2.21)), where the square
matrix n'(Z1, 7o) € {T&{(T1,T2), ~E€(T1,T2)}.
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To begin with, integrate both sides of Eq. (2.21) over Z» on S2. For positive integer A = I,
the result reads

/ A%y TL(Z2) = 0,0 Z S@)T (2.35)
SQ

p=-—1

The left hand side of Eq. (2.35) does not depend on Z; and it is a function of /. This implies
that the relation

D SN ENTUE) =) SH(@)Th(7)

p=-—l1 p=—l1

is valid for any 71, 7, € S*. Apply Eq. (2.21) for T',(Z,) once again. Then

l [
D SN E)TNE) = > Sy(@)n, (31, T2)T(T).

p=—l1 py=—l1

Finally, replace p with v on the right hand side and list the common terms next to Tpl(fl) from
both sides of expression. After replacing z; with T's, the result reads

Sh(#2) = me,xl (7)), p=—l,—1+1,...,1—1,L (2.36)

v=-—1

This proves the proposition. [

According to Proposition 2.2.3, the tensor products of SO(3)—irreducible tensor operators
S!(7) are reduced by using Eq. (2.20).
Conjecture. Unlike the case of SO(3), the transformation properties of functions S}, (Z) with

rational numbers & € QT are not so clear. In this case, Eq. (2.36) is not valid. This is because
a direct integration, as in Eq. (2.35), over Z on S? can not be performed correctly due to the
specific properties of S(fq, (z) for k € Q. That s, forl € Z™,

9«W/@%@@
SQ

for any 7; € S?. To compare with, see Eq. (2.27). This means, Eq. (2.21) applies for
0., (T1,T2) € { 7€,,(Z1,72), ~€,,(Z1,72)}, for all integers 4, p and for all possible Ty, Zo.
Conversely, for k € QT, the latter expression does not fit, as ¢, ¢’ are the rational numbers.
However, the numerical analysis enforces to make a prediction that particularly

S (72; € Z SQq Ty, 1) qQ<£1;§)7 quf(/fl%f)ief/d@ 5 (1, o).
52

Knowing the connectlon between SO(3) and SU(2), it turns out that there must exist the trans-
formation properties for S%, with k € Q, similar to Eq. (2.36) and to this day, the SU(2) case
is an open question yet.

Having defined the functions S;“q, (Z), the calculation of integrals in Eq. (2.10) requires little
effort. Besides, this is a simpler case than the integration on the basis ®(I'TIAM |z, T, ..., Tx)

since the product of D? () and D}~ () is reduced to a single spherical function DAM =(Q)
which is replaced by *72 (%1, 7,). If H" represents the angular part (C*(Z,) - C*(Z,)) of the

Coulomb interaction operator 1/r12, then A = 0 and a double integral is transformed to a single
one as follows
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// Az, A7y DL _(Q)(C*(Z)) - CF(@2)) DY (Q) = dr[k] V2 (—1)ktm+m
52

—1/2 K [ U L l U L L k K
X;[K] [k||S Hk];{—m m/ m’—m} [—Tﬁ m m'—m||m—-—m m-—m' 0

k k K L k K
X Z |:m/_m Q—l—m—m’ Q:| |:'fﬁ,—ﬁ;t T%—ﬁl,—Q _Q:| (237)

Q=even

Tab. 2: Numerical values of reduced matrix element of SO(3)-irreducible tensor operator S* for several
integers [, I’

LUk (Am)7HUISHN) 1 Uk e SENT T T ke (4m) TSR
00 0 1 2 4 2 = 1 5 4 —ﬁg
1 1 0 3 1 3 4 —% 2 4 4 —2,/3
1 1 2 1./2 2 2 2 1\/2 3 5 2 13
1 3 2 24/ 2 3 30 7 4 6 2 ey

Reduced matrix elements [/||S*||!'] are found from the Wigner-Eckart theorem. That is,

>
[l/] 1/2

ls*N] = WISHN] = Y (im|SEIUm! ) (' kq|lm), (2.38)

qgmm/’

where the matrix element is calculated on the basis of spherical harmonics. Some of the values
of [1||S¥||I'] are listed in Tab. 2.
In general, each /V-integral

/dfal/ dEEQ.../ dzy NI I A MY\ %, Bs, ..., TN) TS (T1, T2, - . ., T)
S2 S2 S2

x O(CF I AR MY |2y, Ty, ... T)
is replaced by the sum of single integrals

/52 dz (T)T(fbraﬁbraxbraﬂbra‘/f)fg (%\)SAQ

MM}

@S

M3 M},

~ A ~
(Z).. .SMJJVVMI,V(JU)

« é(fketﬁketxketﬁketrx\)'
Instead of that the NV — 1 functions S are produced. At least for A; € Z* Vi = 2,3,..., N, the
last integral can acquire the following matrix representation (see Proposition 2.2.3)

<beaHbraKbra]/—\Zbra|[. N [[Tf( % SAQ]EQ % SA3]E3 X ... % SAN:I%];,V|fk6tHk6thethet>, (239)

recalling that the parity is invariant under coordinate transformation. That is, [Ira-ket — [Jbrasket
Eq. (2.39) represents thus the single-particle matrix element on the basis of transformed func-
tions.

The calculation of spherical tensor operator matrix element on the basis functions
O(I'TIAM |z, Ty, ..., Ty ) assigns to calculate the N-integral over the spherical
coordinates T V¢ = 1,2,..., N. If the basis is represented in terms of Slater deter-
minants, then a usual technique based on the Wigner—Eckart theorem is convenient.
That is, the N—electron matrix element is taken to be the product of single-electron
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matrix elements. In the individual cases, the calculation may be performed in a
different way. If the RCGC technique is exploited, the N-integral is reduced to
the sum of single integrals. The technique based on the coordinate transformations
is even more applicable for the basis expressed by the spherical functions D*(€2).
The example of helium-like atoms confirms this clearly.

2.3 System of variable particle number

Unlike the case of Slater determinants it is more convenient to form the basis ®(I'IIAM ) from
the single-electron quantum states | A\m)—known as the vectors of Hilbert space—that are cre-
ated by the 2\ + 1 components of irreducible tensor operator a*—known as the Fock space
operator—acting on the genuine vacuum |0). In this case, the quantum mechanical many-
body system is characterised by the number of particles rather than their coordinates. The

characteristic operator is the particle number operator N = —[AJY2WO(AX), where the ir-

reducible tensor operator WA(Alxg) = [a™ x @*]*. The transposed annihilation operator

a) = (=1)» ™M where ¢’ annihilates the state |\ — m). It is assumed that the irreducible

tensor operator W2 (1 \2) acts on the irreducible tensor space H” if W (A1) transforms un-
der the G—irreducible matrix representation D*(g). On the other hand, H* may be reducible

HE x HS (A = LS for LS-coupling). Then W%5(l,1,) transforms under both D% (g), D%(g)
irreducible matrix representations independently. If, however, H* is irreducible, then A = J
(j7-coupling).

Judd [46] demonstrated that the application of a second quantised representation of atomic
many-body system appears to be especially comfortable for the group-theoretic classification

of the states of equivalent electrons of atom. The key feature is that the products of a;, and a;\;«j
form the Lie algebra Ay,_;, where N; = max N = 4[] + 2 is a maximal number of electrons
in the shell /V. This implies that the branching rules for the states of [’V are to be obtained.
For LS-coupling, the typical reduction scheme reads U(V;) — Sp(V;) — SO%(3) x SU%(2).
Particularly, the multiplicities of Sp(V;)—irreducible representations determine the so-called se-
niority quantum number v, first introduced by Racah [9, Sec. 6-2]. In this case, it is convenient
to form the tensor operators W (A \) = [a2™ x a2*2]"* on HY = H? x HA, where H? de-
notes the quasispin space. The quasispin quantum number () relates to v by @ = ([\] — 2v) /4.
Various useful properties of operators on H? were studied by Rudzikas et. al. [S0]. How-
ever, starting from f3 electrons, the last scheme is insufficient and thus additional characteristic
numbers are necessary. The complete classification of terms of d" and fV configurations was
tabulated by Wybourne et. al. [68, 69].

In order to write the Hamiltonian A that describes a system with variable particle number,
it is sufficient to express H by its matrix elements as follows

f
H=Hy+V, Hy=>» Oilaa)ea,, V=) Vi, V,=F,], (2.40)
(<31 n=0
Fulo] 2 3" On(aB)va(af), (2.41)
In(a/é)
On(af) = g, agy - . . aanflaanagnagnil . aTBQa%lz, Op(af) =1, (2.42)
vn(a3) (jzf Vasageotin10nfi fanfn1fn = (0102 - Q10 [R(0)[B1f2 . Bu1Bn),  (2:43)
where I, (a3) = {aq,as,..., 1,0y, 51,02, ..., Bn_1,Bn} is the set of numbers a; and [3;
Vi,j = 1,2,...,n that characterise the states |z;) = a,,|0), where 2; = o, 3; and a,, = a?,f;i.

By default, it is assumed that each operator a,, is additionally characterised by the principal
quantum number n,,. The notation : : denotes the normal order (or normal form). The opera-
tors h(n) with the eigenvalues ¢,, represent the Hamiltonians that are particular for the single
particles. Their sum forms the total Hamiltonian /. For the atomic case, see Eq. (2.1). The
number f depends on the concrete many-body system. For the atoms and ions, f = 2, as all
interaction operators h(n) used in atomic spectroscopy are obtained from the Feynman diagram
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which requires effort to demonstrate that the path integral is determined in terms of the interac-

tion (1 — (oy - o)) exp [ile1 — e1/|r12] /r12, where a; = (o, %) are the Dirac matrices and

o; denote the 2 x 2 Pauli matrices. Thus the matrix element of the latter interaction operator
on the basis of Dirac 4—spinors results to the sum of Coulomb interaction 1/r;, and the Breit
interaction which particularly is expressed in relativistic and nonrelativistic forms [52, Secs.
1.3,2.2].

It can be readily checked that the matrix elements of N—electron Hamiltonians A and H on
the corresponding basis ®(IIIAM ) or else |'TIAM) are equal. However, H has the eigenstates
for all N, while H only for a specified N. According to Kutzelnigg [31, 70], H is called the
Fock space Hamiltonian.

2.3.1 Orthogonal subspaces

The task to find the set X = {|V;)}°, of eigenfunctions of H (see Eq. (2.2)) is found to
be partially solvable by using the partitioning technique, first introduced by Feshbach [71].
Later, it was demonstrated by Lindgren et. al. [34] that the present approximation leads to
the effective operator approach. In their used formalism, on the other hand, Lindgren and
the authors behind [36,38] commonly regarded the matrix representation of tensor operators.
This, however, is a more comfortable representation for practical applications, though it is less
universal. The significant opportunities of the irreducible tensor operator techniques in the
many-body perturbation theory (MBPT) were demonstrated in Refs. [54,55,72,73].

To find a subset Y = {|¥;)}9_, C X of functions |¥;) (with d < o0), the following space
partitioning procedure is performed.

2.3.1 Definition. A subset Y = {|®,)}¢_, ¢ X = {|®,) o2 | satisfies:

(a) the configuration parity I, = H?ﬁk =1,2,...,dis aconstant for all N;—electron config-
uration state functions |®;) = |®)) = [ IIY A, M,,) € Y

(b) the eigenstates \Cbg) of PAIO contain the configurations of two types:

(1) fully occupied l,]:il’“"’ configurations that particularly determine either core (c) or valence
(v) orbitals; the core orbitals are present in all |<1>,f) for all integers ¢ < ug, and for all
k, where ug, is the number of closed shells in |<I>,g); the valence orbitals are present in
some of the functions |<I>Z);

(2) partially occupied l,ivz’“z configurations that determine valence (v) orbitals for all integers
z < uf, where u{ is the number of open shells in |®} );

(c) the subset Y is complete by means of the allocation of valence electrons in all possible
ways.

Several meaningful conclusions immediately follow from the definition of Y.

1. The number Nj, of electrons in |<I>3k7> equals to

ug ug g
Ne=N{+Np, Ne=) Ny, =2{ug+2) I |, NP=> Np, (244)
t=1 t=1 z=1

where Vi and N} denote the electron occupation numbers in closed and open shells.
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2. The subset Y is partitioned into several subsets 37”, each of them defined by

A
Vo U f/m o def {|<I>Y> s do =0, dy=d. (2.45)
n=1

The subsets Y, are assumed to contain the A, —electron basis functions \(IDY ), where the
identities N, = Ny, 41 = Ng,_,42 = ... = Ng, and N} # N, # ... # N4 hold true.
This implies that H, has the eigenstates V |<I>g> €Y, ¥n=12,... ,A, while Hj has the
eigenstates |<I>,gn> for which dx;, # 0. Thus only one specified subset Y, fits the eigenvalue
equation of Hy. It is found to be the subset }7% with N = N.

3. Items (a), (c) in Definition 2.3.1 stipulate that the subset Z = X\Y = {|©,)}:°, formed
from the functions |©;) = |®,4.,) represents the orthogonal complement of Y. That is,
Y NZ = (. The single-electron orbitals that form the configurations in |©;) will be called
excited (e) or virtual orbitals. These orbitals are absent in Y.

The conclusions in items 1, 3 agree with those inferred by Lindgren [34, Sec. 9.4, p. 199],
who used to exploit the traditional Hilbert space approach. On the other hand, item 2 extends
this approach to the systems of variable particle number.

Having defined the subsets 37, Z C X of vectors of many-body Hilbert spaces, it is sufficient
to introduce the subspaces as follows.

2.3.2 Definition. The functions ]CD? ) € Y,, form the \,—electron subspace

= {|®Y (DZ |CI) >Hn = 61‘,%1“% 5Akn/\k;’, 5Mank£z, = 61%16;17
Vky, ki, = dnoy + 1,dpo1 + 2, dy} (2.46)
of dimension dim P,, = d,, — d,,_1, where H,, denotes the inﬁgite—dirgensional N, —electron
Hilbert space, spanned by all \,,—electron functions |®,, ) from X,, C X.

2.3.3 Corollary. In accordance with item 2, if n = n, then Hz = H denotes the infinite-
dimensional N—electron Hilbert space, while Py = ‘P denotes the N—electron subspace of H
withdimP =d; —ds—1 = D.

def

2.3.4 Corollary. According to item 3, the orthogonal complement Q, = H, © Py, of Py is
spanned by the N,—electron functions |0,,) € Z,, C Z. That is,

(OB Y, =0, VI=1,2,...,00, Yk=1,2,...,d, ¥n=1,2,... A  (247)
If pamcularly n=nmn, then Q5 = Q denotes the orthogonal complement of P.

2.3.5 Definition. The functions ]@,% € Y form the subspace

A
W= {!‘I)i/> ' ‘I)Y!(I) Z q)y |‘I> = 0r,r,, 0A, A OMy My = O
n=1
A A
Vk,k’:l,Z,...,d}:@PnC}"d:ef PH.c3 (2.48)
n=1 n=1

where § denotes the Fock space.

2.3.6 Corollary. The orthogonal complement U < F oW of W is spanned by the functions
‘@l> €z

Having defined the many-electron Hilbert spaces, the following proposition is straightfor-
ward.
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2.3.7 Proposition. The form 1.: Hy — Ha, expressed by

@) € X, (2.49)

/1\n = Z |(I)pn><(ppn

pn=1

is a unit operator on 'H,,.

Proof. For the basis |9, ), it is evident that (see Definition 2.3.2)
1n|q)pn> = Z |(1)pil><q)pil|®pn>7in = |q)pn>'
P

For the linear combinations |¥M) = Z;\f —1 Cpn|®p,,) With ¢, € K = R, C this is also readily

obtainable. That is, 1,,|UM) = S 1,|®,, ) = [TM), O

pn=1pn

2.3.8 Corollary. The form 1: F— F, expressed by

A
1= Z 1,, (2.50)

n=1

is a unit operator on F.

Proof. The proof directly follows from Definition 2.3.5 and Proposition 2.3.7, recalling that the
functions |®,) € X of F determine any function from the sets X, Xo, ..., Xa4. ]

Select another basis Y = {|W¥;)}?_, of W C F which is partitioned into the subsets ¥;, of
Pn C Hy, defined by Y, = {|0; )}, | withdy = 0,d4 = d (see Eq. (2.45)). As usually

(see Eq. (2.2)), it is assumed that the functions |¥;) € Y designate the eigenstates of HonF ,
while the functions |V, ) designate the eigenstates of H on . Then it is easy to verify that for
any integer n < A,

1,00;) = |0;) = [@F) + Qu|¥,,), |07)= P,|T;), (2.51)
dn _ _ N [e%) R R R
P2 > o W@ Qu = D 10O, Pt Qn =1, (2.52)
kn=d,_1+1 =1

If the operator Q: P, — H,, is defined by Q(n)ﬁn =1, then @n = Q(n)ﬁn — ISn and

;,) = Q(n)[@7). (2.53)

Jn
~

Q(n) acts on H,, and it is called the wave operator [34, Sec. 9.4.2, p. 202, Eq. (9.66)]. This

implies that the eigenfunctions |¥;_) of H are generated by the wave operator ﬁ(ﬁ) = Q on the
N—electron Hilbert space H. The functions |CI>;1> are called the model functions of P,,. It was

Lindgren [28, 34] who first proved that the wave operator Q) satisfies the so-called generalised
Bloch equation

[, Hy|P = VQP — QPVQP (2.54)
which is obtained from the eigenvalue equations of H, and H taking into consideration that
[Hy, P] = 0, where P = P; (it is also considered that ) = Q7).

For the systems with variable particle number, the action of @(n) must be extended. This
will be done by introducing the Fock space operator (see Eq. (2.41))

SE1+) S, 8, E Fw, (2.55)
n=1
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obtained by expanding the exponential ansatz into Taylor series. The coefficients w, (/) de-
termine matrix elemeEts of some effective interactions indicating the n-particle effects.

The definition of S in Eq. (2.55) is insufficient for the wave operator on F. According to its
terms, the wave operator on H,, maps the space P,, to H,, (see Eq. (2.53)). Consequently, the
wave operator on F should map W to F. To realise the mapping, write the Fock space operator

§: W — F so that
A R . A
Z nP,=1, [0))= 2[9;)=> F[¥,,). (2.56)
n=1 n=1

Therefore it turns out that S determines the wave operator on F. The projection operator & is
self-adjoint and idempotent. This fact allows us to verify without supplementary proof that

1S, H)\? =VSP - S2V3iZ, |[Hy P =0. (2.57)

Apply Egs. (2.55)-(2.56) to Eq. (2.57) for n = n. The result reads
[, H)|P = VQP — QPVQP, (2.58)
A:I~+Zﬁn, 0, < QS,P. (2.59)

Eq. (2.58) differs from Eq. (2. 54) In Eq (2.54), the wave operator acts on the N—electron

Hilbert space H. In Eq. (2.58), Q) also acts on H, but in this case, it is represented in terms of S
which in turn is projected from F to ‘H (see Eq. (2.59)). In other words, Eq. (2.58) designates
a second quantised form of the generalised Bloch equation in Eq. (2.54). To compare with, Eq.
(2.57) is the Fock space interpretation of the generalised Bloch equation confined on the Hilbert
space of specified particle number. On the other hand (see Eq. (2.56)), to solve Eq. (2.57) for

S Eq. (2.58) must be solved for Q.

The non-variational formulation of the quantum mechanical many-body system ap-
pears to be naturally implemented within the frames of the Fock space §. Itis a
rather broadened interpretation to compare with the traditional variational approach
which is confined to operate on a specified Hilbert space H. The partitioning of the
Fock space into its subspaces by the scheme § D F = VW & U makes it possible
to consider concurrently the finite-dimensional many-body systems with variable
number of particles. In the atomic applications, the procedure of partitioning holds
with the ability to account for the effects of ions with different degree of ionisation,
as the second quantised Bloch equation handles the effective n-body operators.

2.3.2 Effective operators

The essential advantage of partitioning of N—electron Hilbert space H into its orthogonal sub-

spaces P, Q is that the procedure provides an opportunity to define effective operators ¢ which
particularly act on the bounded space, preserving the initially determined integrals of motion,
though. In Sec. 2.1, it has been already noted that one of these integrals of motion designates

energy of system. The graphical interpretation of the action of effective operators ¢ on P can
be visualised by the following illustration

fqujV
73 . .

7P
Ao )

H (2.60)
Q

where the vector H |W; ) of H is projected onto the vector JZ’W ®P ) of P by the orthogonal

projection P. Conversely, the vectors H |W,_), projected by @, lie on the Q «plane». Making
use of Egs. (2.40), (2.51)-(2.53), it immediately follows that
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~

A = PHP+W, éZﬁf/HAngﬁ, 2.61)

where Q is of the form presented in Eq. (2.59). Eqgs. (2.59), (2.61) point to at least two types

of Hilbert space operators: PO,, (aﬁ)P and QO (aﬂ)P (see Eq. (2.42)). To determine their
behaviour for a given set I,,(a3) of single-electron orbitals, redefine items (b)(1)-(2), (c), 3 in
Sec. 2.3.1 in a more strict manner

(A) acP =0, (C) a,P #0,
(B) alP =0, (D) alP #0.
As already pointed out, items (A)-(B) agree with Ref. [34, Sec. 13.1.2, p. 288, Eq. (13.3)].

Items (C)-(D) embody a mathematical formulation of item (c) in Definition 2.3.1 and are of
special significance since they define the so-called complete model space.

The normal orders of products of creation and annihilation operators in 5n(a5) for the
specified types (v, e, ¢) of a, (3 are these

where A (up) and ¥ (down) denote the direction of electron propagation. For the states created
by a,, write |a). For the states annihilated by aTB, write | 3). Hereafter, the over bar designates
annihilated states, but both o and 3 determine the type of orbital: v, e or c. According to Eq.
(2.63), permitted propagations for o and ( electrons are to be upwards for a, [ = e,v and

downwards for o, 3 = c. In algebraic form of Eq. (2.63), write :a,a % = aaa fora, 5 =v,e

(2.62)

(2.63)

C

C

i
|

and :ata,: = ala,, for a, 3 =c.

8 B

2.3.9 Lemma. If 6n(a6) is a Fock space operator and P, @ are the orthogonal projections on
infinite-dimensional N—electron Hilbert space 'H, then for any integer n < N, the following
assertions are straightforward:

i) ﬁ@n(aﬁ)lg #0iffa, B =v;
ii) @6,1(043)? #0iffa=v,eand f =v,c;
i) QO,(vV)P = 0iff S0 (Iy, + Is,) € 27+,

Observing that self-adjoint operator 6}1(@5 ) = 6n(ﬂ_a), the following statements are true
if Lemma 2.3.9 is valid.

2.3.10 Corollary. The operator ﬁ@n(aﬁ)é #0iffa=v,cand f =v,e.

2.3.11 Corollary. The operator PO, (v¥)Q = 0iff 7, (Iy, + ly,) € 227
Corollaries 2.3.10-2.3.11 are to be proved simply replacing o with 3 in Lemma 2.3.9.

Proof of Lemma 2.3.9. To prove the lemma, start with item 1) which is easy to confirm by pass-
ing to Eq. (2.62). To prove item ii), write:

1. Qay P = a, P — Pa,P # 0 due to items (C)-(D), i).

2. QalP = al P — PalP # 0 due to items (C)-(D), i).
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=a.P = a, — ae@ # ( due to item i) and Corollary 2.3.4.

3. @aeﬁ = aeﬁ — ]3ae]3

4. @a%ﬁ = alﬁ — Pa 213 0 due to items (B), 1).

5. @acﬁ = ac]3 — Pa ]3 = 0 due to items (A), 1).

6. QalP = alP — ﬁagﬁ = al P # 0 due to item ).

To prove item iii), write |(I>i/ﬁ) in an explicit form as follows (see Definition 2.3.1)
G o e ..szu:“rk 1Y Ay, My ),

where uy, = ug_ + uj_. Start from n = 0. This is a trivial case, as Oo(aB) = 1and QP = 0.
Suppose n = 1. Then
dx

Qunal, P= 3 3 106)(00 |, )n(@l|. (2.64)

kn=dm_1+1 =1
The N—electron function |} _) = ay,ay, |<I>Y ) in an explicit form reads

5L, )3 (Lo s { 0 N =l 2,

e S e A A S T et TN TN SR ) v | T/
In Eq. (2.64), the sum runs over all k;. Consequently, there exists at least one function ]@,’;)
from the complete set ?ﬁ such that lg, = [, and [, = [_s with N_, < 4l,_s + 2. Then
the parity of obtained non-zero function |®;_) equals to ITj_ = (—1)~H 1Y . In addition, if
ly, + ly, is even, then 1T} = 11" and thus |®}. ) is equal to \@,gﬁ} (see item (c) of Definition

2.3.1) up to multiplier, where kL acquires any values from d5_; + 1 to dj. But (O, |(I>’,Z)H =0
due to Corollary 2.3.4. !

For n > 1, the consideration is consequential and easy to prove. In this case, the parity of
D)) = O, (vv)|<I>Y > equals to IT)_ = (— 1) 1Y, where 0, = S0 4 (ly; + ls,) assuming that
lk% = lV and l,_s, = [y, for all = = 1,2,...,n and for all r;, s; in the domain of integers

i

Item ii1) of Lemma 2.3.9 may be thought of as an additional parity selection rule whose

application to the effective operator approach is of special meaning. The main purpose of

the rule is to reject the terms of €2, (see Eq. (2.59)) with zero-valued energy denominators.
These energy denominators are obtained from the generalised Bloch equation. Indeed, for the
commutator of Eq. (2.58), write

Q[Q’ HO}P = Z |@fﬁ><@fﬁ|[97 HO] |¢Zﬁ><¢zjﬁ| = Z Z |@€ﬁ><@€ﬁ|QN|(DZ5><(I)Z,~L|(£kY5_£)kﬁ)7
ki7ls n kil

where é"k’f and &}, denote the eigenvalues of H, for the eigenfunctions |(I>Y ) and |©,_ ), respec-

tively. The right hand side of Eq. (2.58) may be expressed by

DOCISICHPAL Yot Ya]
ki lx

where the effective operator ¥ denotes the sum of F,[v*//] (see Eq. (2.41)) with v*/f being
some effective interaction. Then

~ E,[vef 1P
5 _ QR )P
é"kyﬁ &
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But each eigenvalue éakyﬁ &y, is the sum of single-electron energies €; which are found by
solving the single-electron eigenvalue equations for the single-electron eigenstates that corre-

spondingly form |®} ) and |©, ). Hence,
ANGAN NN 3 3 df eff 3 7\ def -
= 3 00uad)Pun(ad), wilaf) = D) G (05 S ey ), 265)
In(aB) n(a/g) i=1

where coefficients wn(aﬁ) also characterise the Fock space operator S (see Eq. (2.55)). It
immediately follows that for « = 3 = v, the energy denominator &,,(vv) = 0. Therefore item
iii) of Lemma 2.3.9 omits this result for even integers > .-, (I, + Is,).

The D-dimensional subspace P of infinite-dimensional /N-electron separable Hilbert
space H is formed of the set Y5 of the same parity 1Y configuration state func-

tions |<I>kyﬁ> by allocating the valence electrons in all possible ways (complete model
space). In addition, to avoid the divergence of PT terms, the parity selection rule is
assumed to be valid. The subspace P will be called the model space.

The effective operator H in Eq. (2.61) is usually called the effective Hamiltonian or the

effective interaction operator. This is because the eigenvalue equation of Hamiltonian H for
|W,_) is found to be partially solved on the model space P by solving the eigenvalue equation

of . for the model functions \CDZ’F) (see Eq. (2.60)).

The second quantised effective operators PH ﬁ and ) are written in normal order (see Eqgs.
(2.40)-(2.42), (2.59), (2.61)), while the le operator W is not. To «normalise» W\ the Wick’s
theorem [40, Eq. (8)] is applied. Then W= + Zg {W}g where the last term denotes the
sum of normal-ordered terms with all possible {é—pair contractions between the m—body part of
perturbation 1% (for m = 1,2) and the n—body part of wave operator Q (for n € Z7). In this
case, 1 < ¢ < min (2m, 2n). In accordance with Lemma 2.3.9, the result :W\: = (0 is immediate.
Thus the operator W in normal order reads

00 2
W=y { PV, Ple: . (2.66)

2.3.12 Theorem. The non-zero terms of effective Hamiltonian H on the model space P are

generated by a maximum of eight types of the n—body parts of wave operator ) with respect to
the single-electron states of the set I,(a3) for all n € 7.

Proof. The proof is 1mplemented making use of Lemma 2.3.9. The terms of wave operator O
that generates  are drawn in . Therefore it suffices to prove the theorem for the effective

operator w.
Expand the sums in Eq. (2.66) as follows

Z {(PV,,0, P} Z(Z (P9, Pl +Z {PV0.Ple:).

n=2 ¢=1
It turns out that for n = 1, the following three sets / l(aﬁ) (see items ii), iii) of Lemma 2.3.9)
are valid in Eq. (2.65):
V={ev), 1P ={ve}, IV ={ec}, (2.67)
avoiding for simplicity the subscripts 1 in a1, ;.

Forn > 2, the T-body terms of WW are derived. Here T' = n—2,n—1,n, n+ 1. Particularly,
the (n — 2)-body terms are derived by making the four-pair contractions in {PV5Q, P},. In
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accordance with items ii), iii) of Lemma 2.3.9, it immediately follows that the n—body part of
wave operator {2 must include at least n—2 creation and n—2 annihilation operators, designating
the valence orbitals (item i) of Lemma 2.3.9). Possible sets ,,(«3) of single-electron states that
provide non-zero T-body terms are these:

I ={v1, Vo, Vil €, Vigt, - oy Vi, V1, V2, - oo, ¥ (2.68a)
1722) E{V17V2, . ,Vn,\_/l,\_fg, R ,\71'_1,(_3,\_71'+1, Ce ,\_/'n}, (268b)
17(;)) E{V1,V2, ey Vi 1,6, Vig g, .- s Vi, Vi, Vo, ... ,\7]‘_1, é,vj+1, e 7\7,1}, (268C)
[724) E{Vl,VQ, ey Vie1,6, Vi1, .00, Vi, e’,VjH, . ,Vn,\_/'l,\_fQ, ce ,\_/'n}, (268(1)
1725) E{V17V2, . ,Vn,\_/l,\_fg, R ,\71'_1,(_3,\_7@'+1, Ce ,\_/'j_l, EI,\_/j+1, . ,\_/'n}, (2686)

17(L6) E{V1,V2, ey Vi 1,6, Vi, .. ,Vn,vl,VQ, e ,\7]‘_1, é,vj+1, ce 7\7/6—17
< Vitt -5 V), (2.68f)

[727) E{Vl,VQ, ey Vit 1,6, Vi, .. 7Vj—17 e/,Vj_H, e ,Vn7{/1,\72, e ,\7]@_1,
C, ki1, Vnlt, (2.68g)

[7(18) E{Vl,VQ, ey Vie1,€, Vi1, .00, Vi, e/,Vj_H, . 7Vn7‘717‘72a .. 7‘71@—17
C, Vi ts s Vie1, €, Vi1, - oo Vi b (2.68h)
This proves the theorem. ]

Theorem 2.3.12 determines that for each fixed Fock space operator §n, there are maximum

eight types of the Hilbert space wave operators €2,,. For example, if the wave function |¥;_)
distinguishes between single-, two-, three-, four-particle effects (n = 1, 2, 3, 4), then Theorem

2.3.12 allows to write Qn as follows

g aea Weg + E ava Wye + E aea Weg, (2.69a)
i 1 ®
Qy = E aaaa/a a waa,/gﬁfjt E Aoy Qg aTweWC—i— E Aoy Q5 agwevg@
4,5,8) 3 1,6
1§ ¥ f S
Z/ i
+ A0’ O50zWaa’cv, (269b)
20
) Z’ t ot ot Z’ tot ot
Q3 = Ao Ay Q01 Q50 A5W ! v’ " + avav’av”acaﬁ/a WyviviiBle
1(1’4) I§2,5)
Tt _
+ E aaaa/a“acaﬁ,a Waa! uvf'es (2.69¢)
(3,6,7,8)
13
-~ !/
Q4 = E aeaa’avav”ag/”a.\rf///a\t;/a\tIWEOA’VV”V\_/’V”V”’ + E avav’av”av’"aTaL//a’T/a’Twvv’v”v”’\_/\_"/é”é
(1 4) 1452 ,5)
+ ) %%mwd@ﬂﬁ%mmm% (2.69d)
7(3.6,7.8)
4

where the single-electron states «;, Bj are replaced with «, o/, u, B, e, v, etc. Here and else-
where, it is assumed that the Greek letters denote all three types of single-electron states. The
sums with primes denote the following operations
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3= Guebn 4> b+ Y ducSe, (2.70a)

I§4’5’8) 154) 155) Iés)
Z' => Op+ Y g, forz=2a=1b=6andz=34a=20b=5 (2.70b)
I;a,b) I;a) I;b)
!/
=D bovt D o, forz=2a=2b=Tandz=4,a=1b=4  (270c)
Iéa’b) Iéa) Ig(cb)
3= bl Y e (2.70d)
I§1,4) Iél) I§4)
Z/ = Z 6avéﬂv5ue + Z 6av56c6,ue + Z 5a655v5,uv + Z 6ae(sﬁc§,uv7 (2706)
[F6TH @ o ) 7
Z Z 5av56v + Z 5av5ﬂc + Z 5ae6ﬁv + Z 504655C (27Of)
[BoT® e o g

For the sake of brevity, in Eqs (2.70a)- (2 70f) and wherever possible elsewhere, only the types
of single-particle orbitals will be designated, but not their values. For instance, in Eq. (2.69b),

the term Z}él,G) aeavag,aT Wey3g CONtains two two-particle effective matrix elements_wev/g@_with
B = vand # = c (see Eq. (2.70b)). This implies that two single-particle orbitals 3 and 3’ are
of whether valence (v) or core (c) type. That is, the values of orbitals are correspondingly v, v/

for 3 =vandec,c for §=c.
2.4 Concluding remarks and discussion

For the first time, the method to calculate matrix elements—based on coordinate transforma-
tions or else the RCGC technique—has been developed (Sec. 2.2). The technique solves two
main tasks. First of all, it reduces the number of multiple integrals of many-electron angular
parts up to a single one. Obtained single integral is calculated by introducing the reduced matrix
element of founded functions that particularly form the set of SO(3)-irreducible tensor opera-
tors (Sec. 2.2.2, Definition 2.2.2, Proposition 2.2.3). Secondly, the technique makes it possible
to calculate the matrix elements of irreducible tensor operators on the SU(2)—irreducible matrix
representations efficiently. As a result, the method developed here comes down to two distinct
lineages, one that can be traced to the basis of separable Hilbert space (Eq. (2.2)), and the other
to irreducible matrix representations (Eq. (2.5)) [52,65,67].

Sec. 2.3 extends the formulation of many-electron system studied in Sec. 2.1 and Sec. 2.2 to
the system with variable particle number. The non-variational or else the perturbative approach
to find a finite set of solutions of eigenvalue equation of atomic Hamiltonian has been developed.
Based on Feshbach’s partitioning technique [71], the generalised Bloch equation [34] has been
rewritten in a Fock space approach (Sec. 2.3.1) [39,70]. As a consequence, proposed algebraic
technique based on the effective operator approach (Sec. 2.3.2) leads to meaningful results
(Theorem 2.3.12) that directly govern the solutions of generalised Bloch equation as well as
the number of terms of effective Hamiltonian (Eq. (2.61)). These results become even more
valuable for the higher-order perturbations.

The foremost consequence followed by the suggested Fock space partitioning procedure is
that not all computed terms of wave operator (see Eq. (2.59)) attach non-zero contributions to
the terms of effective Hamiltonian. This fact, undoubtedly, significantly decreases the amount
of computations necessary to find, subsequently, a fixed number of energy levels of atom.

To what has been found in the present section so far, a no less important task is to realise
a developed foundation for the effective operators in a second quantised representation. Two
major problems take place to solve the task of perturbative expansion for atomic systems. The
first one is to solve the generalised Bloch equation for the wave operator on many-electron
Hilbert space (see Egs. (2.58)-(2.59)). The wave operator is listed by the infinite sum of n—
body terms. Consequently, for practical computations, it has to be interrupted to a finite number
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of terms by excluding the reminder term. The procedure, obviously, leads to approximate values
of operator and the wave function as well. Meanwhile, there are also good news. As already
pointed out, Theorem 2.3.12 allows us to reduce significantly the number of n—body parts of
wave operator. This even more simplifies computations for the approximate wave operator.
Blundell et. al. [35] demonstrated that their all-order calculations of energies in cesium with
omitted triple and higher-order excitations (n = 1, 2) differ from the experimental data at around
1%. In their study for the beryllium-like ions, Safronova et. al. [36] used to exploit the second-
order MBPT, clearly demonstrating that their calculations differ from existing experimental
data for the nuclear charges ranging from 4 to 100 at the level of 50cm ! for triplet states and
500cm ! for singlet states. These results obtained by using perturbative methods with relatively
low-order excitations are in a smooth agreement with experimental data and thus they strongly
motivate for further development of the approach under consideration.

There are two ways to solve the second quantised generalised Bloch equation for the wave
operator, one that is to express it by the sum of n—body terms, as in Eq. (2.59), and the other is
to express it in terms of the kth—order wave operator, where £ = 1,2, . ... The first approach is
called the coupled-cluster (CC) approximation and the second approach is called the Rayleigh—
Schrodinger perturbation theory (RSPT). For the RSPT, the wave operator on N—particle Hilbert
space is found to be of the form

00 2k
Q=1+ a® oW =3" gk (2.71)
k=1 n=1

To find the kth—order n—body terms O of wave operator, it is sufficient to express them by
Eq. (2.65) replacing the effective matrix elements w,, (a/3) with the kth—order effective matrix
elements w,(lk)(ozB). For example, if n = 1,2, 3,4, then QS‘?) is given by Eq. (2.69) if w’s are
replaced with the corresponding w*)’s.

It turns out that it is a fair of choice which form of the solutions of wave operator to be
selected, as the mathematical formulation of tensor structure of effective operators remains
irrelevant. That is, the difference is in the w elements only. To find the irreducible tensor
form of effective operators such that both — CC and RSPT - approaches could be applicable
simply replacing the effective matrix elements, is the second major problem of perturbative
formulation, studied here.

To this day, the authors who work in the MBPT usually consider the diagrammatic repre-
sentation of expansion terms, followed by Goldstone [23] and later by Lindgren et. al. [34].
However, recent works in the higher-order perturbation theory [36,42,74,75] demonstrate, in
principal, the inefficiency of such representation, though it is beautiful to behold and efficient
in many individual cases. The motivation to develop an algebraic technique suitable for both
MBPT approaches is encouraged by the features of nowadays symbolic programming tools as
well. The algebraic method that solves the tasks studied in the present section will be developed
in thereafter sections.
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3 Irreducible tensor operator techniques in atomic spectroscopy

In the present section, the angular reduction schemes of totally antisymmetric tensors O,, (Sec.
2.3, Eq. (2.42)) are studied. The properties of irreducible tensor operators on different tensor
spaces and on their tensor products are studied as well. The methods developed here are ap-
plicable to both physical operators considered in atomic spectroscopy and effective operators
particular to the atomic MBPT. Special attention is paid to the cases n = 1, 2, 3, as the contribu-
tions of single, double and triple excitations are most valuable for energy corrections observed
in MBPT.

The prime issue is the developed technique to reduce a tensor space H? x H9? x ... x H¥*
denoted by H, to its irreducible subspaces H?. Irreducible tensor operators on H? are classified
by the angular reduction schemes that in turn are obtained making use of: the /—numbers for
¢ € 7, the irreducible representations [\] of symmetric group Sy, the ¢>—tuples, the permutation
representations 7 of S,. To provide suggested technique efficiently, the method of commutative
diagrams is originated. The advantage of developed reduction technique to compare with a
usual diagrammatic method used in the angular momentum theory is clarified. Namely, it is
a convenience to apply it to the systems considered by a large number of momenta or other
SU(2)-irreducible representations.

Sec. 3.1 contains a description of a method to classify angular reduction schemes of 6n and
establishes the connection between them. In Sec. 3.2, the application to the atomic systems is
demonstrated: the irreducible tensor operators are considered when they act on ¢ < 6 electron
shells.

3.1 Restriction of tensor space of complex antisymmetric tensors

3.1.1 Classification of angular reduction schemes

To classify reduction schemes, the decomposition of O,, into irreducible tensor series of oper-
ators on H is the most convenient choice. In this case, all creation a,, = a;}zﬁ and annihilation

al = aﬁf operators are represented by ag:. Also, it makes sense to consider the notation of

Bj
operator string as follows

o0, agay’ ... ag, oap =120, B =2y, (3.1)
where the irreducible tensor operators a“* satisfy the following anticommutation rule
{aﬁk ) aﬂi } 1>ak7ﬁk+16<ak7 al)é(ﬁku _ﬁl)~ 3.2)

Then for ¢ € 277, the /-length string O, represents O, /2 on Hy if Eizl Or = Zizl x. That

is, the sum of quasispin basis indices is zero and thus the matrix representation of O, is diagonal
with respect to the particle number. Throughout this text, the last condition is always satisfied
for ¢ € 277", unless explicitly stated otherwise.

A classification of reduction schemes of @g with ¢ = 2,3,...,5 has been first established
by Jucys et. al. [10, Sec. 5-21]. However, only three types of schemes have been considered
(Ap, A1, As), concentrating mainly on the permutation properties of angular momentum. In

contrast, a general algorithm to classify reduction schemes suitable for @g with ¢ € Z* will be
demonstrated here. The schemes will be explicitly listed for ¢ = 2,3, ...,6.

To solve the task for /—length string Oy, it is convenient to introduce the /—number that
contains numerals 1 and 2 only.

3.1.1 Definition. The /—number is a number containing ¢, numerals whose values are 1 and 2
only.

It follows from Definition 3.1.1 that

62 :h1+h2 :g—hg, (33)

where h; and hy denote the multiplicities of 1 and 2 in /.
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Example. For example, there are two 3—numbers: 12 and 21; h; = hy = 1, {5 = 2. On the other
hand, number 3 is partitioned by several different ways which, in general, are easily obtained
from the tables of irreducible representations (recall «irreps») [A] of symmetric group S, (see,
for example, [76, Appendix 1, p. 261]). In this case, [\] = [3], [21], [1]. Pick out irreps with
the numbers that are present in 3—number. This is [\] = [21]. Consequently, the 3—numbers 12
and 21 are to be convenient to characterise them by the Ss—irreducible representation [21]; thus
they belong to the same conjugacy class () = (1'22) of S3.

In general, the /—numbers are characterised by the S,—irreducible representations of the type
[2h21M]. Particularly, if h; = 0 and hy = 1, the symmetric Sy—irreducible representation [2] is
omitted. Instead of that, the antisymmetric representation [1%] is chosen.

The example considered above demonstrates that the characterisation of /—numbers by the
Se—irreducible representations is insufficient since both 3—numbers belong to the same class of
Ss. Extra characteristics are necessary for a unique labelling of /—numbers. The numbers 12
and 21 differ by the ordering of numerals 1 and 2. Consequently, it is convenient to exploit
the properties of /o—tuple which is an ordered list of ¢/, numerals 1, 2. Then 3—numbers are
additionally characterised by the two distinct 2—tuples [[12]] and [[21]].

3.1.2 Proposition. For a fixed { € 7, the {(—numbers form a set E, with cardinality

0!
B, ==
#E hylhy!’

where hy and hsy are the multiplicities of numbers 1 and 2 in the S,—irreducible representation
[A] = [2h21M].

ly = hy + ho, (3.4)

Proof. The proof is a simple combinatorial task to find all possible permutations of numbers 1,
2 whose multiplicities are hy, hy, where hy 4+ ho = {5. If hy = 1, there are {5 ways to permute 2
in (. If hy = 2, there are {5({s — 1)/2 ways to permute both 2 numerals in /¢, etc. For arbitrary
ha, there are (;2) ways to permute h; numerals 2 in /. O

Still, one more property of /—numbers ought to be determined. It is a connection between
two /—numbers with different ¢. First of all, pick out the sth /~number from the set F,, where
» =1,2,...,#F),. This {~number is uniquely characterised by the S,~irreducible representa-
tion [A] and by the ¢ (¢)—tuple. Secondly, make a change 2 — 1’, where a prime over numeral
1 is written to distinguish 1’ from 1. By doing this, we restricted S, to its subgroup Sy,. That is,
2 — 1’ leads to S, — Sy, where ¢/ = ¢, = ¢ — hy (see Eq. (3.3)). Obtained number contains
hy numerals 1 and h, numerals 1’. The #/-number must be made of it. This is done in the same
way as for (—number. Find all Sy—irreducible representations [\'] = [2"2171]. Then each s/th
¢'-number from the set F; is uniquely characterised by the S, —irreducible representation [\']
and by the ¢} (s)—tuple of length ¢, = ¢’ — h/,. Finally, pick out those ¢, (5')—tuples which are
transformed into the ¢5(3¢)—tuple if reversing 1’ to 2 back again.

Example. Let us go through an example in detail. Assume that the irrep [A] = [21%]. By Propo-
sition 3.1.2, hy = 2, hy = 1, = 4, {5, = 3, #FE4, = 3. This means £, contains three 4—numbers
characterised by the S,~irreducible representation [21?]. That is, £, = {112,121,211}. Pick
out the 1st (3r = 1) 4—number 112 which is additionally labelled by the 3(1)—tuple [[112]]. Now,
make a change 2 — 1’ which leads to the restriction S; — S3. Obtained number is 111’. The
Ss—irreducible representation of the type [2721"] is [\'] = [21]. Consequently, b} = h}, = 1,
0, = 2and #F3 = 2. The set B3 = {12, 21}, where the 3—numbers 12 (3¢ = 1) and 21 (3¢ = 2)
are additionally labelled by the 2(1)—tuple [[12]] and by the 2(2)-tuple [[21]], respectively. The
numbers 2 in 2(»¢')—tuples are obtained from 111’ by making the sum 2 = 1 + 1’ for »/ = 1
and the sum 2 = 1 + 1 for » = 2. The second sum is excluded since in this case—reversing
1" to 2 back again—we get a tuple [[22]] which is absent in E,. The tuple [[22]] is characteristic
for the 4—number that is labelled by the S —irreducible representation [22]. Conversely, the sum
2 = 1+ 1 fits the irrep [21%]. Indeed, if 1’ — 2, then [[12]] — [[111']] — [[112]]. We write
[[112]] x [[12]] by using the semijoin notation .
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The algorithm considered above is easy to apply to the /—length string @g for the classifica-
tion of angular reduction schemes if replacing 1 with o, and 2 with oy, where the irreps oy

are in the Kronecker product a;, X ays. Then each tuple #2) characteristic for the sth scheme

(s¢th (—number) obeys the meaning of reduction scheme of O,.

Example. The tuple [[12]] stipulates the scheme B = (o, g (an3)ar), where, in general,
a9 0 = Q.
Tab. 3: Reduction schemes of @2_5 Tab. 4: Reduction schemes of @6
() Tuples Scheme (@) Tuples Scheme
) (2] i (32)  [[222)) x 2! 72
21 2 212
(12)  [[12] «%LJ (241) (2211 x 72 L
[[21]] T [[1221]] 3[2 ] %[2%2]
(22) [122]] Z[Qz] [[1221]] Z[El ] ‘%[381 ]
21 2%12
2 (22w 750 Zien
(s [u)xz g L N
21 x 720 g2 2121 x 72,1 25
) x 72 g 2112 x ) 7P
[2n2) x 750 7]
21 221 e 212
(2131)  [l221)) x 73 91[,22 ! 1212 x 721 Z2t
22 x 750 7y [1212)) x 721 720
[21] [221]
[[212]] x T4 T5.6 - 219 21
. . (1151)  [[21111)] x Z 7
(1) [pun)x AP R ([12111]] 91[21] oy
200 x 71y Tl 1211 o 72 72
21« 7,54 Fer 1121 x 720 A8
(112 x 77 g [11112)) x Z 72
Tab. 5: The schemes associated to Ag, A1, As
A N\C 2 3 4 5 6
(17] (1] [212] [21°] [214]
" %[12] %[21] 7 [2%] <71[221] %2212]
Ay L g g g

4 10, Sec. 5-21, Eq. (21.12)]

Algorithm. The procedure to classify reduction schemes of @g is applicable to any ¢ if all other

schemes of (5@/ with ¢/ = 2,3,... ¢ — 1 are determined. To perform a task, the following steps
should be accomplished.

I. For a given ¢, make the set F, of {—~numbers (Definition 3.1.1, Proposition 3.1.2) such that
each /—number is characterised by the S;—irreducible representation [\] = [2721"1] and by

the £5(¢)—tuple t2’ of length €, = ¢ — hy, where 5c = 1,2,..., #E; (Eq. (3.4)).

II. Make a restriction 2 — 1’ so that S, — Sy,.
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a) If {5 < 3, then pick out the ¢, (s )—tuples t[j,q which characterise ¢s—numbers labelled
by the Sy,—irreducible representations [\'] = [2"21"] and which are transformed into

the /5 (>¢)—tuple when reversing 1’ to 2 back again. Write a correspondence by AL t[;\,l].

b) If £, > 3, repeat the procedure of restriction for Sy, to its subgroup Sg,. If £; < 3, then
perform item a), otherwise make another restriction ngz — Sgg, etc. At each step of

restriction, pick out the tuples that transform to the initial one by making the change

1 — 2. Write £ x tE;\,l] X ... X tE;\,,,,], where the last tuple is of length ¢; < 3.

III. Mark off determined /5 (5¢)—tuple oA expressly by %{[/\} e 4 tEj‘,,] X ... X t[}?,/,/], where

f%w denotes reduction scheme of (5@ when the changes 1 — oy and 2 — ay are made.
As a result, the semijoin notation obeys its original meaning: the reduction scheme ,?%[A]
of (’3@ consists of only those reduced Kronecker products which are determined in the
reduction scheme fy[f\ 1 of (’3@/. The numeration of index » is arbitrary. Particularly,

g = d¥ife < 3.

All angular reduction schemes of 6g for ¢ = 1,2,...,6 are listed in Tabs. 3-4, where

........

fbm = tB] X fb/[’\]/, fa[i]l = B] X fa[fﬂll, etc. For ¢ = 2, 4,6, the operators 61, 62, 63 are
reduced according to the schemes: (i) 91[12] for n = 1; (ii) %22], 9,,[,2 Y for n = 2; (iil) :7%[23],
f[?w} f[?,m forn = 3.

Reduction schemes 7},[’\] that are related to A, schemes with p = 0, 1,2 are listed in Tab.
5, where A, exists if ¢ > 4. It is clear that Tabs. 3-4 significantly extend the classification

presented in Ref. [10].

3.1.2 Correspondence of reduction schemes

Distinct schemes .7} associated to 6n have been widely studied in several works so far. In

Refs. [14, 15], the authors considered schemes Z“Z], ZEZQH, %[22} which are also widespread
in Refs. [54,55,77]. This is, however, a case n = 1,2. The schemes %E223], 2[22212}, 91[72212]
associated to 63 have been studied in Refs. [49, 54].

Any scheme g%[A] of @g is linked to another one Z{[/A L uniquely. To find coefficients that
transform one scheme into another, is the main task of the present section. The transformation
coefficients for schemes with ¢ = 3, 4,5 can be found in [10, Sec. 5]. Therefore the transfor-

mation properties of schemes associated to O3 will be studied only.

It can be verified by passing to Tab. 4 that there are in total 42 - 42 = 1,764 such trans-
formation coefficients for n = 3. It can be also easily verified that it suffices to determine 42
coefficients that relate one separate scheme with all the rest, including itself. These coefficients
will be called the basis coefficients.

Assume that in any scheme, irreps oy, (see Eq. (3.1)) are listed in the order o, Q, ..., Qg

irreps in the Kronecker product o; x «; will be labelled by «;;. Expand the operator Og on Hj
by the sum of irreducible tensor operators OF([A]s2) on H?, where each OF([A]5¢) is associated

to reduction scheme 9,{[’\]. Then
Os =Y > O5([\s) I([\]0), (3.5)
af acerg

where the indices ¢ € I'e = {(1, (2, (3, (4} that label intermediate irreps depend on a specified
scheme. The coefficients I([A]s¢) are found from the expression

O5([N2) = > O I([N%), T= {1,2,...,6}. (3.6)

Biez
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For example, if [\] = [221?], 5 = 12, then (’A)g([2212]12) is associated to the scheme (see Tab.

4) =71[22212} = [[2121]] X [[22” = (041%(0412)&3(04123), a4045(0445)a6(04456)0é) and thus
@g([2212]12) =[[[a™ x a®]*? x a®]** x [[a™ x a®]** x a®°]*]3, (3.7)
1([2°17]12) = Z (a1 BrazBa|anzBra) (2 Br20is B3] raz Br23) (v Bacvs B | cvas Bas )
et
X <044564505666|a4565456><051236123054566456’056>~ (3.8)

3.1.3 Definition. The coefficients ¢, £ € {1,2,...,42} such that

e =(75 T =S 1(1221%)12) I, (3.9)
Biez
[ 2(12709), =12,
I = ¢ I([2212)¢€-2), €=3,4,...,26, (3.10)
I([21Y € — 26), €=127,28,...,42

are called the basis coefficients.

212
It is easy to verify that there exists a map 7¢: 91[22 ' 7 such that

O5(N) = > O5(12217]12)cc. (3.11)

anET\T£

The sum is over all irreps «,, whose indices 7 are absent in f?%m. T, is a set of indices of
irreps in ;Z,W. Particularly, Ty, = Y. Eq. (3.9) indicates that there exists an inverse map

1

~1. V] T2l Then th o ~1. g g : ;
Te . — J5 . Thenthe composition 7¢o7,,: 77" — 7 relates two irreducible

tensor operators @g([)\] ») and (/’)\g([X |#) by

O5(N) = > O5([N)s)eceer,  Tee = ((T\Te) [ J(Te\T))\Te. (3.12)

O‘nGTgé/
If £ = ¢, then 7¢ o Te U= id 7 (identity with respect to operations on irreducible representa-

tions in given scheme 7 and thus
Y og=1 (3.13)
anET\TE

Egs. (3.12)-(3.13) stipulate the following corollary.
3.1.4 Corollary. The entries

S = e = Y e, Mg = (T\T) [ J(T\Te) (3.14)

aneM&-/

form a 42 x 42 transformation matrix & such that

O5(N) = Y & O5(IN]). (3.15)

O‘TIET&/\Tg

It is by no means obvious that &z 14 = &14¢ = €.

Explicit expressions of ¢, are to be found exploiting the angular momentum technique based
on whether diagrammatic representation followed by Refs. [10, 12] or algebraic manipulations.
Here, the algebraic approach actualised by a symbolic programming package NCoperators [78]
(see also Appendix D) is a preferable one. Obtained expressions are listed in Appendix A.
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Definition 3.1.3 indicates that the coefficients e, are basis-independent. Indeed, Eqs. (A.la)-

abe

(A.42a) assert that the basis coefficients are represented by 3nj—symbols. Specifically {
denotes 6j—symbol. Expressions of 12j—symbols of the second kind (see Eqgs. (A.12a), (A. 34a),
(A.37a), (A.40a)) are determined according to Eq. (19.3) in Ref. [10, Sec. 4-19, p. 102]. The
definition of 157—symbol of the second kind (see Eq. (A.33a)) is found in Ref. [12, Sec. 4-34,
p. 212, Eq. (34.1)]. The triangular deltas A(a, b, ¢) are encountered due to the orthogonality
condition of CGCs. )

Operators O%([1%]1) associated to the scheme 91[1 I"are found to be the building blocks
(recall numerals 2 in /-numbers) along with a®* (numerals 1 in /—numbers) in all other operators
O%([A]>). Therefore their properties stipulate the carriage of any operator O%([A]s¢). The
primary and most precious characteristics of O%([12]1) are received from Eq. (3.2). For the

sake of clarity, it is useful to alter O*([12]1) by a usual notation W (A, \,).
Reduce the Kronecker products oy X ay, a; X oy in Eq. (3.2). It requires little effort to find
that

Wik (M) + (= )O‘”“l*““WO‘“(AZ)\k) —[ow] 25 (A, M) (g, 0). (3.16)
The following results are up front.
WoR (N Ny) =(—1)xsterterntlyyen (N, £ N, (3.17a)
WONeAe) = = M2/ /2, (3.17b)
Wk (A\eAg) =0,  app € 277, (3.17¢)
Wk (A\gAg) #£0,  agy € 227 + 1. (3.17d)

If Wk (A );) acts on a tensor space H@ x HEw x H5, then Eq. (3.17) agrees with Egs.
(8.16), (12.39) in Ref. [50]. It is worth to give heed to operators W+ and W1+ The first
one is a scalar on H%**, while the second is not. In agreement with Eq. (3.17d), WOk is non-
zero if A\ is odd; W1 is non-zero if A\ is even. On the other hand, the irreducible tensor
operator W (A \;) on H™* is non-zero if only A is even. This is easy to verify from the
anticommutation rule {aﬁk, aﬁl} = 0 that holds for creation operators. But W*#* is also a scalar
on H%+. This immediately implies that the antisymmetric two-electron state characterised by
a configuration /7 (in LS-coupling) is generated by W1+ or W** depending on the tensor
space under consideration. It is rather not embed by a tensor operator W «x,

3.1.3 Permutations

The classification of angular reduction schemes TN of 6g is still insufficient. To accomplish
the study to its final stage, the basis coefficients (Appendix A) are to be supplemented by the
quantities that relate not only reduction schemes but also reduction schemes with somehow
permuted irreps within them.

The permutations in schemes are realised through the permutation (reducible) representa-
tions 7 or else the permutation operators of S, [79, Sec. 1.3, p. 9] such that

~ . 1 2 - A

To; =0 Vi=12,....0, 7= (W(D T(2) - W(E)) € Sy. (3.18)
Here and elsewhere, the indices of irreps a; enumerate operators in a {—length string @g; the
values of a; and o; with ¢ # j can be identical, though (see Sec. 3.1.4).

For ¢ < 5, the permutation properties related to the angular reduction schemes Ag, A, Ay
have been considered in Ref. [10]. This is, again, a motive to concentrate on the case { = 6
only.

The symmetry group Sg contains 6! elements 7, each of which is a composition of 2—cycles
or else transpositions (ij). For example, 7 = (12 342 ¢) = (132) is a product of two 2—cycles:
(13)(23), (12)(13), (23)(12). It is easy to verify that there are {(¢{ — 1)/2 = 15 non-trivial
2—cycles that generate elements 7 of Sg:
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(12) (23) (34) (45) (56)

(13) (24) (35) (46)

(14) (25) (36) (3.19)
(15) (26)

To cognise the correspondence of the permutation operator 7 to the associate element 7 = (i),
the notation 7,; is preferred. For example (see Eq. (3.17a)),

%UWO‘”' ()\ZA]) = Waij ()\]AZ) = ’wz'jWaij ()\ZA]), wij (g (—1)ai+aj+aij+1. (320)
Note, Eq (318) indicates that %\ijaij = Q. But \ai — Oéj‘ < (0771 < o, + Q; and thus Q5 = Qs
In general, if there is a map p;; : 91[22212] — (T 9)[122212] such that

70521712 = Y €,;05(2°1%12), (3.21)
OneT\7;; T
then (see Eq. (3.11))
%UOE([)\]%) = Z 8@'65/6(,‘]’)(5) Og([)\l}%,), €3i5)(€) g %ﬁGé, (322)
Ager = (070 @ (0\T)) [J(Te\ D)\ Ty T, (3.23)
where it is assumed that irreps «; are ordered (a1, g, . . ., a) in OF([\']5¢'), while the ith and

jthirreps are permuted in 7;; @g ([A]#). Eq. (3.22) relates two irreducible tensor operators asso-

ciated to distinct angular reduction schemes (;%,w and (7,7 )Ej‘,/]) with the different ordering of
irreps within them. The relation is realised through basis coefficients and the recoupling coeffi-
cients defined in Eq. (3.21). Eq. (3.22) is easy to generalise for any permutation (¢5)(kl) . . . (pq)
by repeating the procedure several times.

Eq. (3.22) is more preferable if rewritten as follows.

3.1.5 Definition. The map 7¢ o p;; 0 75, : TN — (7,;7)2 is realised through the entries

Ede =Tyl = ) sijeecipe, Nee = (T\F 1) [ J(N\Te) [ JF5(T\Te)) (3:24)
O‘ne/\/&/g
of 15 42 x 42 transformation matrices £% so that
705N = Y. & O3(IN]). (3.25)

O‘nETgl\%ijTE
3.1.6 Proposition. The transformation coefficients &¢¢ and Sgg are related by

Soe= ) EEie Ren ™ (@ Te\Ye) | J(FyTe)\Te), VijeI. (326)
O‘nEREN

Proof. The most appropriate tool to prove the proposition is the exploitation of map products.
212 212 212
First of all, note that p;; o p;; = z'dgl[gzlz]: Z[g . 51[22 "Tis an identity in 91[22 oTeis
obvious that
Ten O Pij O 7'5_1 0Tg O Tﬁ_’l = Tgr O Pjj O Tgr

which can be rewritten by

7—5, o 7_671 = (7'5/ OpZ] O 757/1) ¢) (7—5” Opl] ° Tgl)'
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According to Corollary 3.1.4 and Definition 3.1.5, the three maps 7 o 7, L Te o py o 757,1

and 7¢r o pij o T,

are realised through the transformation coefficients &, £ and Egl,
respect.ively.‘ Thus & = Z 5? ,/527,5,. Re?placing 1 With S ‘and recalling that &g = é%/g, .Eq.
(3.26) is satisfied. The indices of summation are easily derived subtracting the sets of indices
of irreps that are present on both sides of expression. [

3.1.7 Corollary. If the map p;;: 91[22212} — (1T )[122212} is realised through the coefficient < ;;,
then

Y =1 (3.27)
OneT\#;; T

Proof. Eq. (3.27) directly follows from the fact that p;; o p;; = id 12212 The indices of

summation are easily found recalling that (see Definition 3.1.3)

1= (%[22212}’%[22212}) _ Z (%[22212”(%“‘?)[122212])((%ijy)[lz;ﬂ‘%[fﬂ).
QneT\7;; T

]

In agreement with Eq. (3.21), it is useful to generalise Eq. (3.20) by introducing a map
ol g[)\] N (%Hg)P\]
iy 4 1] V]

750(\2) = w;O([\]) (3.28)

which is valid for a specified [\], s, (ij). Then for any operator X ([\]>) associated to the

scheme X L’\] in Tab. 4, the paths 7¢, Te L Dij» p;j satisfy the following equivalents

XPPIT N = N e Xg(1221%)12), (3.29a)
O‘nET\Tg
XX = 3T Rg(2M1712), (3.29b)
OneYe\T
Pij _ o
XEPPL e )BT = Y g Xg([2M1712), (3.29¢)
O‘nET\%UT
p;j ~ o
XB]H(Win)B] = wy; X5 ([A]50). (3.29d)

Note, X does not necessary represent 7. It also fits the quantities 7;; ;7 , T;;7g . .. 7, etc.
which particularly denote schemes with permuted irreps within them. The same argument folds
for operators X.

The final task to accomplish the classification of angular reduction schemes of irreducible
tensor operators O%([A]s¢) for £ = 6, is to find the transformation coefficients Sgg (see Defi-
nition 3.1.5), as all other coefficients £F arising duo to permutations of T = Tij... Ty are

found by applying Eq. (3.25) for several times. To find 5?5’ recoupling coefficients ¢;; are to
be established. By Eq. (3.19), there are 15 recoupling coefficients, each of which is caused by
the transposition (ij). The realisation of an assignment by using the traditional method, that is,
to recouple Kronecker products of irreps (particularly, angular momenta) of given scheme, is
inefficient due to the complexity of schemes. Therefore another method suitable for any / if the
basis coefficients are known (see items I-III in Sec. 3.1.1) will be developed.

Algorithm (Method of commutative diagrams). The idea is simple: find a commutative diagram
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45 s P25 b2s— bs N
(%g)[?l?] 2 ELA;SS] 2571 Dj[j\;sil] P22, Dt (Wijc)[}ifll] (3.30)
pijT Tp;’j
9212 A b2 A ?3 ®s As
y[ | R A[ 2] BL33] . Ci[fs++11]

such that for a minimal number v4, = 2s + 1 of paths, the composition equals to

¢25 o 9252871 0...0 ¢S+1 Op;j @) ¢s o ¢871 0...0 ¢1 :p” (331)

In Eq. (3.30), A, B, ..., E denote angular reduction schemes; the maps ¢, depend on specified
schemes and they mark off any suitable map 7¢, 7. Yor pl, (K1) # (i)). Eq. (3.30) indicates to

s+1}

find a specified operator 60‘([)\5t\1]%s+1) associated to the scheme C: " such that Eq. (3.28)

holds true. Once the operator C*([As11]¢s11) is found, the paths from C' to F are easy to
perform. Finally, obtained commutative diagram is rewritten in algebraic form by using Eq.
(3.29).

The simplest to find are recoupling coefficients ¢;; with 7 = ¢ + 1 (see the first row in Eq.
(3.19)). For all of them, except for 15 = w19, €45 = w45, the commutative diagram reads

—1

(Fyin T)E < (7, 7)Y (3.32)
o] o
U3

2212 hy
Z5 T

and thus vy, = v; = 3, piis1 = Tgl o P}y © Te. This is because ;41 permutes any two
irreps adjacent to one another within a given scheme. The values of [\], s and ¢ depend on
t < 5. The last step is to write an algebraic expression of given diagram. Start from the path

Te: FEY . 7N By Bq. (3.292), write 3 egég([2212]12). For the next path

aneT\Tg
A ~ A . ~ .
Poin: T R 7)Y, write (see Eq. (3.294)) Syers, Tiir1€O3([2217)12). Finally,
for Tg_li (%ii-i-ly)[ — (T z+1<7) 217) , Write
T i+16§([2212]12) = Z wiiJrlEéE(iz’+1)(§)6g([2212]12), (3.33)

On€F\T; 417

[2212]

where Fe 2 (T\T¢) U(Fi i1 (Te\T)). The converse mapping pi 11 Z5 | — (1117
is realised by Eq. (3.21). Thus both right hand sides of Eqgs. (3.21), (3.33) are equal. This im-
plies

Eiitl = Z Wi i+1€€36Gi+1)(€)- (3.34)

OneF\YT

Fori =2, =6;fori =3, €{1,2,...,5};fori=5,&=19.

The procedure to find commutative diagrams for the rest of ¢;; coefficients with indices
J=14+2,i4 3,1+ 4,7+ 5 is analogous, except that the diagrams are more complicated. For
example, the coefficient €44 1s found from the diagram

—1

22 12] p§4 T{

G TS < (70 T

p24T

[2212
T

~— FaT)Y

Tplm

o (g T sy 7)Y

N 2121 T 212
(Fasa TV = (Ropa 7)1 T ——

p/23 (7T y) 22 Te

76

| L 94[2212]
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which is equivalent for several schemes with [\] = [2%], » = 1,2 and [\] = [2%1%], ¢ = 1,2, 3.
Then

FE T g = N q05([221%12),  T\T = {12},

AneT\Tg
D5 N
TPV 7y, 7)) = Zw23€606<[2212]12)7
Q12

,1 A
(%239)1[122 1 (7T23<7) n = Z Z w23€6€(23)(6)0g([2212]12)7 Te\T = {23},
Q12 a7]€7?23(T6\T)

Te

(7r23¢7)122212}*>(/7?239)£2\] Z Z T23€6€(23)(6)€(23)( (5 ([ 17]12),

Q12023 OpeRayn (T\T,)

Z Z w23w24666(23)(6)6(23)(5)05([2212]12)7

Q12023 OpeFag (T\ )

By p24

(7239) — (2 349)

G )P =Gy = D D mmmacscmweae e 05 (2°1712)

Q12023 Qpe A,

Ae = ((Ra3(T\Ye)) U(%234(T£\T)))=
(7T234<7)[2212]*>(7T234<7 2] = Z Z Z W23W24€6€(23)(6)€(23)(€) €(234) ()

Q12023 AneAe Oplcgay (T\Yg)
6(234)(6)(9; ( [2212] 12)’

. 212] Paa 2921
(7T234<7)£f U= (W24§)L2 Y = Z Z W23 T24TU34E6€(23)(6)€(23)(€) €(234) (€)

Q120230113 Qe A,

X €(234)( Oﬁ([221 ]12),

-1
(5?243)[2212] (7r24<7) 217 = Z Z Z W23 W24 TU34EBE (23)(6) €(23)(€)

X12023013 Ane Ay Ap/cro  (T\T)
X €(234)(£)€(234)(6) E(24)( Oﬁ([22 ]12)-
Thus
€94 = Z Z J24€6€(23)(6)€(23)(¢) €(234) (¢) €(234) (6) €(24) (6) » (3.35)
Q13023034 Ane A \T

where the multiplier f;; denotes the following product

Jj—t j—i—1
52 T H i iak Diri (3.36)
k=1 I[=1

Other coefﬁcients €; i+2 are found from the commutative diagrams with vy = 1, = 5 so that
ptu oT: Opz ii42© Te © Pl = Dii+2. A composition is realised for the numbers 7, s, t, u such that
Tiivo = Ty T Z+27rrs It is to be whether (rs) = (ii+1), (tu) = (i+1i+2) or (tu) = (ii+1),
(rs) = (i+1i+2). Then
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Eiiy2 = Z fii+2€(ii+1)(5)€(ii+1i+2)(£)a 1= 1,4, (3.37)
OneB\T

Be = (7101 (T\T)) | Fiirira(T\T)). (3.38)

€35 = Z f35€(45 €(354)(¢)» (3.39)
neBé\T

B = (Fip1i42(Y\Y)) | Fiivainn (T\Y)), =3, (3.40)

Fori =1, & = 6; fori —3,5 €{1,2,...,5}fori=4,£=19.
The coefficients ¢; ;, 3 are characterised by the commutative diagrams with v = v5 = 11 so
that

p14:p’24o7-6_1opg4o7'6o7'€_lop’14075076_1op’13or6op'12, ¢e€{1,2,...,5}, (34la)
p25:p’24o7-6_1opQ)SoTﬁoT{lop’%075076_10]9’23076019215, ¢e{1,2,...,5}, (3.41b)
P36 =Tig © P35 0 T1g O Py O T ' O Plag 0 T¢ 0 Plyg © Tig' 0 Psg 0 19, € € {1, 2} (3.41c)

From these diagrams it follows that

€14 = Z Z J14€(12)(6)€(123)(6) €(123)(€) €(1234) (€) €(1234) (6) €(124)(6) (3.42a)

Q130230034 Ope O\ Y

€25 = Z Z f25€(45 €(23)(45)(6)€(23)(45)(£) €(2354) (&) €(2354) (6) €(254)(6) » (3.42b)

13023035 anecé\'r

€36 = Z Z J36€19€(56)(19) €(465)(¢) €(3654) (€) €(365) (19)€(36) (19) (3.42¢)

34435056 Qe oI\ T
where C¢ = (T123(T\Te)) U(Froaa(Te\T)), Cf = (FasTas(T\Ye)) U(Fossa(Te\T)) and

¢ E (Faes(T\Te)) U(Faesa(Le\T)).

The advantage of method of commutative diagrams as a language of combinatorial compu-
tation appears to be evident especially in the cases j = ¢ +4, ¢+ 5. The coefficients €15, €26, €16
can be found from the commutative diagrams with v, = vy = 13 forj =¢+4and vy, = v; = 15
for j =1+ 5. That is,

P15 =Phs 0 Py © Tg L 0 Phs 0 Tg O 7'{1 0 Pl 0 Te 075 ' 0 Pl 0 Pl 0 T 0 Pl (3.43a)
P26 =Ta' O Phs O Dhg O Tag O Py © Tgl O Pl © Te © Plyg © Toy' O Dhg O Phs © Toa, (3.43b)
P16 =Pl © a3 © Pi5 © Plyg © Tz © Py © Tgl O P16 © Te © Pig © Taz' © Pl © Pl

0 Tag O Py, (3.43¢)

where £ € {1,2,...,5}. The corresponding coefficients are

€15 = Z Z f15€ 12)(6)€(123)(45)(6)€(123)(45) (&) €(12354) (£) €(12354)(6) €(1254)(6) » (3.44a)

Q13023035 Qpe D\ T

€26 = g E f26€22€(23)(56)(22)6(23)(465)({)6(23654)(5)6(2365)(22)6(26)(22)7 (3.44b)
Q13023024 ¢ /
agsazsass  M1EDNT

€16 = Z Z f16€(12)(22)6(123)(56)(22)6(123)(465)(5)6(123654)(.5)6(12365)(22)6(126)(22) (3.44¢)

Q13014Q15 oy o\ v
azzazease 1€\

with Dg = (T1057a5(Y\Te)) U(Fra3a(Te\Y)), D = (FasTass(T\Te)) U (Rasona(Te\T))

and EBe = (T1237465(T\Ye)) U (Fr2s654(Te\ T)).
In [80, Tab. 3], the coefficients 95 and €14 have been found to be obtained from the expres-
sions
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T 05 ([2°1%]12) = Z W36€(26)(6)€(236)(6) T23736 OF ([2°1%]12),
a13036

/77\'26(9%Y ( [22 12] 12) :wuﬁlz%\m Og ( [22 12] 12) .
In the language of commutative diagrams, the coefficients £96 and €14 are found from the dia-
grams with v, = vg3 = 17 and v, = vy = 19 compositions, respectively. These numbers point
to an ocular demonstration of the advantage of diagrammatic method presented here.

To conclude, it is worth to mention that most of commutative diagrams studied in this section

can be drawn in several different ways with the same number v,. For instance,

Pas = Ty ' O Phs O T op’24o7'glop’25o7'§o7'glopﬁl5op’23o7'6
is also a composition of v = v5 = 11 maps, thus it is equivalent to the diagram characterised
by the composition presented in Eq. (3.41b). If, for instance, ¢; o ¢; = ¢; o ¢;, then it ought to

be possible to construct the classes C; that contain equivalent elements ¢; = gb;l o ¢; o ¢; with
all possible 7 including j = . Such classification is still to be clarified.

3.1.4 Equivalent permutations

In the present section, the following statement will be proved.

3.1.8 Theorem. Let 7 be a permutation representation of Sy. If the irreducible tensor operator

O%([\]>¢) on H? contains a set of equal irreducible representations o, s = 1,2, ...t < {, then
there exists a permutation representation T, which represents a cycle of the smallest possible
length or a product of cycles of the smallest possible length such that the correspondence

o = E5pn (3.45)

pea

is satisfied, though the map 7¢ o pr_. 075" : 7, M, (Fuin7) 2 does not exist.

An incitement to find the smallest possible length 7,;, associated to 7 is caused by a
prospect to reduce the number of intermediate irreps that appear due to transformations: the
less number of transpositions, the less number of indices of summation.

To avoid further misleading, it is more suitable to label irreps s with s < ¢ by ¢,, where
xr =1,5,k,0,p,q,.... Thatis, ag designates the irrep of the sth operator a®*; ¢, denotes its
value, though.

Suppose there is operator OF([21]2) associated to the scheme 92[21] (see Tab. 3) with irreps
ap = g = G, 3 = Gj, @ = G, 3 = 1. In accordance with Eq. (3.17d), a12 = ¢;; is odd. Then
wyy = (—1)arfeztantl — (_1)2ataitl — 1 gince (—1)% = (—1)1*2} = 1 (see Eq. (3.1)):
(-1 = (=) = —1(; = 0,1,...) for LS-coupling and (—1)** = (—1)% = —1
(Ji = Y2,3/2,...) for jj-coupling.

Consider two operators: 7130 ([21]2), 71305 ([21]2). The permutation representation T132
is realised by the permutation (132) = ( 2 g) e permutation representation 7,3 acts on irreps
g, s = 1,2,3 by transposing them with (13) = (13 ). Consequently, the anticommutation

rule in Eq. (3 2) enables us to write

7T132 [Wg“ (/\ Ai ) ] [Wg”( ) X agi]g = [W0413(/\3)\1) X ao‘Q]g
Z Ci3[W avls = Z Ciza[W*2 (A1 X2) x a™]3, (3.46a)
CiiZOdd a12=o0dd

Cigpn = Z (GjtiSitin|Sijlij) (SijLijSitia|se) (SitirSitia|Siitii) (SiitiiSjti|L) - (3.46b)

Li1ti2
Ljliglii

The summation over indices causes the appearance of 6j—symbols. However, it is unimportant
in the present case. The transposition (13) permutes operators with the same value ¢;. Thus
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/77\'13[W<ii ()\z>\z> X agj]f = [ngj ()\])\z) X aq]c = [Wa%()\g)\g) X aal]g
= D0 CulW ) x s 485 ) (1) gy [ (s

Gii=odd

= Z Cis[W*2 (A1 A2) x a®]3 +5(a3,a)(—l)a1+°‘13_a+1[alg]l/z[a]_lﬂag, (3.47a)
a12=0dd
def

Ciz3 = — Z (GjtiSitialSizij) (SijijSitin|st) (SitirSitia|Siitii) (SiitiiSjti|sL) - (3.47b)

Li1ti2
Ljtiglii

In Eq (347b), the third CGC equals to <§i%1§ibi2’§ii1/ii> = —W1i2 <§ibi2§iLi1|giiLii>- But Wiy = 1.
Replace ;1 with g;i;5 in Eq. (3.46b). Then

Clzp = Cha. (3.48)

Eq. (3.48) has a significant meaning that makes sense for any operator O%([\]s). A generali-
sation is straightforward due to the structure of coefficients (3, C35: it is a product of CGCs.
Consequently, it is a manner of quantity of transpositions that permute the same value irreps
only, but for both even and odd permutations, the coefficients coincide with each other because
for any equal irreps o, oy, the phase multiplier sy = 1. Thus for the map 7¢ o p13 0 pag o 7571,

ELY = ELL. Indeed, (132) = (13)(23) and

7T1320[3([22 ]12 —7T132823O/3 2 ]_ ]_2 2813 23)813Oﬂ<[2 1 ]12)

@12 a12

= 1205([2°17)12),
Q12
where 8(13)(23) = %13823, g = 5/ = 14. Write €132 = 5135(13)(23). But €93 — Za% TW23€6€(23)(6)
(see Eq (334)) Thus 5(13)(23) = Zaw €(13)(6)€(132)(6)> as %13@23 = Wi = 1. Now refer to Eq
(A6a) in Appendix A. This 1mp11es €(13)(6) = €(132)(6) = €6- Then €(13)(23) = Zam E% =1 (see
Eq. (3.13)), recalling that a;; = 042 and thus a;;3 = aio3. The result is €135 = £13.
The map 7¢ © p13 0 paz © 7/ T F . (T1327 )[;\] is realised through the coefficient (see

Eq. (3.24))
132 Z €132€¢7€(132)(¢)-

OnENer¢

It has been already pointed out that €130 = e13. The coefficient €(130)¢) = €(13)(e): for T3,
o < as; for g0, o — as, ay — aq, g — , therefore (o = o) o — ag, a3 — ] =
Q< (3. Then

3 3
l 2 = Z 51365/6 13)(¢) — Sglxé

OnENer ¢

It turns out that although a one-to-one correspondence 7¢ © pi3 0 7, ' : TN — (7)Y
does not exist (the permutation of equal representations causes additional terms due to non-zero

Kronecker deltas), but the realisation of a bijective map 7¢op130p2307 1. Z{W — (T132T )5‘]
is actualised by the coefficient £/} that relates operators 7130%([\]») and O%([X]>¢) if only

oy # o, that is, if only the map 7¢ o py3 o 7-5, is valid.

A generalisation is plain due to the peculiarity of method based on commutative diagrams
(Sec. 3.1.3). That is, each permutation operator 7 realises a permutation 7 of irreps o, ao, . . .
by making the transformations so that only the irreps s and «y within Wss' (A \y/) are per-

muted (the maps 7¢, 7, ) If the irreducible tensor operator Oa([)\] ) associated to the scheme

F contains a set of several irreps «; that are equal, then a minimal cardinality of such set is
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2. Assume that a set K contains 2 < ¢ < ¢ equal irreps . A particular condition ¢t = £ is

excessive because the permutations for the operators O ([\]>) with all equal irreps make no
sense. Then it is always possible to find such two irreps a,, oy € K, that making transforma-

tions a given scheme TN is mapped to 9%[,’\/] which contains both oy, oy € K that are now
adjacent to one another. But this is a case of studied above operator O®([21]2) with oy = .
Consequently, all the rest operations are to be performed in the same manner.

3.2 Special cases

The section studies irreducible tensor operators (5“([)\] ) associated to some special angular

reduction schemes 9%[)‘] that are particular in applications of theoretical atomic physics.
Two irreducible tensor spaces are considered (see Sec. 2.3): H* and ‘HY. In Sec. 3.1.2, it

was demonstrated that the irreducible tensor operators O*([12]1) or O%([12]1) associated to the
angular reduction scheme %[12} are—apart from a* (a*) or a®—the building blocks of other
irreducible tensor operators. The correspondence of a*, @*, O*([12]1) and a®, O*([12]1) is
displayed in Tab. 6, where a usual notation O*([12]1) = W* (O*([12]1) = W) is selected
recalling that « = k). A particular irreducible tensor operator 1V/* (A,Xj) (W*(XiA;)) represents
a reduced 51.

For the operator string 52, two typical angular reduction schemes are observed in atomic

physics, one that is traced to 91[22], and the other to (o437 )[122]. Following by Refs. [54,77,81],
these schemes are accordingly called z-scheme and b-scheme. The associated irreducible tensor

operators O*([22]1) and 7430 ([2%]1) are related by

Tab. 6: A connection between irreducible tensor operators on H* and H¢

6 o o o

~ = A g

a, a’y, Wﬁ()\z‘ij) 3 (= Wap (aNg) + Wi (Aidy))
Wr(AA) W) W) (Aids) ZWon (ki)

WaN) WL N) WaN)  mWar (W)

R R Al A2 A
Taa3OM([22]1) =[A1a, Aas]'/? Z OM[241) (= 1) atAam2aa x5 Agy] /2 {)\4 A3 )\34}
A12A34 )\14 /\23 A

AN 12110 (11 M = Az As+A 12 ) A As A
4 600, A)OM[1)(~1) Dhua, Ass] {Azg 2 )\2}’ (3.49)

Analogous relationship holds for the irreducible tensor operators O ([22]1) and 72430 ([22]1).

A correspondence between (’3’\([22] 1) and 6a([22] 1) is actualised by the following linear com-
bination

7O ([22]1) + FOM([27]1) + J50%M([2°]1). (3.50)
To compare with, a correspondence between O*([2212]12) and O%([2212]12) is actualised by

(O ([221712) + O*([217]12) + L {30 (12212)12) + OP(21212)}),  (3.51)

where 31[22212] denotes the angular reduction scheme of 63 (see Sec. 3.1).
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3.2.1 Remark. Despite of different representations in distinct tensor spaces, it is by no means
obvious that there exists a one-to-one corresponAdence o£ basis associated to irreducible tensor
operators so that the matrix representations of O* and O coincide. Consequently, the choice
of considered tensor space is arbitrary and it depends on a specified subject matter.

3.2.1 A two-particle operator

In this section, the tensor properties of a two-particle operator—either physical or effective—
are studied. The systematic study is essentially required due to the subsequent computation
requirements needed to produce high-precision atomic structure data by generating large sets of
matrix elements for a two-particle operator. The operator is of the form (refer to Eq. (2.69b))

@[w] <X, Z aaaﬁa};agwaﬂﬂp. (3.52)
1P
Much the same as in Sec. 2.3, the Greek letters «, (3, ... designate the single-electron states

characterised by the sets of numbers {n,, Ao, ma}, {ng, A\g,ms},.... As usually, I; denotes
the set of single-electron states. The multiplier X, is closely related to the structure of a two-

particle matrix element wyg5. If w = g, that is, if G lg] = G denotes a two- particle operator
representing some physical (Coulomb, Breit) interaction, then X, = /2 and

def

Jopr = (aB|gr2|av). (3.53)

A two-particle matrix representation g,y 1s sometimes useful to represent by [70, Eq. (38)]
Gopir = V2 Gogirs  Gopir = Gasis — Jopri- (3.54)
Then for G lg] = GA X, = 1/4. The superscript A over G indicates the presence of antisym-

metric two-particle matrlx representation g.gzz. For the symmetric and self-adjoint interaction
operator gio = go1 = gk, the symmetry properties of its matrix representations are

Japnr =Y9Bavn = glx,uﬁa = Gavag, (3553)
JoBav gﬁauu gﬂ guuﬂa
gaﬂy,u = g Bajiv — gﬁl‘/ﬁa = —9rfiag- (355b)

To find the irreducible tensor form of G [w], a usual decomposition (see, for example, Eq.
(3.5)) is performed.

+A
=>> 3 G (3.56)

In A M=-A

Each irreducible tensor operator G acts on HA .

3.2.2 Remark. In the present section, operators acting on the irreducible tensor space H* will
be considered. Their correspondence to operators on H? is associated by using the data in Tab.
6 and by applying Eq. (3.50).

~ 2
For the irreducible tensor operators G associated to the angular reduction scheme 91[2 )
(z-scheme), it is easy to deduce that

GME = TN ads) x W2 (A Qagin(ArAA), (3.57)
A1Ag
Qo (MidoA) 2 37 (-apsdosmmt g (2o e 0 0 A NAM) wogs (B5B)

A decomposition in Eq. (3.56) is convenient to find matrix elements of G [w] on the basis
|, IT;A; M;) which is a linear combination of CSFs (see Eq. (2.2)). That is, a matrix repre-

sentation of G/[w] on exact wave functions is the sum of matrix representations of G* on the
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eigenfunctions of atomic central-field Hamiltonian. Meanwhile, to find the matrix element of
G" means to find the matrix element of O*([2%]1) given on the right hand side of Eq. (3.57).
These particular matrix representations of O*([22]1) have been comprehensively studied in

Refs. [46,50]. Consequently, to accomplish the formation of G*, the basis-independent quan-
tities o375(A1A2A) are to be found. These quantities are related to the origin of interaction
operator (not necessarily physical) g0, as demonstrated in Eq. (3.58), where, in general,

E(fj} P /\12/\34)\,u> = (A Aapta| Mopz) (As s Aapia| Asafisa)

X </\12M12)\34M34|/\M>- (3.59)
For some permutation representations 7 of Sy, the coefficient F satisfies

H1 p2 (3 p4 0 H1 p2 (3 p4
Ifﬂ' = 14, (14)(23), then 21234 = Z4321 = 1, /ubl4 = W, IU(14)(23) = —U. Ifﬂ' = (12), (1423),
then 23134 = Zy312 = a(A1A2A12), H2) = fs fi(1423) = —p and a(AAaA12) o (_1)A1+/\.2+A12_
.If’]T = (34), (1324), then 21243 = 23421 = a()\g)\4>\34), ILL(34) = u and ILL(1324) = — . Fmally,
ifr = (12)(34), (13)(24), then 22143 = 23412 = CL()\l)\Q)\lg)a()\g)\4>\34), H(12)(34) = M and

H(13)(24) = —H-
For the physical interactions g;, the quantity 2,5 (A1A2A) equals—up to a multiplier—to

the reduced matrix element of ¢, where ¢* is defined much the same as GA for G [w] (see Eq.

TE <A1 Az As Mg, )\12)\34>\,u> = Zw(l)yr(z)w(S)n(4)<)\12>\34/\)E</\1 e /\12)\34)\Mw>- (3.60)

(3.56)). Indeed, if g,pp is calculated on the basis of single-electron eigenstates |a), ..., |7),
then
Qaﬁﬁp(AlAgA) = (I(Al—“ )\177 AQ)Z(A)\a)\ﬁ)\p/\ﬁAlAQ), (361)
where
(AN ATAL) = 2 [A]Y2 (A2 [na Aang s || g | nadans Ao As] (3.62)

or on the contrary

Gopir =2 Y (—1)A2+mﬂ+mv<kﬂ As s Aniﬁ;A1A2AM>z(A)\a)\5)\D)\ﬂA1A2). (3.63)

Mo Mg —Mpg —
A1 A2A

The coefficient z that represents the basis-independent part of g,gz7 equals to

g(A)\a)\ﬂ)\leﬁAlAg) d:ef Z(A)\aAB)\p)\ﬂAlAQ) — a()\ﬂ)\l—,AQ)Z(A)\aABAﬂ)\gAlA2> (364)
Explicit expressions of z depend on a specified interaction operator g;s.

Example (Coulomb interaction). Assume that a single-electron eigenstate |«) is a 4—spinor such
that [82, p. 106, Eq. (19.2)]

F(nalajalr)llajama) ) (3.65)

@) = |nalajama) = ((—1)ﬂag(nal/aja|7n)’l/ajama>

def

and 0, = Iy — jo + /2,1 E D — oy ly = jo E 1/2. The 2—spinors |l,j,m,) are constructed
as follows [52, Sec. 2.3, p. 13, Eq. (2.16)]

+1/2
. def . o ~ 5(/1, +1/2)
llaJama) = “Zl/flama — 12 u|jama>Y7lna7“(x) (5(% VANE (3.66)

Then the matrix representation z of 1/r15 on the basis in Eq. (3.65) equals to
(Ol pilodolni o) = 2 6(Jy, o) (— 1)peie* Gttt

S 1 )Ja Ja KL, : . .
X Lo s s Jon 7172 Y _[K] {; ” Jl} o2 i = /21k0) g2 o = 1/2lk0)
k
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X (Ri(af, i) + Ry(af', i) + Ri(a'B, f('0) + Rp(o'B', f'0")). (3.67)

The radial integrals Ry are defined in Ref. [52, Sec. 19.3, p. 232, Eq. (19.72)]. The primes over
single-electron states designate the corresponding small component g of relativistic radial wave
function.

Example (Coulomb interaction #2). Bhatia et. al. [65, Sec. 5, Eq. (55)] constructed a total
two-electron wave function so that for S = 0, 1,

M LSM) = 3 [FF S Ly, ro) DY@+ £7 (5 L, 1) D ()], Ty = (<),

The sum with double prime runs over k = 0,2, ...,k < L, k € 277 if parity IT;, = 1 and over
k=1,3,...,k <L,k e€2Z" + 1if parity IT;, = —1. The radial functions satisfy

fECrLlrg,re) = (=1)M f X (T Lfri, o), fio (PLfra,ma) = (=12 f (L, o),
fECLlre,m) = (1) (L, re), fio (PLjre,m) = (=1)F fo (PL{ry, ra).
The radial equations for f= are listed in Eq. (70) of Ref. [65], where it is also demonstrated
that they are the same as that of Breit [83]. 2 = (®, ©, ¥) denotes the usual Euler angles that

connect the coordinates 7, 7, of both electrons. The spherical functions D% ((2) are defined
by
o+ gy Dhis(@) + ()"l (@)
M V2[1+6(k,0)(v2-1)]
DL—(Q) def D]I\J/[K(Q) B (_1)HD][\I/[fn<Q)

To find the matrix representation z of 1/ry, it is more convenient to introduce the radial function

0B LIr,r) S e [ (B L) — 5 (5P L)), forp >0,
5 Ll ra) 2 GV [ (S Ll )+, (PP L ra)]for e <0
which leads to a compact form [65, Sec. 5, Eq. (47)]

L
M LSM) = Y gu(*T' Liry, 72) Dfy, (). (3.68)

pu=—L
Eq. (3.68) is convenient to apply the RCGC technique suggested in Sec. 2.2.2, whereas the

spherical functions Dj; () are the eigenfunctions of Laplacian on SU(2) [62, Sec. II-4.8, p.
14, Eq. (9)]

00?2 00  sin?2O \ 092 o0Pov  Ov2

much the same as the spherical harmonics Y5 (Z) are the elgenfunctlons of Laplacian Az [11
Sec. I-1, p. 13, Eq. (1.4)] on SO(3). By using Eq. (2.37), it is easy to deduce that

P 1 2 2 2
AQ:a_‘i‘COt@i—" (8 —2cot® 0 —I-a—),

Z(OOlalglplﬁLlle252> = 27T(5(Haﬁ, Hﬁp)é(Ll, Lg)é(Sl, SQ)[Ll]_1/2
k

Ly
XY (=DFRTRISH K] D (RORQIRQ) > FE(PHLy), (3.69)

ke2z+ Q=—k w=—IL1
where the radial integral

k(2S+1 7y def 25+1 2
F( L) // drydry r373 k+1 ‘g% L!hﬂ’z)‘ :
R+

Reduced matrix elements of the SO(3)-irreducible tensor operators (Proposition 2.2.3) S* are
found from Eq. (2.38). For the detailed study of radial functions g,,, see Ref. [65, Sec. VII, p.
1057].



3 Irreducible tensor operator techniques in atomic spectroscopy 50

Example (Magnetic interaction). One of the components of Breit operator is the so-called mag-
netic interaction [—(aj - a})]/r12, where each Dirac matrix «; is referred to the ith electron.
The irreducible tensor form of magnetic interaction can be found in Ref. [84, Sec. 2-5, p. 67,
Eq. (5.86a)]. Then the matrix representation z on the 4—spinors (see Eq. (3.65)) obeys the form

2(0lagalpislogolpjadiJa) = Yo 8 (Ji, Jo)(—1)fe—detlatlo=ta=ta)/2[5 G0 5 g, T ]2

X Z 1)K+ {ja In ?} (Ja'/2 Ju — /21 K0){js'/2 j» —1/2|KO)

Jv Jg J1
X Rk(OéﬂVM)MFkkK(@ﬁﬂﬂ)a (3.70)
Rk<aﬁljﬁ)(§ (Rk(a/ﬁ/nap> Rk(alﬁmljD/) Rk(aﬁ/,ﬂ/ﬂ) Rk(aﬁna/D/))) (371)
1 1 1 1 Ak, K)A(ks, K)
w [-1 1 -1 1 at | A(k1, K)Bao(ks, K)
MENZ) 201 1] FaesBrm) =BG A &) | 3T
1 -1 -1 1 Boj(k1, K)Bgy(ks, K)
Ak, K) = 1/2[1 — (=1)5**)(10K0| k0), (3.73)
. —
B, (k, K)% (-1 Kthttotgo—y ol + (VP R ) 11K — 1|k0 3.74
o(k, K) = (—1) T ( |k0) (3.74)

with po = aji and po = (.

Example (Retarding interaction). The second (and the last) component of relativistic Breit op-
erator is the so-called interaction of retardation [—(af - V1) (4 - V})]r12/2 whose irreducible
tensor form is given in Ref. [84, Sec. 2-5, p. 67, Eq. (5.87a)]. The matrix representation

(Olajalﬁjﬁlﬂjﬁlﬁjﬁjljg) 1/2 5(J17J2)( )]a Jo+(lp+lo—la— lﬂ)/Q[]a,]/g,jlm‘]V’Jl]
o dn k=10, o
* Z( 2k: —1 {? :;Z i }<Ja1/2 Ju = Yelk = 10)(isY/2 jo —1/2lk = 10)
ST G gk

= Forr 5 o
X Ry (afvp) M Fyek—1(afvpm) + 2% +3 \J» Js

}<ja1/z Ju — felk 4 10)

Vk+2
2

[P(12 (afr) MFypyo k1 (afvi) + P (ozﬁl/,u)./\/leH ke (afrR)] )) (3.75)

Matrices Ry (afvji), M and Fj, i, are defined in Eqs. (3.71)-(3.72). The matrix Pkij) (afrp)
is considered by

2 apop) = (P, i'('ﬁ'ﬁﬂ) (g ar) B (aB, 17) P (aB,77)), (B.76)
where the radial integral P (aﬁ av) is considered in the same way as Ry (a3, i) by replac-
ing r¥ /r&+1 with rf”/r;”g — rf/rf“.

3.2.3 Remark. From the above studied examples it appears that the physical two-particle oper-
ators g* = ¢" observed in atomic physics are scalars. This significantly simplifies further on
calculations. On the other hand, it is not necessary true for the effective two-particle operators.

x (jg'/2 jy —Y2lk +10) ([k:]‘lvk: + 1Ry (BV ) M Fiper1 (aBft) +

~ ~ 2
The irreducible tensor operators G associated to the angular reduction scheme (7o43.7 )[12 ]

(b-scheme) are derived from the irreducible tensor operators G associated to 91[22} by using
Eq. (3.49) which clearly establishes the sum of two irreducible tensor operators. Consequently,

the scheme (Ta43.7 )[122} is less convenient from the point of view of tensor structure derived
from Eq. (3.52). On the other hand, whilst on the subject of a particular operator, the present

2
reduction scheme is more preferable to compare with %[2 ], as it provides information related
to the inner structure of g expressly. This is easily seen from the equation
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Gugr =2 3 (=1)tetmatmep(Oe e 20 e LA AGAM)

Mo —Mp Mg —Mp )
AALA

X b(A/\aAﬂAl—,)\ﬁA’lA’Q), (3.77)
where b coefficient is such that

A A Ay
2(ANGASA AN Ag) =(— 1) A [A L ATV A7 L) {A’l Al A}
AJAL Ao Ag My

X D(ANGAgAZAZATAY). (3.78)
In Eq. (3.77), the structure of F indicates that the irreps A}, A,—despite of a resultant irrep
A—designate intermediate irreps of ¢ that is found by applying a usual technique of separation
of variables (coordinates). That is,

g* =" glri,r)[gM (@) x g" (@), (3.79)
ALA

where ¢(r1,72) is a radial function. Conversely, the coefficient £ in Eq. (3.63) involves the
irreps Ay, Ay that are supplemental, as it is demonstrated in Eq. (3.78). For this reason, the

angular reduction scheme 91[22] supplies more versatility to compare with (7437 )[122}, but at

the same time it leads to additional summations. The latter fact, however, will be argued against

when studying the two-particle effective matrix elements w,g;7 in more detail (Sec. 4).
Another circumstance of a widespread application of b-scheme is that for LS-coupling, the

irreducible tensor operators /7?243(/’)\’\([22] 1) are simply the tensor products of generators W *ex,
Wse of accordingly U(N,,), U(N,,) if I = I and g = [, (recall that N; = 41 + 2). But this
is a case of equivalent electrons of atom. The Lie algebra of the present generators is expressly
defined and studied in Ref. [50, Sec. 6, p. 46, Eq. (6.20)]. The b coefficients in H? space were
first originated by Kaniauskas et. al. [85, Eq. (2.11)]. Later, the representation of operators in b-
scheme found many applications in theoretical atomic spectroscopy [14,15,54,55,81,87] as well
as in MBPT [36,37, 86, 88]. In contrast, a more versatile z-scheme that was first systematically
developed in Refs. [77, 81] found a natural application to the effective operator approach in
MBPT [72,73]. The present technique is considered in Sec. 4.

The efficiency of calculation of matrix elements—as a principal motive—strongly depends

on the preparation of expressions of the irreducible tensor operators GA. In atomic physics, a
typical task is to calculate the matrix element of G that acts on ¢ = 1,2, 3, 4 electron shells of

atom. Consequently, the values of irreps A,, Az, Az, Ay in O*([22]1) depend on ¢. Particularly,
if ¢ =1,then A\, = A\g = A\ = A\p; if £ = 4, then A\, # A\g # Az # Ay. Possible preparations
of G* that acts on ¢ = 1,2,3,4 electron shells are displayed in Ref. [14, Tab. 1], where
both schemes are mixed depending on a specified case, and in Ref. [77, Tabs. 1-3], where
both schemes are strictly separated. It is to be noted the essential difference between methods
used in these two works: it is a manner of distribution of irreps and of the choice of angular
reduction scheme. The following example of application of b-scheme clearly demonstrates that.

Assume that ¢ = 4. In Ref. [77, Tab. 3, case:p = 1], the irreducible tensor operator O*([212]1)
associated to the angular reduction scheme %[21 ] (Tab. 3) is considered, while in Ref. [14, Fig.

Al, A7], the irreducible tensor operator @A([22]1) associated to 91[22] is preferred. As a result,
in the first approach, the angular coefficient contains a product of two 6j—symbols; in the second
approach [14, Eq. (52)], the angular coefficient contains a 9j—symbol, though.

3.2.2 A three-particle operator

Unlike the case of a two-particle operator, the study of a three-particle operator is much more
complicated and not so well fulfilled. First attempts to clarify the tensor structure of scalar
three-particle operators belong to Judd [47, 89] who specified on the classification of terms of
™ configuration. Later, Leavitt et. al. [49,90,91] comprehensively considered effective three-
particle operators acting within the d, f shells. Recently, a few works [42,92,93] devoted to the
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effective operator approach that accounts for triple excitations are found. None of them provide
a systematic classification of operators acting on ¢ = 2,3, ..., 6 electron shells.
A three-particle operator is of the form (refer to Eq. (2.69¢))

def
L Z aaaﬂaga%azag WaB¢ini- (3.80)
I3

The effective three-particle matrix element w,scu77; depends on the case under consideration.
However, formally the Wigner—Eckart theorem can be applied. The result reads

; Z Z A, (3.81)

where the irreducible tensor operator L acts on H2 and it is associated to the angular reduction
212
scheme 91[22 I (Tab. 4) so that

EA (g (_1)/\a+)\5+)\c+)\ﬂ+)\ﬁ+)\ﬁ+1 Z [[WE1 ()\a)\ﬂ) X a/)‘C]Al X [WEQ(S\/ﬂS\/y) X d)\ﬁ]/\z]/\

FEi1Aq

FE>oAo
X (=1)MPR (B By, Ay, A2 Y T (=1)MAY, AY, Ag, AT Qupeon (M AL A5 A)

A/A/ M3M/

A3A’

A An A
M Mg B A N By e

X (AsMsA — M'|AM) e P 1}{“ v 2} AN, A 3.82
wanta = ariaan {3 3 G X B NN (3.82)

The projection-independent 2, c557(A1A5A3A’) is defined much the same as the analogous
quantity in a two-particle case (see Eq. (3.58)). That is, Qc5057(A] A A3A’) satisfies the equa-
tion

Waggurg =(—1)M ANty TN ()M Aamay — malAsMs)
A AL AsN
X B 0 D s MAGA — M,)QaﬂCﬂDﬁ(AllAIQASA/)- (3.83)

By a decomposition in Eq. (3.81), the chore to find matrix elements of the three-particle oper-
ator L is disintegrated into two distinct tasks: the computation of matrix elements of the irre-

ducible tensor operators (/’)\A([2212} 12) and the establishment of projection-independent quanti-
ties 2o 3cuon that particularly play the role of the effective reduced matrix elements. The latter
task depends on a concrete case to be studied. For the expansion terms in the third-order ap-
proximation of MBPT, the quantities $2,g¢z5; are found in Sec. 4 (also, see Appendix C).
Conversely, the first task—determination of matrix elements—is independent of the dynamics
of system under consideration and thus it can be solved in general.

In Sec. 3.1, the classification of angular reduction schemes of operator string @g, including
¢ = 6, has been accomplished. The case ¢ = 6 fits O that represents a product of three creation
and three annihilation operators (see Eq. (2.42)). A decomposition of O is actualised by Eq.

(3.5). Finally, the connection between irreducible tensor operators O ([X] ) is associated by
the entries of transformation matrices (Corollary 3.1.4, Definition 3.1.5) & and £%. These re-
sults are sufficient to find expressions of matrix elements of the sole irreducible tensor operator

O ([\]5) associated to a specified angular reduction scheme .7 M. all other matrix elements of
the irreducible tensor operators @O‘([X |5¢) with A # X, 5c # ' are found instantly through the
transformation coefficients &¢e and £7,. In particular cases, & 14 = ¢¢ and £ 14 = i take on
the values of the basis (Appendix A) and recoupling (Sec. 3.1.3) coefficients. Thus the most

212
natural choice is the scheme Z[Q U
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From now on, the operators (5"‘([)\] ) that act on the irreducible tensor space H? will be
considered. The notations identified in Sec. 3.1.4 will be used. In the final result, these operators

are associated to O ([\]») acting on H* by using Eq. (3.51) for [\] = [2212], 5 = 12. That i,

[ANTAOMN([221212) ANTYA] = LATQA|]| O ([2212]12) ]| AT QA]
l<c2’Mon|QMQ> [ATQA|O™ ([2217]12) ]| AI'Q'N']
(Q' Mq10|QMg) [ATQA[|O™ ([2°17]12) || AT'Q'A']

T 55 (' Mg30|QMg) [XTQA[| O™ ([2212)12) | \I'Q'A (3.84)
where it is assumed that A = [1/2 for LS-coupling (A = LS) and A = j for jj-coupling
(A = J). The quasispin number ) = 1/2 (A — v + 1/2); the basis index Mgy = 1/2 (N — X — 1/2).
Eq. (3.84) indicates that it is a ¢ = 1-shell case, where the irreps within O%([2212]12) (recall
that « = ¢ = k) satisfy oy = ap = ... = g = 5, = /2 A, where as usually, = = i, j, k, [, p, q.

Eq. (3.84) is nothing else but the mathematical realisation of Remark 3.2.1: a one-to-
one correspondence for the basis function [ANTAM) of H” is the function |[\TQAMgM) of
H? x H™. It is understood that a particular single-shell case can be extended to ¢ = 2,3, 4,5, 6.
However, in all these cases a correspondence iAn Eq. (3.51) holds true.

To find the (reduced) matrix element of O¢([221%]12) that acts on ¢ = 2,3,...,6 electron
shells, an efficient preparation of (5‘;([2212] 12) needs to be established in the same manner as it
has been done for the two-particle case. To solve the present task, a classification of operators
that act on different number of electron shells is required.

Assuming that the numbers x € {i, 7, k,[,p,q} designate the indices of irreps ¢, within
O5(]2%12]12) and at the same time they mark the xth electron shell, make the following con-
venient notations. (In contrast, the index : = 1,2,...,6 of irrep «; labels the ith operator a*

within O5([2212]12).)

2\/5

3.2.4 Definition. The set of operators

O ([2217]12) = TSN MNAA) = [V (\Ag) X @]k x [ (A N,) x %] a]° (3.85)
associated to the angular reduction scheme (¢, j, k,l,p,q € T = {1,2,3,4,5,6})

22 o [ (2), ifi<j<k<I<p<yg,
%gl]zwklp@d:f { éwi% othe?vx}yisg, St (3.86)

forms the parent class X;(Aq, As, ..., Ay), £ < 6 of dimension d if the subtraction of multi-
plicities of the same value numbers from the set s = {i, j, k} and from the set s’ = {l, p, ¢}
equals to A, where

l
Z - (3.87)

3.2.5 Definition. The class X; (A1, Ay, ..., A,) of dimension dj such that

XZ(ADAQ,...,A@) :Xg(—Al,—AQ,...,—Ag), dz :dg (388)

is a dual class.

In other words, the parent class X,(Aq, Ao, ..., A,) defines the set of operators (’3%[2212] 12)

associated to the same angular reduction scheme 71[22212] but with distinct labelling of irreps so
that Eq. (3.87) is valid. The dimension d, of class equals to the number of such operators.

Example. Suppose there are two operators such that ¢y = as = ... = a5 = ¢, a4 = &
for the first one and av; = 9 = a3 = a4 = ag = G, a5 = ¢ for the second one. Both
operators associated to the schemes (111112) and (111121) act on two electron shells. Check
the conditions in Eq. (3.87). For the first operator, write s = {i = 1,j = 1,k = 1} and s’ =
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{l =1,p = 1,q = 2}; the multiplicities of 1 and 2 in s are 3 and 0, respectively. Analogously,
the multiplicities of 1 and 2 in s’ are 2 and 1. Write Ay =3 -2 =41, Ay =0—-1= —1.
For the second operator, write s = {i = 1,7 = 1,k =1}, ¢ = {l = 1,p = 2,q = 1} and
A} =3—-2=+41,Ay =0—1= —1. Then A; + Ay = +1 4+ (—1) = 0. Consequently,
both operators belong to the same parent class X5(+1, —1). By Definition 3.2.5, the dual class
is Xo(—1,+1), and the operators that correspond to the previous ones are associated to the
schemes (222221), (222212).

The choice which class is parent and which one is dual is optional, as it follows from their
definitions.

3.2.6 Corollary. The map

. i/ ~/k/l/ V) i/ s/ k)/ ll / / . i ikl
et (x) — (aa), (T4 540 %) — <n(1) 7(2) 7(3) m(4) (5) ﬂ%6)> = (115429 (3.89)

is realised by
FT (A A A A A A ) = TS e AN )- (3.90)

It follows from Corollary 3.2.6 that for 7 = (ij), Eq. (3.90) coincides with Eq. (3.21). In
general, the permutation m must be expanded into the product of 2—cycles (transpositions) in
order to apply Eq. (3.21) for several times. However, a general solution to count the number of
ways in which a given permutation 7 can be factored into a given number of transpositions (i5)
is absent so far. In algebraic combinatorics, authors usually refer to the so-called Hurwitz’s for-
mula for the number of minimal transitive factorisations. In a particular case, this formula yields
that the number of factorisations of a full cycle in S, into ¢ — 1 transpositions is 0*=2194,95]. In
Ref. [94], it was also demonstrated that there exists an elegant connection between the primitive
factorisation and Jucys—Murphy elements [96—98]. Due to the absence of a general factorisation
formula, each permutation m must be expanded in a unique way whenever it appears.

3.2.7 Theorem. If the operators T\g()\i/ Njr A Ay Ay Ay ) and T (A A A Agr Ay Ay ) are associ-
ated to the schemes (x) and (y), and fg()\i/\j)\k)\l)\p)\q), Ag()\m)\n)\r)\s)\t)\u) are associated to
the schemes (x.), (y./) so that for some I, ﬁ)\i = A\ ﬁ)\j =\, ﬁ)\k =\, ﬁ/\l = A\,
ﬁ)\p =\ ﬁAq = Ay, then for the given two maps p,: (x) — (z), pr: (y) — (Yn), there
exists a map pz such that the following diagram is commutative

y

(y) — = (Yn') (3.91)

| L

(Yn)

and the permutation representation T of Sg is found from

~
<

%T\§<)\m/)\n/)\7«/)\3/)\t/)\u/) =T ()\H(i’))\ﬂ(j’))\ﬂ(k’))\H(l’))\H(p’))\l_[(q’))- (392)

Proof. To prove the theorem, it suffices to demonstrate that the commutator |7, ﬁ_l%} =0,
assuming that -1 = 1¢. Indeed, if the latter commutator equals to zero, then, by passing to
Eq. (3.92) and the definition of I, it is true that [I711~'7 = 7’ = 77 and thus Drt = P5 O Pr.
Find [%, ﬁfl%]jw\g(/\m/ At Apr Aot Apr /\u’)- For %ﬁfl/ﬁ\', write
%ﬁ_l%fg()\m/)\n/)\r/)\sl)\t/)\u/) = %ﬁ_lfg()\H(i/)/\H(j/))\n(k/))\n(l/))\H(pr))\n(q/))
=TT (A Ay A A A Ag ) = TS Ay

For I1~'#7, write

77T (i A A A Ap A ) = TS (AiA A A A A
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if [7,I1"'%] = 0. Then

TAT O A A A v A ) = T A AN A ) = T AnAr AsArAy)
FT o A A Ast A A )

and 7 = 7. O

3.2.8 Corollary. If the operator T\g(/\i)\j)\kkl)\p)\q) associated to the scheme (x.) belongs to
the class X,(Aq1, Ao, ..., Ay) and it is found by realising the map p,: (x) — (x) for
fg<)\i//\j//\k//\l/)\p//\q/) with i < j' < kK < U < p < (¢, then any other irreducible ten-
sor operator C/F\g()\m)\n)\,.)\s)\t)\u) = ﬁfg(/\,;)\j A ANiAp ) associated to the scheme (y,) of class
Xo(A), AL oL A)) is found by realising the map p,» = pz o p, for fg()\m/)\n/)\ru\s/)\t/ Aw ) With
m <n' <r' <s <t <, where is found from Eq. (3.92). The class X,(A}, AY, ..., A})
is called the derived class of dimension d,.

Proof. By Definition 3.2.4, the proof is similar to the one applied to Theorem 3.2.7. O

3.2.9 Corollary. The dual class X (A1, N, ..., Ay) is a particular case of the derived class
Xo(AL AL, A A = A AL = =Ny, . A = —Ay; each derived class has its dual

one which is of the same dimension.

Corollary 3.2.9 indicates that for a given parent class, all three types of classes—parent,
dual, derived—are of the identical dimension.

Theorem 3.2.7 allows us to reduce the number of classes that need to be studied to classify
the irreducible tensor operators which act on ¢ = 2,3, ..., 6 electron shells. The classification
of all the rest operators that belong to the corresponding deArived class is performed immediately

by using Eq. (3.91), once the permutation representation 7 is found. In addition, it ought to be
by no means obvious that Theorem 3.1.8 also fits Eq. (3.90), thus the permutations that arise
during the transformations are «simplified», as it can be recognised from the tables in Appendix
B.

In Tabs. 20-35 (Appendix B), the dual classes are not listed. The reason for not doing

so is simple. If the operator L expanded by using Eq. (3.81) belongs to the parent class

Xo(Ay, Ay, ..., Ay), then its adjoint operator LT belongs to the dual class X; (A1, Ay, ..., Ay)
which is nothing else but X,(—A;, —As, ..., —A,) (Definition 3.2.5). Consequently, the ma-

trix element (‘IJZ\ZT|\I/]> on the basis given in Eq. (2.2) simply equals to the matrix element

(U yZ |W;) if recalling that the matrix element on the infinite-dimensional N—electron Hilbert
space H is defined by the map X x X — R, where X denotes the set of basis ¥; (Sec. 2.1).
The similar argument holds for the dual classes X (A}, A}, ..., A}) associated to the derived
classes Xy(A], A}, ..., A}). Thus, the only task is to identify a given irreducible tensor oper-
ator T (A A jAx A A, A,) by using Definition 3.2.4. This is easily done utilising Tabs. 36-39 in
Appendix B. For a particular two-shell case, the identification of operators is trivial: there are
only parent and derived classes; the derived classes coincide with the dual ones.

Example (Operator identification). Consider operator T°(AsA3 A2 A4A1\4) associated to the an-
gular reduction scheme (532414). This is a 5—shell case. Find the associated class. By Defini-
tion3.24, write s = {i =5, =3,k =2}, ={l=4,p=1,g=4} A, =0—-1=—1,
Ay=1-0=1,A3=1-0=1,A, =0—-2 = -2, A5 = 1—0 = 1. The condition 2950:1 A, =
0 is satisfied, thus the operator belongs to the class X5(—1, 41, +1, —2, +1). Identify the class
in Tab. 38 (Appendix B). The present class is the dual class of X5(41, —1,—1,+2, —1) which
is the derived class associated to the parent class X5(+2,+1, —1, —1, —1). This implies that the

matrix element of I, o > a5a3a2a1a1al (see Eq. (3.80)) is equal to the matrix element of I
> agaq améaéaé, where LT = L. Consequently, the operator T (As\; As Ao A3)\5) of the derived
class X5(+1,—1,—1,+2, —1) must be studied. Refer to Tab. 33. Since (y,,) = (414235) and
(y) = (123445), 7' = (142)(35), where (142) = (12)(14). By Eq. (3.21),
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AT (AdodsAadids) = TS (Aadidadadsds) = Y ew T (A dadsAadids),

6126123
6446445

Ext = E €(142)(35)€(12)(14)€12-
624613465245

Other 17 operators that belong to the derived class X5(+1, —1, —1, 42, —1) are obtained mak-
ing use of Eq. (3.91) for 7 = (153)(24).

Tab. 7: The parameters for three-particle matrix elements: ¢ = 2

X3 (A1, Ag) (z) £ w ws

X, (0,0) (111122) 20 1111 22
(112222) 5 2222 —
(111112) 27 1111 11111

Xo(41,-1) (111222) 14  — -
(122222) 30 2222 22222

Tab. 8: The parameters for three-particle matrix elements: £ = 3

X3 (Al,AQ,A3) <£L'> f w1 w2 w3
X3(0,0,0) (112233) 1 22 33 1122
<111123> 27 1111 11112 —
X3 (+2,-1,-1) <112223> 4 222 11222 —
<112333> 14 — — -
X3 (+3,-2,—1) (111223) 15 11122 — —
(123333) 5 3333 — -
Xs (+1,-1,0) (111233) 20 1112 33 -
(122233) 24 22 33 222
Derived class (y)

Xs(—1,42,—1) (122223) 31 222 2222 12222
(122333) 6 22 - -

Tab. 9: The parameters for three-particle matrix elements: ¢ = 4
X4 (Al,A27A3,A4) <ZL‘> f w1 w2 ws

Xi(+1,41,-1,-1) (111234) 27 1112 11123  —
(122234) 29 222 1222 12223
(123334) 4 333 12333 -
(123444) 14 - — -
Xi(+2,-2,41,—1) (112234) 3 22 1122 11223
Derived classes (y)
Xa(+2,41,-2,—1) (112334) 15 11233  — -
Xa(+2,41,-1,-2) (112344) 20 44 1123  —
Xa(+1,42,-2,—1) (122334) 7 12233 - -
Xa(+1,42,-1,-2) (122344) 23 44 1223  —
Xi(+1,-1,+2,-2) (123344) 1 33 44 1233

Tab. 10: The parameters for three-particle matrix elements: £ = 5

X5 (A1, A2, Az, Ay, As) (x) £ w1 w2 w3
X5 (42,41, -1, -1,-1) (112345) 27 1123 11234  —
X5 (+1,4+1,—1,-1,0)  (123455) 20 55 1234  —

Derived classes (v)

X5 (+1,42,—1,-1,—1) (122345) 28 22 1223 12234
X5 (—1,—1,42,41,-1) (123345) 3 33 1233 12334
X5 (—1,41,—1,42,—1) (123445) 15 12344  — —

To conclude, a general formula of reduced matrix element of Ts (NiAj AN, is displayed
assuming that/ > land: < j <k <[ <p<yq.



3 Irreducible tensor operator techniques in atomic spectroscopy 57

[()\1 + X+ ...+ Ag)F1q1F2q2q12 ... qufq’Hf<<)\z)\]>\k)\l)\p)\q)‘H()\l + X+ ...+ )\g)
)4

DiqiTaqia - - - Fz@e(ﬂ = (-1)* Z €¢ H[QIQ.A.M Gz+1, Q12..241, Cpm+1]1/2

§w€£§ z=1

G12..x2 Qz+1 Q12..2+1
, (3.93)

X [)\xerJz|||U§pm ()‘J»‘/\x e )\z)|||>\xrqu} { gpcc gpx+1 41 gpw+1
q12..x qz+1 q12..2+1
where ¢ = QA, 1.0 = ¢, G12.0 = G, S, = 5. In Eq. (3.93), the A, —length numbers
pr = 11...122.. 222 ... 2, py, = xx ..., Where N, is the multiplicity of equal irreps c,

within fc(Ai)\j A AiApA,). The phase multiplier

¢

0 z—1
O 3T ((Na N A0) DTN, + NG DOV + AL (3.94)
z=1

r=1 y>x

N, denotes the number of electrons in the shell characterised by the numbers A\, I",Q, A, Mg, M,;
Mg, =12 (N, — A, — 1/2); A, is recognised from the class that contains a given irreducible
tensor operator. The indices of summation w € L¢ = {wy, w9, w3} depend on a specified op-
erator. Possible values are listed in Tabs. 7-10. Particularly for ¢ = 6, & = 27, w; = 1234,
wy = 12345, ws is absent.

The operator Uspae (AzAz ... A\;) is associated to the angular reduction schemes: 91[12} for

2 3 212
N, =2, P for N, = 3; 72 for N, = 45 TP for N, = 5; Z8 ) for N, = 6. The
reduced matrix elements of U” on H” are known [54, Eq. (25)]. Thus the connection with U*

is actualised making use of Tab. 6 and Eq. (3.51) which fits the case N, = 6 (see also Eq.
(3.84)).

3.3 Summary and concluding remarks

Theoretical atomic physics deals with various irreducible tensor operators that allow us to ac-
count for the contribution of atomic as well as effective interactions in a simplified form: the
irreducible tensor operators attach the symmetry properties of atom. In mathematical formula-
tion, the contributions are evaluated by calculating matrix elements — the real scalar products on
the many-electron Hilbert spaces. In practice, the calculation of matrix elements on the basis
of many-electron wave functions is a very complicated task. The reason for this is a complex
tensor structure of many-electron operators. The one-electron and two-electron operators that
are most common in atomic physics are examined very well. In contrast, the study of triple or
even higher excitations is already troublesome and an uncertain one so far. Due to a complex-
ity, it has become standard in many cases of MBPT to account for the contributions of single
or double excitations only. But the approximation stipulates the physical problems that can be
solved theoretically. On the other hand, the practice requires a more valued precision. The
best example is the atomic parity violation [42, 57], the study of which is a very popular task
among the atomists nowadays: the contribution of at least triple excitations becomes inevitable.
Therefore in most cases, Sec. 3 is concentrated on the present problem.

Sec. 3.1.1 provides an opportunity to classify the angular reduction schemes of operator

string O, (see Eq. (3.1)) for any integer /. The classification is performed by using: the /-
numbers (Definition 3.1.1), the S,~irreducible representations [A], the /o—tuples. The idea—in
its most general form—is simple: every angular reduction scheme is characterised by the irrep
[A], thus making the restriction (items I-IIl in Sec. 3.1.1) S; — Sy — ... — S until ¢ < 3,
a given complex structure associated to [\ is transformed to the scheme associated to either
[21] or [12] (Tabs. 3-4). The path of such a restriction is therefore a unique angular reduction
scheme.

Sec. 3.1.2 concentrates on the case { = 6 which characterises the three-particle operators.
The correspondence of angular reduction schemes (42 in total) is actualised by using the entries
Eeer, £,6 =1,2,...,42 of a 42 x 42 transformation matrix & (Corollary 3.1.4). These entries
are constructed from the so-called basis coefficients €, that relate operators associated to the
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scheme 91[22212] with all the rest operators that are constructed by using different schemes T
(refer to Eq. (3.11)). The basis coefficients are displayed in Appendix A.

In Sec. 3.1.3, the permutation properties of the irreps within a given operator O®([\]5)

associated to the angular reduction scheme T are studied for ¢ = 6. The symmetry group
S¢ contains 6! permutations at all. However, each permutation or a product of permutations is
a product of transpositions whose total number is 15 (see Eq. (3.19)). Thus the task that deals
with operators with different ordering of irreps is confined to the task to find the transformation
coefficients 8;75 (Definition 3.1.5) formed from the so-called recoupling coefficients €;; (see Eq.

(3.21)). These coefficients relate operators constructed by using the ordering (o, a, . . ., ()
with the operators constructed by using the ordering (aw(l), Qe (2), - - - ,a,r((;)), where ™ € Sg is
a transposition. The expressions of ¢;; are found by making use of the so-called commutative
diagrams (see Eq. (3.30)). The originated method based on Eq. (3.29) allows us to find the
recoupling coefficients by making the least number of transformations that are required by the
permutation representation 7. Consequently, it reduces the number of intermediate irreps.

Sec. 3.1.4 is a very important addition to the method presented in Sec. 3.1.3. The main idea
is listed in Theorem 3.1.8 which is, again, a statement that allows us to reduce the number of
indices of summation. Meanwhile, the present theorem is one of the key features that stipulate
the further on foundation of the simplification of classification of the three-particle operators
acting on many-electron shells (Appendix B).

In Sec. 3.2, the irreducible tensor operators associated to some special angular reduction
schemes are considered. For the two-particle case (Sec. 3.2.1), the most common schemes are

91[22} and (To43.7 )[122} which are also known [77] as the z-scheme and b-scheme, respectively.
The b-scheme first originated by Kaniauskas [85] is the most typical one. However, in Sec. 4,
the advantage of a less common z-scheme will be demonstrated.

Finally, Sec. 3.2.2 demonstrates the method to classify the three-particle operators that act
on{ = 2,3,4,5,6 electron shells. The algorithm is based on Theorem 3.2.7; the realisation — on
Theorem 3.1.8. The operators are grouped into the three types of classes: parent, dual, derived
(Definition 3.2.4, Definition 3.2.5, Corollary 3.2.8). The identification of operators that belong
to a specified class is performed making use of the tables in Appendix B. The present identifica-
tion makes it possible to calculate the matrix elements of three-particle operators efficiently: the
tables of classes display the relationship between the operators that belong to the parent class
and the operators that belong to the derived classes. Thus it suffices to find the expression of
matrix element (see Eq. (3.93)) for the sole operator — the matrix elements of other operators
are found instantly.

In Sec. 2.3, a general expression of the Fock space operator has been presented (refer to Eq.
(2.41)). In Sec. 2.3.1, its confinement on the many-electron Hilbert space has been obtained
(to compare with, see Egs. (2.55), (2.59)) leading to Lemma 2.3.9 and Theorem 2.3.12. As a
result, Eq. (2.69) has been derived for the n—body parts (n = 1, 2, 3, 4) of wave operator that is
necessary to compute the terms of effective Hamiltonian in Eq. (2.61). Based on the methods,
developed in the present section, it is now possible to form the irreducible tensor operators
of both the wave operator and the effective Hamiltonian in a systematic way. However, still
one more problem remains unsolved. This is the n—body effective matrix element w,, (see Eq.
(2.65)). As already pointed out in Sec. 3.2, these elements are related to a specified system
under consideration. In the next section, the terms of the third-order MBPT (£ = 2 in Eq.
(2.71)) will be considered and the n-body (n = 1,2,3,4) effective matrix elements of the
kth—order (k = 1, 2, 3) will be displayed expressly.
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4 Applications to the third-order MBPT

The main goal of the present section is a symbolic preparation of terms of the third-order ef-

fective Hamiltonian . so that the expressions attach an applicability to the coupled-cluster
(CC) approach as well.

To bring the purpose to a successful end, two tasks are to be solved: the generation of
expansion terms and their appropriation.

The generation of terms is related to the selection of model space in open-shell MBPT. The
model space P has been selected in Sec. 2.3 (also, see Definition 2.3.2 and Corollary 2.3.3).

To generate the terms of .7#), the n—body parts of QM and Q@ are required (see Egs. (2.61),
(2.71)). These are found from the generalised Bloch equation (refer to Egs. (2.58), (2.59))

2
QW HlP = Q(V:i +Ta)P, QW =>"a0, (4.1)
n=1
AN AN A~ A~ ~ ~ 4 ~
Q2 Hy P = Q(Vi + 12)QWP, & =3"0®. (4.2)

The solutions for Q') are of the form given by Eq. (2.69) replacing w with w*). Then the
third-order contribution to .7Z reads (see Eq. (2.66))

4 min(2m,2n)

= > ZZ Z a9 B PP Ple, 4.3)

Ijyyn—e m=1n=1

where hini ¢ the (m + n — &)-body operator (Tab. 11), must be expanded into the sum of
irreducible tensor operators. The confinement of the space the operator acts on is the second
task to be solved. A common technique of expansion of N—electron model space P into the

orthogonal sum of its SU(2)—irreducible subspaces P* leads to

o 5_2 Z ZOA b 5(PA) (4.4)

M=—A T

Tab. 11: Possible values of m, n, £ necessary to build the (m + n — £)-body terms of H)

m+n—§¢ m n & m4+n—-€& m n & m4+n—& m n £
0 1 1 2 2 2 1 1 3 1 3 1

2 2 4 1 2 1 2 3 2

1 1 1 1 2 2 2 1 4 2

2 1 2 1 3 2 2 4 3

1 2 2 2 3 3 4 2 3 1

2 2 3 2 4 4 1 4 1

2 3 4 3 2 2 1 2 4 2

5 2 4 1

By Lemma 2.3.9, the irreducible tensor operator O ([\]5) associated to the angular reduction

scheme .7} contains creation and transposed annihilation operators labelling the valence states
only. As usually, " denotes additional numbers that are necessary to characterise studied oper-

ators. f)( é(FA) denotes the projection-independent coefficient; thus it is the SU(2)—invariant.
At this step, it should be pointed out the two principal differences to compare with the traditional
version of MBPT, though they are easily seen from Egs. (2.69), (4.2), (4.4). These differences,
however, comprise their own benefits that are the key features of the method presented here.

1. The generalised Bloch equation for Q) 1nd1cates that the solutions are proportlonal to the
kth power of perturbation V. For instance, Q0 « V (see Eq. (4.1)), Q® o VOO o V2



4 Applications to the third-order MBPT 60

(see Eq. (4 2)) etc. This is also true for the terms of effective Hamlltonlan (see Eq. (4.3)):
AP x VOO V3, etc. Each m~-body part of perturbation 1% (refer to Eqgs. (2.40)-
(2.43)) contains the m-body matrix element v,,(a3). Consequently, Q® contains the prod-

uct of k such elements. Moreover, every single term in Q)*)—obtained by using the Wick’s
theorem—is evaluated separately. A typical example is the classical work of Ho et. al. [37].
(The latter method of evaluation did not change until nowadays.) It should be obvious that
such interpretation becomes tedious when a huge number of diagrams is generated. This fact
makes sense especially for the higher-order PT. In the present case, on the other hand, the

solutions for Q) are given by Eq. (2.69) with a single element w®). Thus w® represents

the product of £ matrix elements of V,,, with energy denominators included. In other words,
W is the kth-order n-body effective matrix element that characterises the n—body part of
the kth—order wave operator. In addition to the convenience of otherwise marked product

of matrix elements v,,, there is also an essential peculiarity: by Theorem 2.3.12, the terms

of Q® are combined in groups (refer to Eq. (2.69)) related to the different types (core, va-
lence, excited) of single-electron orbitals. That is, a number of Golstone diagrams drawn
in w® are characterised by the sole tensor structure and thus the problem of evaluation of
each separate diagram is eliminated. Meanwhile, in CC approach, the n—particle effects are
embodied in the so-called amplitudes p,, (see, for example, Ref. [42]) of excitation that are,
in principal, the n—-body effective matrix elements. Therefore, if replacing W with Pn,» the
tensor structure of terms remains steady and thus such formulation is applicable to at least

two approaches of PT.

2. In traditional MBPT, the two-particle matrix elements vy (/3) or else gasus (see Eq. (3.53))
are expressed in terms of b-coefficient (Sec. 3.2.1). In this case, as it will be confirmed later,
a z-scheme is preferred.

4.1 The treatment of terms of the second-order wave operator

The generation of expansion terms of Q® s clearly a computational task and it is the most time
consuming process. The nowadays software programs are capable to solve the problems of the
present type. To generate the terms, the symbolic package NCoperators written on Mathematica
is used. The features of the package are studied in a more detail in Appendix D, while in the
present section, the study of already generated terms is argued.

Despite of a large number of generated terms of 0>, fortunately, there are only a few of

fundamental constructions that need to be considered: all the rest terms are obtained varying
the known expressions.
In total, there are 13 such constructions (Tabs. 12-14). In tables, g,z and go 55, the matrix rep-
resentations of a two-particle interaction operator g;o, are defined by Eqs. (3.53)-(3.54). Their
explicit expressions are found from Eqgs. (3.63)-(3.64). For the typical interaction operators g,
observed in atomic physics, the expressions of z coefficients are listed in the examples of Sec.
3.2.1. Here, Remark 3.2.3 is taken into account. The single-particle matrix representation v,z
of the self-adjoint interaction operator v; reads (refer to Eq. (2.43))

Vi = Vo = (a|vilB) = (=127 f(10aA5) (Mamads — malmm), .5)

. )\a 1/2 .

F(rdadg) —[[Ti]—]m[naxa”w

In Egs. (4.5)-(4.6), v™ denotes the SO(3)—irreducible tensor operator that acts on the subspace

of the space the operator v; acts on. It is assumed that the single-particle Slater integral(s) is

involved in f(7;AqA3). The number of such integrals depends on the basis [n,Aam,). The
numbers f(7;A,\5) are complex, in general, and they satisfy

nsAs) . (4.6)

F(TidgAa) = o(TidaAg) [ (TidaA5), 4.7
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Tab. 12: The multipliers for one-particle effective matrix elements of 0®

Construction

SU(2)—invariant: Expression

Z va#w(l)

~(1)

SQB(TlTQT):

\Az—Aa—T 1/2
(=1)* [r1,72]/2 32,
X (TymyToma|Tm)

f(‘l'l)\ )\ f(‘l'g)\ )\5)
EF—Epn

{Tl T2 ’T

Y h iy Sap(mi):
D=1 3 (1A LA 57y 2 [ e e
XZ(0AzA )\Bz\guu)

Yendiacaol  Sap(ma):
R(521) Sap(2)

2 pn¢ %CP"&;;)CB Sap:

) —Ap—u 1
€3¢ " Epn

2L PPV D DN DY C
XZ(0Aa A Ap A put) Z(0A , Ay Aq Acunr)

Tab. 13: The multipliers for two-particle effective matrix elements of 0®

Construction SU(2)-invariant: Expression
Ua#wf(i'lu) Do gpn(udr):
[7—1’7—2’u d]1/2 S iglfe(/?)\ﬁ)\ )<T m172m2\7m>
{)\a )\B u}
X 4Ap Ap d
o) Do (Tur):
nga{wcﬁﬁﬂ apur (Uut):
— . ——— TiAa A
2(—1eAa At Artn []1/2 57 JAa2) 50X A s Ay Aguu)
T1 )\a )\(
X {)\ﬁ u U}
1
Zg 9(!3/19”((1() D;ﬁﬁp(UUﬁ):
R(’E?Zi) Dapjn(Uuts)
1
Yo 9o0cr ot Dapw(un):
4(71))\‘1+/\;+u[u]71/2 ZC 2(0Xa A ApAcun)z(0X, A Ap Aguun)
P Eav—E¢p
1
Z(p ga(ﬁpwéﬁ),;c Ao/ﬁﬁ;(UU)
— UL/2 A +dw
DU DA
X {Ac a Au} 2(0Aa A A Az 111) 2(0X, Mg A Apdd)
u Ay A

Tab. 14: The multipliers for three- and four-particle effective matrix elements of Q@

Construction SU(2)—invariant: Expression
1
Uauwég)yn TO/BCHW](UTl)
w f(T1AaAa
2(— 1 tAntuLiAeda) (0 Ns A g Apun)
1
gﬁcﬁﬁwf(l/% Téxﬁ(uun(UTQ):
R(GI2E) Tapcpvn (ure)
1
Y, Gosunotyn (=1 Tageuon(DdU): .
- —1)"r
IO Vel 1] D S %[u}lﬂzwmaxpxﬂuu)
x2(0AAAsdd) 0 K3 D 3 o
1
JoBir oo Qapcparnz (ud):

4 (—1)u—i_d—‘rkﬂ’—"_)\';—i_)\'ﬁ—"_)\f7 Z(O)\aABAg)\ﬁUU)Z(O)\CAp)\a-Aﬁdd)

€15 —E¢p




4 Applications to the third-order MBPT 62

+T7i

O<Ti)\a)\5) def (_1)AQ—A5 [Ti]_l Z (_1)Tru—e(7'mm)7 (4.8)
which is easy to derive considering the properties of the self-adjoint operator v;: v,,5 = vz, and
,TnT = (—1)e(7mi)yT . The phase multiplier e(7;m;) is optional. Usually, two possibilities are
exploited, one that is glven by e(r;m;) = m; [8, Eq. (25)], and the other by e(r;m;) = 7, — m;
[11, Eq. (2.3)]. It is to be noticed that throughout the present text, the second possibility is

preferred. In this case, o(7; Ao \5) = (—1) 17,
The 1ndex ¢ distinguishes the 1nteract10n operators v; that befit to a second quantised form

V1 foerlnEq 4.3),1=0; foerlnEq “4.2),i=1; foermEq “4.1),i=2.

In Tabs. 12-14, the abbreviation €, ., = =& + ey + ...+ €., where €, is the single-electron
energy (refer to Eq. (2.65)). The operator R replaces orbltals in energy denominators. Thus,
for example, R(g’g:g) (eoq —epc) = (ea — €a)

The first-order effective matrix elements w(", &) are defined by (see Eq. (2.65))

(1) det Yo (1) det Gappp ~(1) @t (1) )
T pp— e oEr T Lapy T Yoprn (4.9)

€5 — €a’
Recalling the properties of v, 3, gasus (also, see Eq. (3.55)), it is easy to deduce that the matrix

representations w®, HM satisfy w( ) = wél) and
Wepis = Whars = ~Wophe = —Whpag (4.102)

SO s~ <)
Wapp = Wparp = Yizpa = Yrpas

_ _@(1) 1 O S {C) S _@(1) (4.10b)
Bop vpfo af: )
Now, it becomes clear why it sufﬂﬁces to consider only 13 constructions from the large number
of terms.
To distinguish the SU(2)—invariants by the summation parameters, the following special

notations are used.

L | c v e
: - @.11)
Sag(TngT) ‘ Sop(TiTeT)  Saz(TiTeT)  Saz(TiTeT)
¢ ¢ ¢
n v e
3 = 4.12
Saa(m) | Sa(m) Sus(m) 12
S'05(T2) | S'ap(m2) Sap(m2)
C ‘C v e
Dopps(Uuty) | Dopas(Unrty) aﬁMV(UUTl) l?agﬁ,;(Uuﬁ) (4.13)
D/aﬂpD(UUT?) D/aﬁ[u?(UUTQ) aﬁuu(UUTQ) D;ﬁﬂD(UUTz)
¢ c v e e v
P C A% (S A% (S (414)
Dasao(tt) | Do) Do) Do () Do) oot
¢ ¢ ¢
P v € 4.15)
Ausin(UU) | Ausgn(UU) Ausan(UD)
c v e
£ ‘ (4.16)

Topcuon(DdU) ‘ Topcion(DAU)  Tioperion(DAU) T (DAU)
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Particularly, for §a5, ( =c,n =v, p=e. To designate that the direct and exchanged parts of a
two-particle matrix element are involved, the additional tildes are exploited. Thus D, g (Uuty)
implies that the two-particle matrix representation reads wé ﬁ)__ Conversely, D agpr(UuTy) im-
plies that the two-particle matrix representation reads g¢gzp. If written D g5 (tu) (Aagﬁ,;(ﬁ U)),
then the considered matrix representation is gagc, (Jacsp); if Written Daﬁw(uu) (AWW(U U )2
then the corresponding matrix representation is w£< 3 (Wpan¢); if written Da,gm, (uw) (Aagm,(U U)),

then the matrix representations g and w) are both with tildes. The similar arguments hold and
for the rest of SU(2)—invariants. Also, it should be noted that for each two-particle matrix
representation with tilde, the corresponding z coefficient is given by Eq. (3.64).

Example. Consider the sum of three Goldstone diagrams:

71 71 71

. f\,»\f\,x”Ul . ’\,’\/\/X/I_}l . r\_,»\f\,x’Ul
X\ Te x T"/ \ lc
T T T
. »\,»\,2'\,>< UQ . N»\,Qr\,x’UQ . —\,»\,wa’UQ

where the double arrow distinguishes the valence electron states. Since 71 # 0, 7o # 0, these
diagrams involve the interaction of atom with some external field (e.g. electric). By Lemma

2.3.9, given diagrams denote the one-body terms of (@ Their algebraic equivalent reads

(1) e
PNl YN B S

veC ¢

Now, arrange a given expression in terms of SU(2)—invariants. By using Tab. 12 and Eq.
(4.11), it follows that the first two terms are easy to obtain with o = v, § = ¢and u = e, V.
The corresponding SU(2)—invariants are Sva(TlTQT) (for 4 = e) and Své(TlTQT) (for p = v').
The last term (diagram) must be written in a standard form, as it does not satisfy a given
construction for S,3(71727). Make use of the symmetry properties of v,5 and w_ ) . Then

Uccwvc T Uccwcv)
= E — E¢ €C — &y
ve ¢

and thus the corresponding SU(2)-invariant is ng(ﬁrzr) with o = ¢, # = v, u = c. Finally,
the given sum of diagrams yields

> (ee20) ™ 30 (Wi (AAe) (Sue(mimar)+ e (mm)) (=1 WL (AKe) Sev(mimar) ).

vC ™m

Also, it is interesting to notice that particularly for e(7;m;) = 7, — m; (see Egs. (4.7)-(4.8)),
Sey(T1T0T) = (— 1)’\ ACﬁLTlJFDR(g:‘g) Sye(T17oT).
Thus the third diagram represents some complex conjugate—the reflection about a horizontal
axis—of a diagram that is characterised by the SU(2)—invariant Sz (7 727).
The example indicates that the Goldstone diagrams are represented by the two types of
irreducible tensor operators: Oﬁ s and O, . The analysis of all generated terms of Q(?) leads
to the following conclusions. The terms (diagrams) associated to the tensor structure O* M

are: (i) the folded diagrams; (i1) some diagrams, obtained by contracting the core orbitals in
Wick’s series; (ii1) the diagrams, acceded to the reflection about a horizontal axis of a number

of diagrams associated to the tensor structure 6ﬁ} M
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To distinguish the considered two types of terms, the superscripts &= over the matrix repre-
sentations are used so that for n = 1,2, 3, 4, the SU(2)—invariants Q2+ of each n—body part of

Q® are given by

+ + +
WIF = (1) (Aamads — malA = M)QTF(A), (4.17a)
A
t+ def )\ﬁ + mﬁ? tl_ _Cf )\ + ma’ (417b)
wgﬁ);:” - <_1)t2i Z E(;\la T/'\lﬁﬁ _/\mf —mp ;A AN + M) Qgﬁ);:’fz}(AlAQA)> (4.18a)
A1A2A
55 it Aot mp+mp, = Aot Ag+ma +m, (4.18b)
5 +
Witinon = (1T D D (DM Namay — milAs & My)OLT, (A A A)
A1A> A3A
X E@% e “ms g3 DA A T M) (4.192)

t;_d:ef )\ﬂ—i—/\,;—l—)\,—]—i—mﬁ—i—m;—i-m,—], ?:d—f)\ +)\ﬂ+)\§+ma+m/@+mC7 (419b)

w((jﬁzgpﬁﬂﬁ& = (_1)t4 Z (_1)MQa2ﬂ)CpﬂDﬁ&(AlA2A3A4A)

A1 Ao

AsA4A
X E(Q;; AT AQAM) (3& 2o n e AgAA — M) (4.20a)
t = Aa A Ao+ Ag o+ s+ mp 4+ my + me (4.20b)

and w® = W@+ + L@~ The coefficients Q27 are displayed in Appendix C.

4.1.1 Remark. In Tab. 12-14, the SU(2)—invariants are also obtained by given Eqgs. (4.17)-(4.20)
for the effective matrix elements with the plus sign, the basis indices +M, + M3 and eliminated
phase multiplier (—1).

Eqgs. (4.17)-(4.20) direct attention to the convenience of z-scheme to compare with b-
scheme, though both of them are equivalent. The attraction is due to the coefficients £ and
their symmetry properties in Eq. (3.60). Conversely, for b-scheme, the associated coefficient
reads £’ = T3 F, and thus it does not satisfy the same properties as that of £. For instance, the
relationship between 7oy F' and £’ is realised by

B Jr o n i MdaAM) = 37 (=1 audsho)[As, A, Ay, B2
A1K2
)\Oc >\17 Al
x A A Aa B 0 2 R M)
Ay Ay A
which implies the appearance of additional summation.
4.2 The treatment of terms of the third-order effective Hamiltonian

By Lemma 2.3.9, this part of computation requires significantly less time to compare with the
handling of Q?). Moreover, the non-zero terms hgrg are derived in accordance with Theorem

2.3.12 which makes it possible to reject a large amount of terms of 0> attaching the zero-valued
contributions. As already pointed out, the terms of Q(?) that provide non-zero contributions to

1) are listed in Appendix C.

mn;g?
In the present section, the single-particle and two-particle operators of ' will be consid-
ered. Then (refer to Eq. (4.4)) O([\]») = WA (A \¢) is associated to the angular reduction

scheme %[12] form+n—¢& =1, and OM[N ) = —[IWA (A Ay) X WA2(A Ae/)]A is associated
to the scheme 31[22] for m +n — £ = 2. Possible values of m, n, ¢ are listed in Tab. 11.
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Tab. 15: The expansion coefficients for one-body terms of the third-order contribution to the effective
Hamiltonian

(mng)  HET ()
(2 ol SR Aok TAM (-0 2, Seod 0 @ 2 1 1}
—(-DAY, FroAA)QD T (@A) {§‘j /\AV ﬁ})

(111)

v—Av o= Ae ~ B (2)+ A Ay Ae
(212)  2=1 N S DM T, HOAAAA ) 20 ()2 e 3

v

(=1) o]/ Yo p, apw (1) AL, Az, AV (momoR MIAM) 3, (Zv/(—l)%”v/f(m)\c%v')

122 Av Ay Xe Av A1
P m LS 0o s f )
70 A A 70 A A
25 a sl oo (aWAGA) oy Z(0AA A A A2 AR AT (A1 AzA) {1 42 2 )
- —a(A1A2A) 3, Z0AA A A A2 A2) QETE (A A A) i1 42 2 )+22 N A2( 1A [ J]1/2
X ZC A/): g\\j )/\\C (Q(AV)\(,A) ZM Ve(_l) /+>\ ” (OA )\ )\ ) /Al ) W J'/_/ ( )
—a(AAsA) Y, (1) A ZO0AA A A A ADQDE (A A, A))
22 o Dopmvie 2on, UAeAA2) (E(OACACI A A AaA)QEE L (A2A2A0)
(234) 2 A a0x(— 1)A’+A3+M[A As A2 (A My A MIAM) ((=1)*

XZ(O)\ )\C/>\ )\v//AQAQ)
XZ(O)\ )\C/)\ //)\ AQAQ)Q

v”v,u vc'c

(Ar A2A3A) {,\A}, Ix\f AX#/} /,tf AKV /\Iv\,/ } +a(A1Azy)

hirvvee(M1A2 AR { e ,\Ii,} {/A\f L )\1:// }))

Tab. 16: The expansion coefficients for two-body terms of the third-order contribution to the effective
Hamiltonian

(mné) 5T (A1ALA) @

mn;&

o] 2 S 2l A2 ()% a(h Avmo)a(A AzA) ]V (romo R DI|AM) {2 %2 )

121 X 3 F(1oA ) QDT (R AR {70 2 el ymog (A AgA)[Ag] Y2 (10 — mo A MIAM
e ev/vv Ay A1 Ay
X {X‘l % AAI} 3o FToAA) QL (M AL R) {;i -4 22})

(=D ([A2] Y2 2 (DM EOAAANAT AN () {1 47 1} — (12 A2

211
(2D % 30, Z(0A A Aw Ar A A) 2D () {Ag Lo ;‘})
a(AsAe A2)[A2] "2 S F0A A Ae A Ao A) QT (A AQA) + [A4]71/2
X Ze ZM:Ve (0/\ Avr A ”>‘ A Al)Qeu’j;v (A1A2A) ( )A1+A2 [Al A2] 1/ 2717 1/2
_ /\e Ay
22 a2 ()5 SO 02 TR {7 }
Ae >\
. Agr Ayt
F(=1)M RS (1) FAZ(0A A Ay A ,uu)Qg?itcv(AlAQA){ RN A}
Ac Av Ay A

(1) M [rg, Ag, AIY2 S 30 e Yok aero (— DA A2, Ag, 9112 (A3 Mo A )
x (tomoA — M|9g) (=) " FA[A ]2 375 [A1]Y2 f(ToAeA )

Av Az A: A X A1 _ _
(132) X { e Ay } Q2 (AR5 A5R) — §va( A A Ar)

v/ p!’'vv’c
Az A A 10 Ay " !

x QO (R AgAR)) + (— 1) e PArFA At s (A AQEE (A RaAgR)

7 vV e
Ac Ao A As

N A W VI R )
v Ao A 7o

¢ The 12j—symbol of the first kind is given in Ref. [12, Sec. 4-33, p. 207, Eq. (33.17)]
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Tab. 17: The expansion coefficients for two-body terms of the third-order contribution to the effective
Hamiltonian (continued)

(mn€) 5T (A1 AoA)

mn;§

20212 32 (1 32K, mangn (1) (A K2 (—1)8 (As My K = MIAM) [ ([Ar, K /2
(DA F(0AA Ae N Ko Ko ) {80 U oo (R K2 A5A) — a(Aer A )

vp''v'vc'c

O2F (KA R AV LRl 1)t
X3 Loyr urzer c( 2433 )} o Ayr Ay N X/ A2 - Alxl(_ ) N
3

X 3 Z0AAe Ae A Ao R)QCE (AR5 A5A) {){\ % i‘j’,} {2; A [1\}) — (—1v
[Al,KQ}lm Zv// ZH:V e(—1)/\"”+Al"”+A1+A2:Z’V(OAV)\C)\;L///\VNK1A )Q<2)+ (A1K2A3K)

vV RV’ c

Ay Av A1 .
o33 <o {* Y Az}] (—Le AL Ry ]2 (A MK MTIAM) T, [l /2

As A A

- . (wu Av Ae A Av Ao
X [(_1)1\1 Zu:me E(O/\V/\c/\ﬁ” /\H”uu) (2”)+” (A1A2A3A) { At Az Ar }

w' vV c — —
)‘ﬁ” As Ay A Ay A

v

v/'v'evv'c

FEDN o (S ZONANN )02 0l (A AsAR)
u X Ae A Ay
x{ Ao X A }( DMHe S (1A Z(0A A A Ayrtias)
A

u Av A Agr Ay As

x0T e C(AlAzAsA){ Ao A As })])
)\v// As Ay A Xy A

20102080( =DM A ook, (S0 (S ahvrAer A)EOAA A Avr Rz )

XQE,%/)V//VNV I5c! C(A1A1X2K20) + ZQA[i][ ()\ A //Xg)[AhAQ] 1/2 (0)\ )\c’)\ A A2A2) B
XQS/)”VV 'v'vc! C(AZA A A2 ) ZA Ay [A27A3]1/2( )A4a‘()‘ )‘V’A ){1;1 )1\\2, A/t,} {/)E: )1\\\,4/ )\i\//}
K Z(0AA A A Mg AP (RaAyAgAyR) — a()\ Ay A3)Q ev)v,,v,v,vc (Ao AsALR)}))

(244) +ZH veZA[ HAl AQ] 1/2 (0)\ )\C/)\“//A”//AQAQ) W e C(A2A i\l/ﬁgA) -
+Zv”v” ZA3A4 (A A3 V”)[A] [A25A3]1/2 (0)‘ )\c’)\v//)\V//A4A4) {){};, )1\\\]2/ )ﬁ,} {){}j/ )1\\\,4/ A{,\//}

><[Q‘(—,%/)VV//V/\—,/‘—,C/C(A2A1A3A4A) ()\ Av Kg) ()\ " Ag ”A3)va’r”vv Il C(A2A1A3A4K)
7(1(A3A4 /){Qf”vv I ! C(AQA A3A4A) ( ))\ ”+A3a(>\ )\ AQ)
XQE72V)NV//V v've! C(A2A A3A4A)H)

The expansion coefﬁcients ) S;Zzﬁ associated to the irreducible tensor operator O are given
The sign of f)

coefficients F) 5 are found in Tabs. 15-17. The coefficients F) ¢ are derived from b 8 ¢ by
making the followrng alterations:

by the sum of [’J m ¢ * and f) is related to the sign of Q@+ Particularly, the

mn{ mn{

@ Q2T (A) — (=1 MHOE ()

(b) Qgﬁ);(/\lf\ﬂ\) — (= 1)AQ+AB+)\H+AD+MQ%8#V<A A2A)
(C) Q&ng-ﬁﬂﬁ (A1A2A3A) N ( 1)’\(¥+>‘B+)‘C+)‘u+>‘ +)\7]+M+M3+IQ&26)C—EE77 (A1A2A3A)

In addition, there holds one more rule: (d) each basis index drawn in b is replaced by the

mn£

opposite sign index except for my. In tables, the quantities Qe *+ satisfy

OPE (A1 ALA) = QP

afpv

£ (A1) — a(AadgA)QDE (A ALA). 4.21)

oeﬂ/u/ Bapv

It is now easy to bring to a decision the applicability of terms of A given by Eq. (4.4).

1. The third-order contributions to the effective Hamiltonian . are written in an oper-
ator form providing an opportunity to construct their matrix representations efficiently
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— the task is confined to the calculation of matrix elements of irreducible tensor opera-
tors that are written apart from the projection-independent parts. These particular angular
coefficients contain Q(®* multiplied by the 3nj—symbols.

2. The determination of SU(2)—invariants of {(2) makes it possible to settle down a number
of terms (Goldstone diagrams) associated to the sole tensor structure. As a result, the
latter approach permits to ascertain the contribution of n—particle (n = 1, 2, 3, 4) effects
in CC approximation. This is done by simply replacing Q(®* with €2,, found from Egs.
(4.17)-(4.20). In this case, replace the corresponding effective matrix element w® with
w, where w denotes the valence singles, doubles, triples and quadruples amplitude.

3. The terms of 7 account for the interaction of atom with external field. This is drawn
in the matrix representations of v; that represents the electric, magnetic, hyperfine, etc.
interaction operator.

4. The terms of #® are applicable to the study of both nonrelativistic and relativistic ap-
proximations. These effects are embodied in z coefficients.

4.3 Concluding remarks and discussion

In Sec. 4, an algebraic technique to evaluate the terms of MBPT has been suggested. The
method relies on Lemma 2.3.9 and Theorem 2.3.12. The advantage of method reveals itself
especially in the higher-order MBPT, when a huge number of terms is generated.

The restriction of space H the operator Q® acts on to its SU(2)—irreducible subspaces H*
makes it possible to find the 13 non-equivalent SU(2)—invariants, as demonstrated in Tabs. 12-
14. Due to the symmetry properties of matrix representations v,3, gagus» these invariants are

enough to evaluate all generated terms of Q®). As a result, the quantities Q* are determined
(Appendix C). Consequently, the restriction of space P the effective Hamiltonian %” acts on
to its subspaces P (see Eq. (4.4)) permits to express the expansion coefficients f] ¢ 1n terms

of Q2+ (Tabs. 15-17). The key feature is that the coefficients Q2(** can be replaced whrle on a
particular case of interest, but the tensor structure of operators on P* remains steady.

Tab. 18: The amount of one-body terms of A

(mné) dr d+ d- d-
(111) 13 0 3 0
(122) 37 0 18 0
(212) 14 2 2 0
(223) 67 34 29 2
(234) 57 36 18 18
Total: 188 72 70 20

In total, there are computed 188470 = 258 direct one-body terms of H® and 72420 = 92
direct one-body terms of .#® including the two- particle interactions ¢° only (in Tab. 18, the

sign & over d or d takes possession of the sign of h ) To compare with, Blundell et. al. [41,
Sec. II, Eq. (8)] calculated 84 diagrams contrrbutlng to the third-order mono-valent removal en-
ergy. Their studied energies Eﬁl )—Eé,), E§3), Ef, ) and ES), é ) conform to the matrix elements

of terms drawn in accordingly ﬁ;; 3, BS;} 4 and ﬁz?i o if g° represents the Coulomb interaction For

Weorey Which conforms to Z(0A AN Ar A Al)Q (A1A2A)
pertained to f)g?;);?)(A) with © = e (Tab. 15).

Tab. 19 lists the amount of two-body terms of ). There are computed 217 + 82 = 299
direct two-body terms and 125 + 42 = 167 direct two-body terms including the two-particle
interactions ¢° only. For instance, Ho et. al. [37] calculated 218 two-body diagrams of the

. (3) ~
lnStanCC, EA — Zee’c Gvcele w'p'ev
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Tab. 19: The amount of two-body terms of AP

(mné) dr dt d- d-
(121) 20 0 10 0
(211) 13 2 3 0
(222) 64 32 31 1
(132) 20 16 10 10
(233) 75 50 28 28
(244) 25 25 ~ ~
Total: 217 125 82 42

third-order perturbation. Analogous disposition to account for the two-particle interactions ¢°
only can be found and in other foremost works [36,41].

At this step, it should be made an explanatory of such a comparison with other works. The
principal difference of formulation of MBPT between the present and the other works is the
difference between algebraic and diagrammatic realisation — all the rest of distinctive features
follow the present one. Particularly, one of the typical features is the so-called factorisation
theorem [37, Eq. (10)] which makes it possible to combine the diagrams with the same energy
denominators. Consequently, the comparison of the amount of computed terms with the amount
of computed diagrams is a very conditional one.

As it follows from Tab. 11, .7®) also includes the terms ESZ«@ withm +n—§&=0,3,4,5.
The zero-body terms (the scalars on PP) are easy to derive. The result reads

By =37 3T (=M Ao £ AN (1), (4.222)
c p=v,e

Dy =33 FEAN)QD (1), (4.22b)
c pu=v,e

e =2 Z( 3 (DO (AL A0)Z(0AA A AL ALAL)

cc/ A1 p=ve

+ Z AAADQDE (ALAL0)Z(0M A A AALA )) (4.232)
ek _QZZ Oede ) (3 0 (A A10)Z(0AA A AL AY)
cc/ A1 u=v,e
+ Z Q8 (MA0)Z0AAAAAIA)), (4.23b)

and hﬁ); vanishes if the single-particle interactions v; are neglected (see Eq. (C.1b) in Ap-
pendix C).

The study of excitations with m + n — f > 2 1s usually much more complicated However
once the SU(2)-invariant coefficients 2(?) are derived, the expansion coefficients b ne can be
obtained in the same manner. In Ref. [42, Egs. (19)-(20)], the triple excitations for m = n = 2,
¢ = 1 have been considered. In this case,

Sor (B1A EaAsA) = (— 1)AV”+AV'+A°”+A2+A[A1,A2]1/22<Za(>\v/>\vxz)[E1,Ez,Kl]l/g

A As
% S HOANANAu) 2D (R Top) {3, B2 4z} fae 2 el L 2 B fror o 2L
+ (—1)E1+EQZ OMA AN ELENQDE, (B EA) {Q; & ;;;,} {g; pa ﬁ}) (4.24)

and the corresponding irreducible tensor operator in Eq. (4.4) is associated to the angular re-
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duction scheme 91[22212} so that
O3 ([2217]12) = [P (AA) x a™ ] s (WP (Xonder) x a2 )3,

where ﬁé‘?l contains 30 direct three-body terms of 3. The study of other expansion coeffi-
cients suitable for higher-order excitations is still in progress.
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5 Prime results and conclusions

1. The RCGC technique based on the constituted SO(3)—irreducible tensor operators has been
originated. The key feature of proposed technique is the ability to reduce the N—electron an-
gular integrals into the sum of single integrals. The method is especially convenient for the
calculation of matrix elements of interaction operators on the basis of SU(2)-irreducible matrix
representations. As a result, the proposed technique makes it possible to turn to practical ac-
count the SU(2)—irreducible matrix representations as a convenient basis rather than the usual
Slater-type orbitals.

2. The effective operator approach has been developed. Based on the Feshbach’s space parti-
tioning technique, the finite-dimensional many-electron model space has been constructed. As
a result, it has been determined that only a fixed number of types of the Hilbert space operators
with respect to the single-electron states attach the non-zero effective operators on the given
model space. The result has a consequential meaning in applications of atomic many-body
perturbation theory, as it permits to reduce the number of expansion terms significantly.

3. A systematic way of inquiry of totally antisymmetric tensors has been brought to a more
advanced state. Based on the S,—irreducible representations and the conception of tuples, the
method to classify the angular reduction schemes of operator string of any length ¢ has been
initiated. Based on the commutative diagrams that realise the mappings from a given angular
reduction scheme to the required one, the permutation properties of antisymmetric tensors have
been considered systematically. Special attention is paid to the case / = 6 which characterises
the three-particle operators observed in the applications of effective operator approach to the
atomic perturbation theory. As a result, the foundations developed for the irreducible tensor
operators associated to distinct angular reduction schemes appear to be well-suited with respect
to facility to compute the matrix representations of given operators.

4. The classification of three-particle operators that act on 2, 3, 4, 5, 6 electron shells of atom
has been performed. The irreducible tensor operators associated to their own angular reduction
schemes are identified by the classes. The classes are characterised by the number of electron
shells the operator acts on and by the number of electrons in a given shell. The proposed
classification is convenient to calculate the matrix elements of any three-particle operator. That
is, the way of classification permits to establish the connection between the operators that belong
to distinct classes, and thus it suffices to find the matrix representation for the sole operator — the
matrix representations for the other operators are found instantly by using the transformation
coefficients.

5. The third-order many-body perturbation theory has been considered. To simplify the gen-
eration of expansion terms followed by the generalised Bloch equation, the symbolic program-
ming package NCoperators written on Mathematica has been produced. The angular reduc-
tion of generated terms has been performed making use of NCoperators too. The specific
technique of reduction has been developed. The algorithm is based on the composed SU(2)-
invariants which—owed to the symmetry properties of matrix representations of atomic interac-
tion operators—take into consideration all generated terms of the second-order wave operator.
Therefore the irreducible tensor form of terms of the third-order effective Hamiltonian is appli-
cable to other effective operator approaches used in MBPT: it is simply a manner of replace-
ment of the excitation amplitudes suitable for some special cases of ones interests. Obtained
symbolic preparation of terms of the third-order MBPT is convenient to implement it in the
computer codes for the calculations of characteristic quantitites of atoms with several valence
electrons as well.
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(041a2(0412)a3(04123), 044045(045)046(0456)Oé|<11a2(0412), 043044(0434)(041234)7 a5046(0456)04)
1

= (‘DplA (041, Qa, 0412) [CY34, Qly5, 56, (X123, (456, 041234]2
% {046 Qs 0456} {0612 a3 04123} {06123 Oy 041234} ’ (A.1a)
Qg Qg5 Olgp Qg4 (1234 Qi34 Qs & Qys6
P1 = a5+ Qg — Q56 + @ — Q12 + Q123 — Q1234 — A3 — Qg — QU456- (A.1b)
(061042(0412)063(06123), 054045(0445)046(05456>04|041042<a12)7 azay(aza), 045046(0656)(043456)06)
1

- (‘DWA (0417 g, 0412) [04347 Qy5, 56, (X123, (456, 043456]2

o o o o a3 o o o o

% 6 5 56 12 3 123 3 4 34 ’ (Aza)
Q4 Q456 O45 Qy56 O (03456 Q56 (3456 (U456

2 = a5 + Qg — Qs + @ + Q2 + 203 + Q3456- (A.2b)

(041042(0412)043(04123), 044045(0445)(16(04456)04‘041042(0612), azai(orsy) (061234)045(0412345)04604)

N|=

)mA (a1, g, 12) (i34, Qas, 123, s, 1234, (12345)

CY12 Q123 Qy O Qg5 Qus O Q456 (A.3a)
041234 Q34 12345 (123 (¥1234 Q23 Q12345
(A.3b)

03 = —Qy5 + Qo345 — O — Q5 + Qg — Q2 — (1234 — Q3.

( 102(a2)az(a23), acus (s ) o (Quase) Oé{OqOéz(Oélz) 043044(0434)045(04345)(0412345)04605)
1
( WA (0417 Qa, 0412) [04347 Oly5, (0123, (U345, Oi456, 0412345] 2
123 Q4 Oy Oyp Q45 Qg Q456 (A.4a)
0412345 Qa5 | | Q345 Q3 Q3 Q23 (a3gs ) ] )
= (A.4b)

§24 —Qy — Q5 + Q345 — O — Qg — Q123 — (12345 — Q.

(Oé1042 (0412)043(04123), CY4045(0445)046(06456)a|&1062(6¥12), 043044(0434)%(04345)046(043456)CY)
1

( (041, A, 0412) [0434, Qly5, (123, (345, U456, 043456] 2
123 Qg4 Q5 Qyp Q5 Qg Ol456 (A.52)

04456 Q@ (3456 Q3q5 (O3 (34 Q3456 Qi3 Q345 ’
= —Q3 — a4+ Q5 + Qg + Q5 — Q12 + Q345 — Qg5 — Q3as6 — Q. (A.5b)

(&1a2(a12)043(a123), 044045(a45)a6(&456)&|a1, a2043(&23)(04123), a4a5(a45)&6(a456)a)
1
3

= (—1)"A (o, a5, aus) A (aus, ag, ause) A (23, use, @) [0z, as)

x{o‘l 2 0‘12} (A.62)

Q3 (123 (g3
O = (1 + (0] + Q3 + 123. (A6b)

(a1a2(a12)a3(a123)7 a4a5(a45)a6(a456)04‘0417 @2613(6123)(@123), a4a5(a45)(a12345)a6a)
1

= (—1)""A (au, as, aus) (12, (a3, Quse, (12345) 2

o « o o o o

% 1 2 12 45 6 456 ’ (A7a)
Q3 (23 Qo3 o (123 (12345

Q7 = Q1 + o + a3 — g — Qg5 — Q. (A7b)
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(041042(0412)043(04123)7 044045(0445)046(04456)04‘0417 042043(0423), 044045(0445)(042345)(0412345)04604)
1
= (—1)KJSA (CV4, Qs, 0445) [04127 93, (123, (456, (2345, 0412345] 2

o o o « o o o o o

x 1 2 12 1 23 123 45 6 456 ’ (A.82)
Q3 (123 (23 Q45 (12345 (02345 (123 (12345

8 = Qig + Qi3 — Qo345 + 2001 + Qo3 + @ + Q. (A.8b)

(&1042(0412)(13(04123), 044055(0545)056(05456)05‘0517 apaz(az), 064045(0445)(a2345)046(a23456)04)
1
= (—1)pgA (044, Qs, 0445) [0412, (23, (X123, 0456, (12345, 0423456]2

Q1 Qg 012 Q1 Qg3 (Y123 Qg5 Qg Q456 A9
X ) (A.9a)
Q3 (123 (23 Q56 Q6 (023456 Q23456 (23 (¥2345
P9 = Qo + 3 + Q123 + Qia3456 + Qg + Qas — Qg6 — Q. (A.9b)

(Oéloéz(oéu)Oés(Oéus), 044055<0445)056<04456)04‘0417 paz(as), 064045(0445)046((1456)(0423456)06)
1
= (=1)""A (au, as, aus) A (aus, a6, se) (g, a3, 123, Q23456] 2

o o o o o o

% 1 2 12 1 23 123 : (A.102)
Q3 (193 (g3 Qg5 O (023456

£10 = O — Q23 + Qig — (g3 + 3 + Qgs6. (A.10b)

(041042 (cu2)az(aizs), 044045(0445)046(04456)04041, g, a3 (Qizg ) (@3a) (1234), 045046(0456)04)
1
= (—=1)" [on2, iza, Qus, Qis6, 0123, Qluse, a3, (1234)2

v o (8% 5P 5P Q3 123 Qg4 U5 Qy5 Qg O  O456 (A.11a)
Q3q (V1234 (V234 Qg4 (234 O34 Qg Q456 Olsp o (23 Qo34
P11 = —Q1 + ag + ag + Qo + a3y + a5 + Qg — Q56 + Quus6 — Qg — Q23 — Q. (A.11b)

(a1a2(&12)043(&123), a4045(0445)046<04456)04‘0417 g, a3y (uza) (Quaza), a5@6(a56)(@23456)04)
1
= (—=1)""2 (g, g4, Qus, Qis6, Qt123, (234, Clase, 23456) 2

Qg (23456 (X3 (456
Gy Q5 Qyp
X Q12 Q3q a Qs |, (A.12a)
Qg  (Q4p6 Osp
a7 Q123 Qo34 Qy
P12 = Q5 + Qg — (1123 — Qi — Qlagq + Qa3456 + 12 — (34 (A.12Db)

(m&z(au)as(&ms), a4045(a45)a6(04456)0é|a1, g, azvy (i34), a5a6(0456)(a3456)(0423456)61)

1
= (—1)3 [a19, i34, Quap, Oi56, 123, Aa56, (43456, (V23456 2

% a1 (%) 12 Q19 (3 (X123 Qg4 Q5  O4j Oy Q56 456 (A.13a)
Q3456 Q (23456 Q456 (3456 Qg  Qy4p6 Osp Q3456 Qi3 Qg |’

P13 = a5 + Qg — Qsg — O —042+0412+20[3. (A13b)
(arca(cu2)as(ou2s), cuas (aus)ag(auss)a| aras (ans)as(aizs ), cuos (aus)ag(ause)ar)

=A (0417 Qg, a12) A (0412, Qas, a123) A (044, as, 0445) A (0445, Qg, CV456)
X A (23, Qugsg, @) - (A.14)



A Basis coefficients 74

(041042(0412)043(04123), 044a5(0445)056<04456)04|041042(0412>043(04123)7 044045(0645)(0412345)04604)

1
= (1) A (aq, a2, a12) A (a2, g, ag23) A (g, a5, Qs) [use, Q12345) 2

v {0445 Qg Q456 }’ (A.152)

G (123 (12345
£15 = @ + (o3 + 6 + Qys. (A.15b)

(a1042(0612)043(04123)7 a4a5(0445)<16(04456)06‘061042(0612), a3, 044045(0445)(04345)(0412345)(1604)
1
= (1" A (a1, ag, a12) A (au, s, aus) 23, Qas, Qase, Q12345] 2

% {0412 (0%} Oé123} {0445 (875 Q456 }’ (A.16a)
Qyq5  (X12345 (345 & (123 (12345
P16 = @ — Q12 + Q123 — Q12345 — Q3 + Q. (A.16b)
(041(12(0412)043(04123), 044045(0445)066(04456)04041042(0612), a3, 044045(0445)(04345)066(043456)06)

1
= (—1)m7A (0617 g, 0612) A (0447 Qs, 0645) [06123, (345, (456, 043456] 2

o a3 o o g o

v 12 3 123 45 6 456 : (A.17a)
Qy56 O (3456 Q3456 (3 (0345

P17 = @+ Q2 — Q3456 + Qs — Qs + Q. (A.17b)

(041062(0412)%(04123), s (s ) g (Qase ) | ayag(@z), s, s (s ) o (Quase) (043456)06)
1
2

= (=1)""*A (aq, a9, a12) A (g, a5, ags) A (s, g, Quase) (123, Qi3456]

X{Oém a3 CY123}7 (A.18a)

Q56 QO (3456
18 = O + Q2 + Q3 + Ouys6. (A.18b)

(041()42(@12)&3(@123), C¥4Oé5(&45)046(&456)&|@1CY2(0412)&3(04123); Qy, @5%(0456)(@456)@)
1
= (=1)"2A (a1, ap, 1) A (@1, a3, @123) A (123, Quse, @) (s, aise) 2

x{a4 %5 0‘45}, (A.192)

Qg Oy56 Qs
P19 = Q4 + Q5 + Qg + Qy56- (A.19b)

(041&2(@12)%(@123), 044045(0145)046(04456)OZ|OZ1CV2(a12)a3(a123)a4(041234), CY5046(0456)04)

1

= (=1)"*A (0, az, a12) A (012, i3, r123) [us, (s, Quse, (r1234) 2

% Gy Q5 Qys Q4  Os6 Q456 : (A.20a)
Qe (456 (s (123 (1234

20 = O + (123 — Q6 + Q5 + Qg — 56 (A.20b)

(araz(cnz)as(oizs), cuas(aus)ag(ause)a|aras (), as, ag, asog(ass) (ouse) (ase) )
1
= (_1)@21A (01, G, 0f12) [04457 A56, (X123, Oé3456] 2

o o o o o o
% 4 5 45 12 3 123 7 (A.21a)
Qg Q456 56 Qy56 0 (3456

21 = —Qg + g + a5 + g — 12 — Q. (A.21b)
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(041042(0412)063(04123), 044045(0445)046(06456)04041, agaiz(ans)(aias), aa, 045046(0456)(04456)04)
1
= (—1)"2A (o123, s, ) (12, o3, Qap, Qs6) 2

v {041 a2 0412} {044 a5 0645} ’ (A.222)
Q3 (rjp3 (g3 Qg Qg5 Osp
P22 = 1 + o + az + oy + a5 + ap + Q23 + Qyse. (A.22Db)

(061042((112)043((1123), &4045(0445)(16(04456)04041, Qaaz(gz) (Qa3) s (@234), &5046(0456)04)
1
= (=1)"* [a12, a3, s, Qis6, a6, V1234) 2

a a a a a Q oy« o

% 1 2 12 4 5 45 4 56 456 , (A23a)
Q3 (93 (g3 Qg Qg5 O (123 (V1234

P23 = Q1 + Qo + Q3 + Q5 + Qg — Q56 — @ + Quys6. (A.23b)

(Oéloéz(oéu)as(aus), ()44055(0445)056(@456)@‘0417 apr3(rz) v (u3a) (v1234), 045066(0656)04)
1
= (—1)"* [ana, a3, s, Qis6, 1123, Qlaga, ase, (1234] 2

5 Q. Qg Q12 Q1 gz (V123 Qy Q5 Qyj Qg4 O  Q4p6 (A.242)
a3 (123 (23 Qy (1234 (234 Qg Q456 Osp Q123 Q234
24 = Q2 + Q3 — Qg + Q5 + Qg — Qa3 — Q56 + Qs — O — (1234 (A.24b)

(041042 () (uas), aucs(us) s (Quse ) | a, apaiz(Qigs) o (Qigsa), s (use) (0423456)04)

SIS

= (—=1)* [oq2, ara3, Qus, (6, 0123, Claga, a6, (t23456)
o « « a a o Qa 0" o Qa o o
v 1 2 12 1 23 123 4 5 45 4 56 (V456 . (A.25a)
Qg (123 (igg Q56 O (¥23456 Qg Oig56  Qsp (23456 (a3 (V234
25 = Qig + Qx3 — (123 + Q5 + Qg — Q56 + QU+ (123456 (A.25b)
(a1a2(&12)043(&123), a4045(0445)046<04456)04‘0417 oaiz(Qra3), aug, 045046(%6)(04456)(0423456)04)

1
= (—1)9% [a19, a3, 5, 56, (123, (23456) 2

5 ap Q@ (g ap Qg Q23 Gy Q5 Qys : (A.262)
Q3 (i3 (o3 Qys6 @ (¥23456 Qg Qq56 Q56
26 = Qg + Qi3 + Qg + 5 + Qg — Qra3 + (ryo3 — Q. (A.26b)
(a1a2(0412)a3(04123), OZ4CV5(0445)046(04456)04‘041042(0412)043(a123)a4(a1234)a5(%2345)04(5@)

1
= (=1 A (an, ag, a19) A (g2, ag, ar23) [us, us6, 1234, 19345 2

o o o o o o
% 4 5 45 45 6 456 ’ (A27a)
(19345 (V123 (V1234 Q123 (12345
27 = — + Qo345 + Qg + a5 — g — Q5. (A.27b)

<a1a2(0412>a3<04123)7 Oé4CY5(0445)CY6 (04456)04‘0417 Qiarg (a23) (04123)CY4 (041234)045(0412345)04604)
1
= (_1)ms [CY127 Qr23, g5, (4565 (X1234; 0412345] 2

% G Qg 012 Oy (6751 Qg5 Qy5 Qg Q456 (A.282)
Qa3 (123 (g3 Q12345 (V123 (Y1234 (123 Q2345 ]

o8 = Q1 + Qo + Qg + Qg + Q5 + Qg + Qg5 — Q123 + O+ Q12345 (A.28Db)
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(041042(0412)043(04123)7 s (Qus)ag (04456)05‘0517 Qa3 (raz) g (04234)(041234)045(0612345)04604)

Q. Qg Q12
Q3 (193 (g3

o o o o o o o o o
% 1 23 123 4 5 45 45 6 456 7 (A29a)
Q4 (1234 (934 12345 (123 (¥1234 (123 (12345

29 = Qg + (x3 — (ia3 + (v123 + (V1234 + Q12345 + O — Q5 + Qg — QU5 (A.29b)

1
= (—1)¥* [a12, a3, s, 0123, Q234, Cls6, (1234, (12345) 2 {

(041@2(012)@3(@123), C¥4Oé5(@45)046(&456)&|@1, CY2043(a23)044(a234)a5(a2345)046(0423456)04)

- Loy ay  Qq2
= (—1)"% [a9, (a3, s, 123, Q234, Qase, 2345, (23456) 2 {Oég Qo3 Oiog

o o o o o o o o o
% 1 23 123 4 5 45 45 6 456 7 (ASOa)
Qy56 O (23456 (o345 (23 (V234 (93456 (X23  (X2345
©30 = Qg + Qi3 + Qg + a5 + g — Qa3 — Qs — Q23 — Qig345 + 0+ Qiazase + uss. (A30b)
((11042(0412)063(06123)7 g5 (0us) Qg (04456)06‘0417 o3 (roz) g (razs) s (r345) (0412345)06604)

Ly o o2
= (—1)%" [a12, a3, s, 0123, Q234, (56, 2345, (12345] 2
3 (193 (093

o o o o o o o o o

5 1 23 123 4 5 45 45 6 456 ’ (A.31a)
Q45 (12345 (02345 o345 (23 (V234 (123 (12345

P31 = Q2 + Q3 — g — a5 + Qg + Qo345 + O + 12345- (A.31b)

<a1a2(a12)a3(a123)7 a4a5(a45)@6(a456)a‘a1, g, CV3044(0434)(04234)(a1234)a5(&12345)a6a)

Lo Q9 Qa2
= (—1)"% |a12, a4, s, 123, Qa34, Qlas6, V1234, 012345 2
(=1)™* [z, a4, 05, ’ ’ ’ ’ ] (34 (V1234 (234

« o « « o o o o o

% 12 3 123 4 5 45 45 6 456 7 (A32a)
Qy (234 Qi34 12345 (123 (1234 (123 (12345

32 = 0] + Qg + Q34 + Qg + Qg5 + ¢+ Q5+ 12345 + A3 + Q2. (A.32b)

(061042 (q2)as(as), aacs(aus ) s (Quse ) ‘ au, Qg, azvg (i) (Qrzza) s (rasas ) g (0423456)04)
1
= (—1) a2, i34, 5, 0123, Q234, (56, (2345, (423456] 2

oy &%) (234 (2345 (23456
X Q12 Q34 a5 Qg af , (A33a)
123 a3 o7} Oly5 Q456
Q33 = O] + Qg — Q2 + Qi3 — g — Q. (A33b)

(a1a2(a12)a3(a123), 044015(0445)046(04456)04‘0417 G, @3a4(a34)(a234)a5(a2345)(0412345)04604)

[N

= (—1)" [aq2, i34, 5, (123, Q234, a56, 2345, (12345

12 Qi34 012345 Q5 (A.34a)
Q1 (123 Q234 Qy

34 = —(0lg34 + Q2345 + 20(4 + o+ (074 + g — Q34 (A34b)

% Q45 Qg Q456
& (123 (12345

} Qg (2345 a3 Qg5
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(041042(0412)043(04123), 044045(0445)046(04456)04041, a2, 043044(0434)045(06345)066(043456)(0423456)04)

(NI

= (—1)% [aq2, (34, Qus, Q123, Oi345, Qas6, (43456, V23456)

v (631 Qg 12 Q1 (3 (123 Q4 Q5 Oyp Qq5 Qg Q4p6 (A.352)
Q3456 & (023456 Qg6 O (3456 Q345 Qi3 O34 Q3456 Q3 Q45

35 = (X345 — (3 + QY + (671 + Qs + (67 + Qs — X1 — Q9 + a19. (A35b)

(a1a2(0612)&3(06123), 044055<Q45>046(@456)Q‘0417 a2, a3a4(0434)&5(04345)(042345)(0612345)04606)

L] o (e%) Qa2
= (—1)@36 [Oéu; Q34, Qy5, (123, (345, Q456, V2345, 0412345] 2
Q345 (V12345 (V2345
o o o o a5 o o o o
v 12 3 123 4 5 45 45 6 456 : (A.362)
Qg5 (12345 (X345 Qr3qg5 (3 (34 & (193 (V12345
P36 = 01 + Qg — Qg — Q5 + @ + 2 — Q123 + Q. (A.36b)

<a1a2(0412)a3(a123)7 044&5(@45)&6(05456)05‘051; ag, a3a4(0434)a5(a345)(042345)&6((123456)&)

NI

I 37
= (—1)p [Oém Q34, Qy5, (123, (345, Qi456, V2345, 0423456]

Q12 Q345 « ag |, (A.37a)

{064 Q5 Q45
aq Q123 Q2345 Q45

Qo (23456 (6% Q456
Q345 Qi3 O34

P37 = Qg + Q5 + Qozas — Qo3 + Q3 — Qiazase + Quse + Q2. (A.37b)

(alaz(am)as(ams), 044045(a45)a6(a456)a‘a1a Q2, O3, 044045(0145)(04345)046(Oé3456)(a23456)a)
1
= (=1)"" A (0, as, aus) (12, 123, 345, Qlas6, 3456, X23456) 2

o o o o o o o g o
v 1 2 12 12 3 123 45 6 456 : (A.382)
Q3456 G (23456 Qy56 O (3456 Q3456 O3 (X345
38 = Qg + Qs — Quse + 200 — p — Qg — Q. (A.38b)

(041062(0412)063(04123), 044045(0645)046(65456)04‘061, G, a3, 044045(0445)(04345)(042345)(0412345)04604)
1
- (_1)939A (0447 s, 0445) [04127 (123, (0345, (X456, 2345, 0412345] 2

o o o o o o o o o
% 1 2 12 12 3 123 45 6 456 ’ (A39a)
Q345 (12345 (X2345 Qg5 (X12345 (345 & (123 (12345
39 = a1 + Qg + Qg5 + @ — Q2 + Q23 — Q3 + Q. (A.39Db)
(061(12(0412)&3(04123)7 054‘345(()545)@6(05456)05‘0517 G2, O3, 044045(0645)(06345)(042345)066(@23456)06)

1
= (—1)W4OA (044, s, 0445) [&12, (123, (345, 456, (V2345, 0423456] 2

Q1 (02345 (X123 Qg5

X Q12 «Q 345 Qg |, (A.40a)
&%) Q3 (23456 (456
040 = Q123 + Q2345 + 200 + 23456 — Q456 — Q12 — (i345. (A.40b)

(041042 (0412)043(04123) , Qg5 (0445)@6(04456)04 ‘ ap, Qig, A3, iy is (0445)066 (04456) (043456) (0623456)04)

[SIE

= (—1)"" A (o, a5, ous) A (aus, ag, use) (12, Q123, 03456, (23456)

o o o o o o
% 1 2 12 12 3 123 : (A.41a)
Q3456 & (023456 Q456 O (3456

P41 = Q12 — Q1 — Qg + Qi3 + Qig56 — i3456- (A.41b)
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(061042(0412)a3(04123), 044045(CY45)046(CY456)CY}CY1, Qg, (i, Oiy, 045@6(0456)(04456)(@3456)(0423456)04)
1
= (—1)"2 a2, aus, a5, 0123, (3456, (23456] 2

o o o o o o o o o
% 1 2 12 12 3 123 4 5 45 ’ (A.422)
Q3456 G (V23456 Qy56 O (3456 Qg Q456 Osp
P42 = —0y — Q5 — Qg + Q12 — Q] — Qg + Q3 — (X3456- (A.42Db)

B The classification of three-particle operators acting on ¢/ = 2,3,4,5,6
electron shells

B.1 2-shell case

Tab. 21: The class Xo (+1,—1): dy = 15

Tab. 20: The class X5 (0,0): dy = 12 () P (z)
o = @ (111112) 1, (111112
(111121)  (56)
g};f%}g; Egg; (111122) (111211)  (46)
it o (211122) (14) (111222)
aiss) o (121122)  (24)
Nasial) o (112122)  (34)
(112211} (35) (46) (211212)  (15)
aaras! B8 (1229 (121212) (25) (111222)
| o) (112212)  (35)
oot o (211221)  (16)
oo e (121221)  (26)
istaa) s (112221)  (36)
aitas (13 (00 (122222) 15 (122222)
(212222)  (12)
(221222)  (13)

Tab. 22: The class Xy (+2,—2): d2 = 6

(zx) ™ (z)
(111122) 1  (111122)
(111212)  (45)

(111221)  (46)
(112222) 1 (112222)
(121222)  (23)
(211222)  (13)

The class X5(+3, —3) contains the sole operator associated to the scheme (z,) = (111222)
with T = ]-6-

B.2 3-shell case

Tab. 23: The class X3 (0,0,0): d3 = 21

(@r) ™ (x) (zx) ™ (x)

(123{123}) (24)(35)0 (112233) (213213) (135)  (112233)
(132123) (254) (213312)  (135) (46)
(132132) (264) (231123)  (13) (254)
(132213) (25) (231132)  (13) (264)
(132231) (26) (231213)  (13)(25)
(132312)  (25) (46) (312123) (154)
(213123)  (14)(35) (312213) (15)
(213132)  (14) (36) (321123)  (154) (23)
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Tab. 24: The class X3 (+2,—1,—1): d3 =24

() ™ (x) () e (z)

(111 {123}) 0 (111123) (113233) (34) (112333)
(112223) 16 (112223) (113323) (35)
(112232) (56) (113332) (36)
(112322) (46) (131233) (243)
(121223) (23) (131323) (253)
(121232) (23) (56) (131332) (263)
(121322) (23) (46) (311233) (143)
(211223) (13) (311323) (153)
(211232) (13) (56) (311332) (163)

(211322) (13) (46)

Xs(—1,42,-1) X3(—1,-1,42)

(z) T (v) (z) T (v)
(111123) (15)  (122223) (111123) (16) (25)  (123333)
(112223) (14) (25) (111223) (112223) (16) (25)  (122233)
(112333) (13)  (122333)  (112333) (16)(25)  (111233)

Tab. 25: The class X3 (+3,—2,—1):d3 =3
(zx) ™ (z)
(111223) 1l (111223)
(111232) (56)
(111322) — (46)
Derived classes 7 (y)
X (—2,+3,-1) (15) (24)  (112223)
X5(=1,-2,4+3)  (16)(24) (35) (122333)
X (+3,-1,-2) (46)  (111233)
X (=1, 43, -2) (146)  (122233)
X3 (—2,—1,43) (14)(25)(36) (112333)
Tab. 26: The class X3 (+1,—1,0): d3 =45
(zx) ™ () (xx) ™ (z)
(133233) (24)  (123333)  (313332) (162)  (123333)
(133323) (25) (331233) (13) (24)
(133332) (26) (331323) (13) (25)
(313233) (142) (331332) (13) (26)
(313323) (152)
(113{123}) (354)9  (111233) ({123} 223) (35)n  (122233)
(131 {123} (254) 9 ({123} 232) (36)n
(311 {123} (154) 9 ({123} 322) (35) (46) 7
X3 (+1,0,—1)2 X3 (O +1,—1)

(z) T W) (z) T (v)
(123333) (162)  (122223) (123333) (15)(26)  (111123)
(111233) (46)  (111223) (111233) (15) (246)  (112223)
(122233) (25)(36) (122333)  (122233) (135) (26)  (112333)

Tab. 27: The class X3 (+2,—2,0): d3 =9
(zx) ™ (z) ( x) ™ (x)

(113223) (35) (112233) (131322)  (253) (46) (112233)

(113232) (36) (311223) (153)

(113322)  (35) (46) (311232) (163)

(131223) (253) (311322)  (153) (46)

(131232) (263)

Derived class T (y) Derived class 7 (y)
X3 (4+2,0,—2)  (35)(46) (112233) X5 (0,42,—2) (135)(246) (112233)
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B.3 4-shell case

Tab. 28: The class X4 (+1,+1,—1,—1): dy =72

Xa(—1,-1,+43,-1) (15) (24) (123334
Xa(—1,-1,-1,+3) (16)(24)(35) (123444

() ™ (z) () ™ (z)

(112 {134}) (34)9  (111234) (122{234}) 0 (122234)
(121 {134}) (24) 9 (212 {234}) (12) 9
(211 {134}) (14) 9 (221 {234}) (13) v

({123} 334) n  (123334) ({124} 344) (34)n  (123444)
({123} 343) (56) n ({124} 434) (35)7n
({123} 433) (46) n ({124} 443) (36)n
Xa(+1,-1,41,-1): Xa(+1,-1,-1,+1):

(z) T ) (z) T ()
(111234) (45)  (111234) (111234) (46)  (111234)
(122234) (25)  (123334) (122234) (26) (35) (123444
(123334) (25) (122234)  (123334) (26)  (123334)
(123444) (23)  (123444) (123444) (26) (35)  (122234)

Tab. 29: The class X4 (+2,—2,+1,—1): dg =9
(113224) (35)  (112234) (131422)  (253) (46)  (112234)
(113242) (356) (311224) (1532)
(113422)  (35) (46) (311242) (1563)
(131224) (253) (311422)  (153) (46)
(131242)  (2563)

Derived classes T (y) Derived classes 7 (y)
Xa(+2,-2,-1,+1) (56) (112234) X4 (+1,42,-2,—1) (135)  (122334)
X4 (+2,+1, -2, 1) (35)  (112334) X4 (+1,+2,—1,—-2)  (135)(46) (122344

Xa(+2,+1,-1,-2)  (35)(46) (112344) X4 (+1,-2,+2,-1)  (15)(24) (122334)
X4 (+2,-1,-2,+1) 356)  (112334) Xy (+1,-2,—1,42)  (15)(264) (122344)
Xa(4+2,—1,+1,-2)  (36)(45) (112344) X4 (+1,—1,+2,—2) (135)(246) (123344)
Xa(+1,-1,-2,42)  (15)(26) (123344)
Tab. 30: The class X4 (+3,—1,—1,—1): dy =6

) m (z)

(111 {234}) 0 (111234)

Derived classes 7 (y)

Xa(=1,+3,-1,-1) (14)  (122234)

)

)

Tab. 31: The class X4 (+1,—1,0,0): dy = 36

(zx) 7r

(x
({134} {234})  —(24) (35) 9 (123344

)

)

Derived classes T (y)
X4 (+1,0,—1,0) (24)  (122344)
X4 (+1,0,0, 1) (26) (35)  (122334)
X4 (0,41, —1,0) (13) (24) (112344
X4(0,41,0, 1) (135) (26)  (112334)
X4(0,0,+1,—1) (15) (26)  (112234)
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(112344)

(354) 9
(2543) 9
(1543) 9

(zx)

(114 {234})
(141 {234})
(411 {234}

Derived classes

Tab. 32: The class X4 (+2,—1,—1,0): dy = 18

B The classification of three-particle operators acting on ¢ = 2, 3,4, 5,6 electron shells
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B.4 5-shell case
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Tab. 34: The class X5 (+1,+1,—1,—1,0): d5 = 36

(@x) ™ (x)
({125} {345}) (354)np0 (123455)

Derived classes 7 (y)
Xs (+1,-1,+1,-1,0) (23)  (123455)
X5 (+17715717+170) (24)
X5 (+1,+1,-1,0,—1) (46)  (123445)
X5 (+1,-1,-1,0,+1) (264)
X5 (+1,4+1,0,—1,—1)  (35)(46) (123345)
X5 (+1,-1,0,+1,-1)  (254) (36)
X5 (+1,-1,0,—1,41)  (263) (45)
X5 (+1,0,4+1,—1,—1)  (245)(36)  (122345)
X5 (+1,0,—-1,4+1,—1) (25) (346)
X5 (+1,0,—1,—1,+1) (26) (345)
X5 (0,+1,4+1,—1,—1)  (146) (235)  (112345)
X5 (0,+1,—-1,4+1,—-1) (15)(2346)
X5 (0,41, —1,—1,+1) (16) (2345)

B.5 6-shell case

Tab. 35: The class Xg (+1,+1,+1,—-1,—1,—1): dg = 36

(Tx) LS (z)
({123} {456}) 70 (123456)
Derived classes 7 (y)

(123456)

(
Xo(+1,—-1,41,—-1,—-1,+ (
X6 (+1,—1,—1,+1,+1, (24)
X6 (+1,-1,-1,+1, -1, + (24)
X6 (+1,—1,-1,—1,+1,+ (25)

In tables, the notation (ijk{lpq}) considers the set

{(ijklpq), (ijklqp), (ijkplq), (ijkpql), (ijkqlp), (ijkqpl)},

where each of the scheme in a given set is prescribed by the corresponding permutation ) from
the set

0 € {1, (56), (45), (456), (465), (46)}.
Similarly, the notation ({ijk }{pq) considers the set

{(ijklpq), (ikjlpq), (jikipq), (jkilpqg), (kijlpa), (kjilpq)},
and each of the scheme in the set is prescribed by the corresponding permutation 7 from the set

n € {1s,(23), (12), (123), (132), (13)}.
Finally, the notation ({ijk}{lpq}) is a union of both sets.
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B.6 Identification of operators associated to classes

Tab. 36: The classes for 3—shell case
X3(A1,82,A3)  X3(A1,A2,A3) X3 (ALAL AL X3 (AL AL AL

X3 (0,0,0) X3 (0,0,0) X3 (0,0,0) X3 (0,0,0)

X5 (+2,-1,-1)  X3(—=2,+1,+1) X3(—1,42,-1) X3 (+1,-2,+1)
( 1,—1 +2) X3 (+1,+1,-2)
( 1,72 +3) X3 (+1,+2,-3)
X3(+3,-1,-2)  X3(=3,+1,+2)
X3 (— 1,+3 —-2) X3(+1,-3,42)
X35(—2,-1,43)  X3(+2,+1,-3)

X3 (4+1,—1,0) X3 (—1,+1,0) (+1,o,—1) X3 (=1,0,+1)
(07+1771) X3 (07717 Jrl)

X3 (+27 _27 0) X3 (_27 +27 0) (+2a 07 _2) X3 (_27 0» +2)
(07 +27 _2) X3 (07 _27 +2)

Tab. 37: The classes for 4—shell case
X4 (A1,82,A3,Ay) X7 (A1,A2,A3,Ay) X4 (A&,A’Q,AQ,AQ) X3 A’1 A2 Ag,A’)

X4 (41,41, —1,-1)  X4(—1,—1,4+1,+1)  Xg(+1,—1,4+1,—1)  Xg(—1,+1,—1,+1)
X (+1, 71 “141)  Xa(—1 4141 -1)
Xy (42,-2,41,-1)  X4(—2,42,—1,+1) X4 (42,22, -1, 41)  Xg(=2,42,+1, -1)
X4 (42, +1 —2 1) Xy (=2,-1,42,+1)
X4 (+2,41,-1,-2)  X4(-2,-1,+1,+2)
X (42,1, —2 1) Xy (—2,41,42,-1)
X4 (42, -1, + 2)  Xa(-2,+1,-142)
X4 (+1,42,-2,-1)  X4(—1,-2,+42,+1)
Xy (41,42, —1 “9)  Xy(—1,-2,41,42)
Xy (4l -242-1) X4 (142 —2.41)
X4 (+1’72 717“’»2) X4 (71>+2’+1772)
Xi(+1,—1,42,-2) Xy (—1,+1,-2,+2)
X (41,-1,-2,42)  X4(=1,+1,+2,—2)
X4(+3’_17_17_1) X4(_37+1)+1’+1) X4( 1’+37_17_1) X4(+1)_3a+17+1)
X4 (=1,—1,43,-1) X4 (+1,41,-3,+1)
X4 (717 7717+3) X4 (+17+17+1773)
Xy (+21_1’_170) X4 (_27+1)+1’0) X4 (_11+27_170) X4 (+1)_2’+170)
X4 (+27_1707_1) X4 (_27+1707+1)
X4 (+2’07 1’71) X4 (72707+17+1)
X4 (0,42, 1, 1) X4(0, -2, +1,4+1)
X4 (0, 1,42, 1) X4 (0,41, -2, 4+1)
Xy (71’+270a71) X4 (+1>72’07+1)
X4(=1,-1,0,+2) X4 (+1,+1,0,-2)
X4 (=1,0,42, 1) X4 (41,0, -2, +1)
Xy (_1’07_1a+2) X4 (+1»07+17_2)
X4(0,—1, —1,+2) X4 (0,+1,+1,-2)
X4 (J”l’*lvovo) X4 (717“"1»070) X4 (J”lvov*l’o) X4 (717074'170)
X4(+1,0,0,—1) X4(=1,0,0,+1)
X4(0,+1,-1,0) X4(0,—1,+1,0)
X4 (07+170771) X4 (0771707+1)
X4 (0,0, 41, —1) X4(0,0,—1,+1)
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Tab. 38: The classes for 5—shell case

X5 (A1,A0,A3,A4,A5) X2 (A1,A3,A3,A4,A5) X5 (A, AL, ALAL Xz (AL AL AL AL AL
X5 (42,41, —1,-1,-1)  X5(—2,—1,41,+1,+1) X5 (42,1, +1 —1)  Xs5(=2,41,—1,+1,+1)
X5 (42, -1, -1, +1 1) X5 (=2,41,+1,—1,+1)
X5 (+2, -1, —1 —1 A1) X5 (=2,41,+1,41,-1)
X5 (+1,+2,— -1) X5(-1,-2,+1,+1,+1)
X5 (- 1,+2,+1 —1,—1) X5 (+1, -2, 1, +1, +1)
X5( 1,+2, _17+17_1) X5 (+1 —2,4+1,-1 +1)
Xs(=1,42,—1,-1,41) X5 (+1,-2,+1,+1, 1)
X5 (—1,-1,42,+1,-1)  Xs5(+1,+1,-2,—1,+1)
X5 (—1,+1,+2,-1,-1) X5 (+1,—1,-2,+1,+1)
X5 (+1,-1,42,—1,-1) X5( 1,41, -2, +1,4+1)
X5(—1,-1,42,—1,41)  Xs (+1,+1,-2,+1, 1)
Xo (=141 —1,42.—1) X5 (+1,—L+1, 2, +1)
X5 (+1,-1,-1,42,-1)  X5(=1,+1,+1,-2,+1)
X5(=1,—1,41,42,-1) X5 (+1,+1,~1, -2, +1)
X5 (=1,-1,—-1,+2,+1) X5 (+1,+1,+1,-2,—1)
X5 (+1,-1,—-1,—1,42)  X5(—1,+1,+1,+1,-2)
X5 (=1,-1,+1,-1,4+2) X5 (+1,+1,—1,+1,—2)
X5 (= 1,+1,71,71 +2) X5 (+1,-1,+1, +1 —2)
X5 (—1,-1,-1,4+1,42) X5 (+1,+1,+1,-1,-2)
X5 (+1,+1,—1,—1,0) X5 (—1,—1,+1,+1,0) X5 (+1,—1,+1,—-1,0) X5 (71,+1,71,+1 0)
X5 (+1a 1, 17+170) Xs (_17+17+17_170)
X5 (+17+1=_1707_1) X5 (_17_17+1707+1)
X5 (+17717+170771) Xs (717+1771707+1)
X5 (+1a_17_1707+1) Xs (_17+17+1?07_1)
X5 (+17+1707_17_1) X5 (_17_1707+17+1)
X5 (+17 1,0,+1, - 1) Xs (717+ ,0,— 17+1)
X5 (+1,-1,0,—1,+1) X5 (—1,+1,0,+1,-1)
X5 (+1707+17 17_1) Xs (_1707_17+17+1)
X5 (+1a0771’+1771) X5( 1707+17717+1)
X5 (41,0, 1, —1,+1) X5 (1,0, +1,4+1, 1)
X5 (0 +17+17_17_1) Xs (07_17_17—"_17—"_1)
X5 (0,41, -1, +1, 1) X5 (0,—1,+1,—1,+1)
X5 (0,41, -1, -1, +1) X5 (0,—1,+1,41, 1)

Tab. 39: The classes for 6-shell case

X6 (A1,82,A3,A4,85,A6)  Xg (A1, A2,A3,84,A5,86)  Xg (A, AY, AL A} AL AG) X (A’ Ay, Ay, A, AL AG)

XG (+17+17+17_17_17_1) XG (_17_17_17+17+17+1) XG (+17+17_17+17_1v_1) XG( ’ 17+17_17+1v+1)
X (+1,41,—1,—1,41, 1)  Xg(—1,—1,+1,+1,—1,+1)

X (4141 =1 =1, —1.41)  Xg (=1, —1.+1, 41,41, —1)
Xo (41, -1, 41,41, -1.-1)  Xg(—1,+1,—1, —1,41,+1)
Xo (+1,—1,41,—1,41,-1)  Xg(—1,+1,—1,41,—1,+1)
Xo (41, —1+1. =1, —1.41)  Xg (=1, +1, =1, 41,41, —1)
Xo (+1,—1,—1,41,41,-1)  Xg(—1,+1,41,—1,—1,+1)
Xo (+1,—1,—1,41,—1,41)  Xg(—1,+1,41,—1,+1,—1)
Xo(4+1,-1,—1,-1,+1,41)  Xg(=1,41,+1,41,—-1,—1)
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C SU(2)-invariant part of the second-order wave operator
C.1 One-body part

Q/(LQCH_(A) (ec — éu) = OAr uC(TlT2T) + SMC(TITZT)] + 0an [SuC(Tl) + Su0(71>]

[ (C.1a)
00y [ S ie(2) + S e (72)] + G20,
Q27 (A)(ec — 1) = OarSeu(T1727). (C.1b)
Q‘(?%’)+(A~) (EV - 56)~: 5AT'~§ev (7—17—27—) + 5A7'1 [Sev (Tl) ‘|’ Sev(Tl)] (C2a)
+6AT2 [SIEV(TQ) + S,ev(7_2)] + 5AOSev7
QD7 (A)(ey — €0) = Oar[Sve(T17aT) + See(Ti7aT)]. (C.2b)
C.2 Two-body part
Quu o (M AN (Ecer — €pp) N
= 0au002a0nr Dyyree (WdT) + 68, 00n0u0nm [Xpwee (Uutt) + 1 e (Uutt)] (C.30)

+%5A1U5A2u6/\7'2 Zu’ucc’ (UUT2>D/;LLHCC’ (UUTQ) - %1A2 5A1u5A0[iDuu’cc’ (ﬂu)
+4Dpyreer (Un) + 3 dpptec (uu) + Aypree () + Ayree (un)],

in; (M ASA) (Eeer — 1)

= —100,0000u00m e (WU TH) Dereyy (WUT1) + 300,0000000m Zerepyr (UTs)  (C.3b)
XD ¢ (WUT2) + D crepr (WU T2)] + 204, 0081 w080 2’ (4) Dee e (U).

Qevcc’(AlAQA) (ECC’ - EeV)

=00, u0A2d0A7 Zvece (UAT ) Dyecer (udT) + 00,0 0A2u0Ar, [Deveer (Uury)
+Zvec/c(UU7'1)Dvec (Uur) + Devcc (Uury) — Zvecc (UUTl)Dvecc (Uurty)]
+100, 000 0u0A s [~ Devee (UtT2) + Zyece (Uurs) D'veees (V)] — Ga, 4,08, u0n0
X [Aeveer (1) + Acveer (1) = Zyocer (W) { Ao (utt) + Aecer (u) }
+ Zevere (1) Devere ()],

Qe (Mo (e —2e)

= r\?AlUéAzudAﬁ Zc//_\c/ev (uUTl)Dc’cev (UUTI) + 5A1U5A2u6A7'2 Zc/cev (UUT2> (C4b)
X [ch’cev (UUTQ) + D/c’cev (UU’TQ)] .

(C4a)

Quu eV (A A2A> (80‘7 - 8##')
— @\1u5A2d5A75ue[Dee’c‘?(UdT) - %ee’\’/c(UdT)Dee’\’fc(UdTﬂ + 5A1U5A2u5AT1
X [Duu co(Uum) — 20 vc<UUTl)Duu’\7c(UU7;1)] + 04, U5A2}LV5A72 Zpev(UuTz) (C.5a)
XD w HCV(UUT2> + 5A1A25A1u5/\0[ ! ree(u ){AMM"—/C(UU) + AHH"—/C(U’U>}

Auu rev(U) — Auu rev(uu) — 3 DW ey (uu)],

QP (A (Eey =€)

= —0A,U0Au0r [Zocu (UUTl){Dvcuu (uUri) + 1Dvcuu (UUTl)} + Zeoprp(uU)

X Doy (WU )] = 08, 00A0u06ms [ Zesyur (WU T2){ D ey (U T2) + D' ey (U ) }

ZVCMM (UUTQ)D vcuu’(UUTQ)]‘

(C.5b)
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O (A1) (s — o) .
= éAlu(SAzd(SAT [ evvce (UdT) + Zvecv (UdT) VECV(UdT)] + 5A1 U5A2u5/\7—1 [ eVVC(UU7'1)
+Devx70 (UUTI) vevc (UuTl ) {Dvevc (UUTI) + Dvevc (UUTI ) }] + 5A1 U(SAgu(SATz

x[= o evee(Uuty) + ZveVC(UU7'2)D veve(UuT2)] — 6a,0,08,u0n0 [Aevec(un) (60
—i—Aevvc(UU) + Devvc(wu) Zoeve(u ){Avgzc(uu) + Avgvc(uu) — Zoe(w)
X A ever (U11) 4+ Agver (1)} + Zyeer (1) { Avecs (utt) + Aecs (ur) }],
Qe (M AsA) (Eer — ) i
= 00,008 [ Bocer (WU T1){ Dscer(uUm) = Dscer (ulm)} = Zser(wlm) o
XDcvev(uUTl)] + 00, U0 Asu0Am [— Zoeor (WU T) D ooy (WU Ty) + Zeger (uUT)
XD ey (uUTs) = D'y (ulT2) }]-
Qe (AiA 2A)(Evvr — 2ev)
= o008 Devsor (Utm) + Zrasr(Uum ) DussorUnm) = Do Uum)}]

+3 5A1U5A2u6/\7'2[ ~vevv/ (UUTQ)D vevy/ (UUTQ) D/evvv ([]A/UTQ) DIBVV\L(UUTZH
+5A1A2 5A1u5A0[ A'evvv (UU) Aevvv (uu> + Zve\'/\'/’ (u){Ave\'/\'/’ (UU) + AVvs-\'/\_/’ (UU,)}],
Qevvv (A A2A) (6\7\7’ - 8ev)

= =00, U0Au0Ar Zrver (WU T) [Dyrsen (uUT)) 4 Dyren (WUT)] + 0p,0003u00r,  (C.7D)
X Zv’vev<UU7'2)Dv’vev(UU7'2) - %5A1A25A1u5AOZW'ev (U) Dw’ev (Uﬂ)

Qee vl (A A A)(g\_/\_/’ — Eee’ )

= OAu0sdOar Deervr (UdT) + 00, 000u0ar, [ Decrvwr (UuT1) + Deergw (Uur)]

+308,00Au0Am, Zerevy (UUT%)D veve (UuTs) — 0p,a0n,udnol 1{ Deerver (1) (C.8a)
— Zeergrs (W) Deerre (T1) Y + Acerger (ut) 4+ Aerger (uts)],
O (MAoA) (o — ) i
= =00, U0Asu0Ar Zvrvee (WU T ) [Dyrgee (WU 1) + Derseer (uUT)] + 100,00,u00m (C.85)

X Zrgeer (U To) D grgeer (WU T2) + 10a, 450,080 Zevreer (1) [ Dygreer (uil)

_D vv'ee! (uu)]
In Eq. (C.3a), the quantities X, e, Dypreers dpwee differ for distinct one-electron orbitals
p=v,e.If p = v, then Xyveer = Dyviee's Duvieer = Dyver and 3uvreer = — Zowere() Dyvreres if
n=e, then xee’cc’ = Dee’cc” s"'Dee’cc’ = Dee’cc’» Bee’cc’ = Dee’cc’-
C.3 Three-body part

QE]%, Iv!'c! C(A1A2A3A) (EVC ‘'c T gvv’v”) N
— *A(?AA36MM3 [TVV 'v!'ve! C(A1A2A) + %TVV/V”VC/C(A AQA) - ZK x JVCVC’ (K K21X1x2/x1)
X {TVV’V”C’{;C(AlAgA) + Tvv’v”c’x?c (Alxgx)}] ( 1))‘V+)‘ /Y;/cvc (A1A2AA37—1)
XTVV Ivite! CV(AlTl) + 1 Zu a()\V/)\VU)IVV,VNVC/C(AlAQASTlAu) v’ VV’CVC’(UTQ)a

vi’v”vc c(A A2A3A) (5\7(:’(: - 6VV’V”)

— §5AA35MM3 (>\v’/\v”A1)[G(Aci\c’AZ)j;\_zc’cvv’v”<A2A1A) + ZKQK a()\c)\c’K2) (Cgb)
X JVC’VC (K KQAA2A1)TCC/\7VV/VN (K2A1K)] .

(C.9a)
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02 (M AsAsA) e — v i
= 0ansOnnss [ —a(AcAcr A2) Toyrevee (A AoA) + 1T pprevore (A Ao A) }
- (/\ Av A ){Tvev 'S c(Ali\QA) + §Tvev vore(A1A2A) } — ZKQK Joever (K KZAAQAI)
{3 (Toweerse(MAR) + Tovreose(A1A2R)) + a(Aedv Ar)a(AcAsAr)

X( vev’c’ CV(A A2A) + Tvev 'c! CV(A KQK)>}] + ( 1))\v+)\ /Y;/cvc (A A2AA37-1)
><Tvv recrer (M1T1) + 2a(AeAcA2) Yoo (TIATAASAS) Tovrverc (Ao )

+ > ula(AcAv Ag) Iy evcc(AlAQK;;lvAU) Tewvees(urr) + La( Ay Agu)
X Lyyreverc (A1 AgAngAu)NeW cver (UT2) + (=) Ma(A A Ag)
XIvev’\_/c’c(A A2A37'2AU) veveve (UT2)],
Q8 e (M A2 AsA) (e — Evve)
= 0AA3 0025 A (A Ay A ) [a(AcA //\2) verevvie (Ao A1)
+53 05, K{Jvm (A Do AN A Tocrnre(AoAi A) 4 (— 1) (C.10b)
% 3 ox, Dovrerore(MA2 AL AR AN) (Tocreny (Aol R) — a(AAAy)

XTC 'vecevv! (A2A1A>)}] :

(C.10a)

A
A

Q(Z)"" (A1A2A3A> (5‘—,C/C — €ee/v>

— 5AA35MM3[%{Tee 'vvce! C(KlAQA) + Tee 'vvce! C<A1A2 )} + a()\ )\ A ){a()\c)\c’A2)

><jjeve 'vee! (A A2A> *Teve /ve! c(AlAQ )} + ZA N ecvc (A A2AA2A1)

X{ ( <>\ A AQ) ee’vc! CV(A A2A) - ee vc’vc(A A2A>) + CL()\v>\e’/\1) (Clla)
X (Teve /¢! VC(A AQA) + Teve /! VC(A AZA))}] + 5A1A26A371 5A0Tee’vx’/c’c(A17_1)

+( 1))\C+)\ l}/ecvc (A A2AA37-1) ee’vc! cv(AlTl) + Z [ <)\e’)\c’A2)

X{ge vvee! (A AQASTlAU)Tvee ¢! CV(UTl) + Cl()\ 1A U){ ~Iee’VVC’C(A1A2A3TQAu)

xT" vee’ CVC’(UT2) + ( 1))\6 v Ieve 've! C(A1A2A3T2AU)T/e’veC\7C’ (UTQ)}]a

Q) (M A2 A A) (Evere — o)

ee’vvcc

= 5AA35MM3 ()\ /\e’Al)[ (/\ )\C’A2) vc/cee v@ A A) (C llb)
+3 2 pxfeerer (A B Ao AY) Toreserrs (A2 A1 A) + (= 1)% '
X ZAl ee’vic/ c(A A2A AQAA)( c’cvvee’ (K K ) ( AV AZ) c’vevee! (K2K1K))}]

Q\(zv NIV c(AlA?A) (5VV ¢ Evviv ) _
= ’5AA3(5MM3 [TVV’V//VV/C(A AQA) + Tvv/v”\’;\’//c(AlAQA> —|— a()\c/\\’z’A2) (C12a)

X ZA x vv VC(A AZAA2A1>TVV v evv! (K1K2K)]a
Q( 1! (A AQA)(€VVC Evviv! )

vv'vivv'c

(C.12b)
— 5AA36MM3 ()\V’)\V”A2>[ (>\ )\V’A1> vv/evv/v!’ (A2A1A> - vcv vv/v! (A2A1A>]
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vi eV’ C(A A2A3A) (6\7\7'0 - gvv’G) _
— 6AA55MM3 [i{TVV e\’/\?’cA(AlAQA) + TVV’eVV’C(A1A2A)} - a(AeAV’Al)
X {Tvev vv/ C(A A2A) Vev v’ C(A A2 )} + CL()\ )\”AQ) ZKQK JV§/§C<K KQAAQAl)

X {1 vwreery (M A2 R) — La(AcheNo) T recrrs(MAR) — a(AeAvAy) (C.13a)
XTvev ool (A A2A)}] (— 1))‘e Av (= 1)/\C+A Y eV(TlA AN3A) Tovvrvew (A1)
Fa(AAvA2)Yogrse(Ad AQAA?)TI) vevieww (A1T1)] + 3>, 1(— DA Aa(A Ay Ay)

X Lyeyrgvre (M A2 AgTo Aw) T vrevesw (UT2) + a()\v’AV’AZ)]vv’e\_/cx_f’ (A1 A2 A3 Aw)

><,—Zf:evv v/ CV<UT2)]

Q <A1A2A3A) (8\7\7% - Evv/e>

vv/evv’c

- 5AA3(5MM3 [TVCV "vev’ (A2A A) - la()\ Ay A2)Tvv ‘cvev’ (A2A1A)
ZX1X2XCL()\ >‘ AQ){G“(A )‘ ’Al) cvv’evv! (A2A A)]/ (A1A2A1A2AA)

vv/evev!

1@()\ )\ A )TV/VCQVV (AQA A)I/ (AlAgAlAgAA)}]

vv/evv/c

(C.13b)

Qee v/ c(A A2A3A) (5\7\7’0 - Z':ee’v) N

- 6AA3(5MM3[§{T66 vvv/ C(A A2A) + Tee aaad C(A AQA)} - CL()\ >\ A )

X {TGVG'VV’C(AIAQA) + Teve Al c(A A2 )} + CL(/\ /\V/AQ) ZA x Jewr VC(A A2AA2A1)
s {1 Teervere (M Ao R) — a( Ao A A1) (3T evercow (A A2A> + Tevercws (A1 A1) }]
+5A1A25A37’1 6A0Tee’vvv C(AITI) + CL(/\ >\VA )( ) ev’ VC(AlAQAAng)

XTee "vevy! (AlTl) + Z [1a(/\e'A_u){]ee’V\_’\_/’C(A1A2A371Au)Tvee’C\7\7’ (uTl)

+Iee 'vvv! C(A AQAgTzAU)TVee vy (UTQ)} + a()\ )\ Al){a()\ )\;,U)CL()\C)\.;,/AQ)
X{gve vev/! (A A2A37—2Au) e’evv’/ VC(UTQ) + %( 1))\6 v ]eve 'vv! C(A1A2A3T2AU)
xXT" e/vecvv’/ <UT2>}]

Qee v c(A A2A3A) (8‘7‘7'0 - Eee’v)

= _6AA35MM3[ <)\ )\ A ){TVCV 'ee’ V(A2A1A> - CL()\ A 'AQ)TVV’Cee V(A2A A)}

1
+ ZAlA A <)\ A /Al) (>\ Ay A2>{( )AZ[/ ’(K K A A2AA)TCVV 'vee! (K2K1K)

(C.14a)

(C.14b)

ee/vvev

+411]ée vvv/ C(A AQA AQAA) ¥/ vcvee! (AQA A)}]
C.4 Four-body part

9(2) 1111551 (A A2A3A4A)(€VV "ec! Evv’v"v”’)

/v ec!

(C.15)
= %( 1)A3a()\ A Al) c/cvv’ (A1A2A3A4 )vi NI ec! V! (AIAZ’))

QL) e (A1 A2A3ALA) (vvrccr — Eevvivr)
= $0A; 4508504000 Qevvivrzvce (A1A3) + (=) a(AAvA1) Foere (A1 A Az Ay A)
X Quevivresers (M Ag) + 5(=1)" a( XAy Ag) Fepyryr (AaAgAg Ay A) Quyrevreerss (M)
+3 Zud Gevvrvirgece! (UdA A3A2A4A)vi’ev”\7€c’\7’ (Ud)

Qéz’)vv’vv’cc (A 1A A3 A4 A ) (Evwr ‘oc! T Eeel v 2)

= 160, 0008501000 Qeervvrvvreer (A A3) + Quvreercerser (AgAp)} — 1(—1)hs

X{ Forego (M A2 A3 A A) Qcervyrcvers (A1A3) (=1)M M Fyep (AdA3 A A A)

X Qevervieerse (Aaha) + a(Ag A Ag)a(Acde Ag) Feorors (A1 A2 AsAyA) (C.17)

X Qveel cve'v/ (A3A1) + a(AvAvAs)a <)\e>\e’A4)Fee’v’v£A4A3A2AlA)

X Qeve'v's/cc! (A2A4)} + a(AeAer A1) D0 0( A Avd) Qevervizere (ud)

X Gerevvrvarce (WA A3 A A4 N).

(C.16)
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Tab. 40: Phase factors Z./ g/

AO{’ )\IB/ )\ﬂ/ Alj/ ZO[/B/,L_LIZ_// (A1A2A)
Ao Mg A Ag 1
VD VIR VR a(ApAos)
PV VD VR a(AaAsAy)
A Aa A An o a(adsAr) a(AssAs)
)\ﬁ )\l_/ Acx )\15 a()\a)\ﬂAQ) CL()\ﬂ)\,jAl)
)\N )\l—, Aﬁ Aa CL()\I]AgAl)
N A e Ag aOuAgAs)
Mo Ar s A 1

The coefficients J, Y, Y’', I, I', F, G are defined by the following formulas

- - R >\o¢ /\u Al
Josr (M A AT AGA) = (—1)22T22[A ] [Ay, Ay)Y/ {2 XB AA} (C.18a)
Yoguo (M Ao ApA) & (—1)Arthetdutha g A, ATY2
X (MM MR {42 b 3 o h (C.18b)
Y. 5 (MAs A RoA) = (—1)MFA2[A L Ay, Ap]'?

Lngepn (M AR A AR) = (—1)MM[Ay, Ay, Ay, A, A2
— Ag Ae A
NN N7 JreAs A poe
x (RoMoAM|A M) {AD » m} {ii 2 AA} , (C.18d)
L genon(MAA RpAR) = (= 1)t Acthatdpt bbb dokAdd
o A dg Aj A
x [A][Ar, Mg, Ay, Ap)'? {Au R Ay Ag} : (C.18¢)
Aa A2 A1 Ao
Fusp AR BA) 2 (%I, R (s R 01 cas

Gogepprns (MDA AN AGA) = (= 1) a(NadgAr)a( Ao Ao Ay)
= = SRS VI VRN VD VD ¥
X [A17A27A17A27A17A2]1/2 Ay Ai Ao
>‘C /\ﬁ A2 A2 >\p >\6
where the last quantity—the 15j—symbol of the third kind—is defined according to Ref. [10,
Sec. 4-20, p. 207, Eq. (20.3)]. In Egs. (C.3)-(C.8), the expressions for Z, g z» (A4 AQA), where

{/, 3, i/, 7'} denotes somehow permuted orbitals {«, 3, 1, 7} of the coefficient Qa 4 W(AlAQA),

are displayed in Tab. 40. Particularly, the abbreviation Z, g (A1A10) = Zygpw (A1) is
used.

, (C.18g)

D Symbolic computations with NCoperators

The «Non-Commutative operators» package runs under Mathematica [99-101], a computa-
tional software program. To take all advantage of NCoperators, especially when manipulating
with the antisymmetric tensors, a free ware package NCAlgebra developed by Helton, Stankus
et. al. [102] must be compiled. The NCoperators package has been written for Unix OS, but it is
easy to adapt it for Windows OS as well if some of the parameters of compilation are changed.

The NCoperators is a composition of a large number of packages with extension . m that
can be divided into four main blocks:
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1. Second Quantisation Representation (SQR)

2. Angular Momentum Theory (AMT)

3. Rayleigh—Schrodinger Perturbation Theory (RSPT)
4. Unstructured External Programming (UEP)

The packages store Mathematica codes that are loaded into a Mathematica session by us-
ing the function «“"NCoperators.m” or Get [“"NCoperators.m”]. The NCoperators
is designed so that each block can be brought into action separately. This is easily done with
Get [“PackageName.m”]. All these functions (Get []) are located in a single package
NCoperators.m.

D.1 SQR and AMT blocks

The SQR and AMT blocks are closely related and therefore they will be considered together.
The present blocks contain a huge number of functions, each of them being useful for a special
case of interest. In the present overview, only a few of them will be discussed.

In theoretical atomic physics, a typical task is to find the angular coefficients that relate two
distinct momenta coupling schemes. Consider, for example, the momenta recoupling coefficient
(j142(j12) 37| 273 (j2s) 17 ) . The expression is known, and it is

1) 2 +i2+is—jzs . 11/2 j1 J2 Ji2
( ) [J12,J23] Js 7 o

Making use of NCoperators, the algorithm to obtain the latter formula is displayed in Fig. 1.

Inf251= CGeoeff[{J., mi}, {Jz, ma}, {J12, M12}] CGecoeff[{I,2, miz}, {3, m3}, {I, m}]

Ji1 32 jla] Jiz Js j}

out[25]= [
My mp Mz m;z M3 m

in[26]1.= Recoupling[%, {Jjz, mz}, {J3, m3}]

T SyrnbolSu.rn[r—luj*jl’m*h[jl Jia.i3 j‘{jz i3 jjg,j3‘ljl Jz J1z 1

i3 V1+2302 812350, 0 (3520500 Pagam)
M1 Mg, my M My My Mgy,my | L33 T Jip.95 ) gl i2.d3 { i2.d3 mg, my |
ni27l= %/« {315,195 =+ J235 Mag,n; + Mas}

. _ symbols [r_—l jvjl+jg+j3[]l Jaz ]][Jz 13 Jza]fjl Jz ]127 NE V142 L {403, }
Out[27] ymioolSum ) mp My m my ms masd L3s 3 Sas ) +2 312 +2 323, {J23. Ma3}

In[2g].= Make[%, {{Jz3, ma3}, {J1, m1}}, {{J2, m2}, {I3, m3}}]

i+ig+iz-i Jz J3 Jaz Jaz 31 37 [ 31 Ja le] ;
.3t3~=smbolSum[r_-l,.“nHm H ] N V1:23... . m ]
ut[28] ¥ My My T Mgy my ml 135 3 sl J12 Jas . {Ja23 23}

In[29]= % //. SumS8implify

P SymeISum[‘.71.}31,13*;37133 J2 33 ]23] {]23 SR } [31 32 J12) VI+2 32, Gase mg}}]

Mz M3 Mp3 mg; my mt |33 3 Ja3)
In[30]= % /. style
out30l= V1 +2 j1a 8 rrbolsu_m{ifl'zj'jz’n_jg} { Jz J3 J23 } Jaz J1 ] J'j.l Ja Jua 1 V1425, Cm }
el tEha % ! Mg M3 Mgz Mgz my ml | 33 7 jasl MECE] (23 23}

In[31l:= % // MakeSymbolSum

out[31]= Z Z ~1)?drdzriz-da3 Jz2 J3 Jaa

} FZER Y ]jjl J2 m]
m m m m
J23 ™23 2 3 23

V14203 W12 51,
Mgz My Lz 7 asl

Fig. 1: A computation of recoupling coefficient (j1j2 (J12)737 ’j2j3 (jgg)jlj) with NCoperators

Out [25] contains two Clebsch—Gordan coefficients labelled by CGcoeff[] — the stan-
dard Mathematica function ClebschGordan|[] is insufficient for symbolic manipulations.
The function Recoupling[] initiates the momenta recoupling followed by Refs. [10-12].
SymbolSum|[] plays a role of a standard Mathematica function Sum|[ ] adapted to symbolic
computations. The function Make [ ] initiates the momenta recoupling within a given Clebsch—
Gordan coefficient. The simplification of considered sum is performed by SumSimplify.
Out [31] is printed in a standard Unix output form specified by the font family «cmmil0». Ob-
tained formula is easy to convert to a IfIEX language by making use of Mathematica function
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Export [“DirectoryName/FileName.tex”, %31]. A brief description of all func-
tions is lited by using Definition[function] or simply ?function. The example is
presented in Fig. 2.

inf451.= ? TAntiCommutatorl

TAntiCommutatorlfo_,
{Subscript[al_, Subscript[a_,
i 1], Subscriptfml_, Subscriptie_, i_111,
{Subscript[A2_, Subscript[# , j 1], Subscriptim2_,
Subscript[ 8, j 1111 uses the relationship:

TCreatOp[Al, ml, i, @] #+ TCreatOp[A2, m2, j, B8] =
—TCreatOp[A2, m2, j, B] ++ TCreatOp[il, ml, i, a].

Fig. 2: The usage of Definition[] in NCoperators

In Fig. 2, the function TAntiCommutatorl[] along with TAntiCommutator2([],
TAntiCommutator3[] and TAntiCommutator4 [] initiates the (four) anticommutation

) ) Xas  ~Aa ) )
rules for irreducible tensor operators a, Vs Ame, (RSPT block). To compare with, the anticom-

mutation properties of the Fock space operators a,,, ali are realised through the NCoperators
functions AntiCommutatorl[], AntiCommutator2[], AntiCommutator3[] and

AntiCommutator4 []. The examples are listed in Fig. 3. Particularly, In[61] computes
the one-body terms {52(a6)51 (uv)} which are found in the Wick’s series for /ﬁfi)l ¢ with the
indices m = 2, n = 1, £ = 2 (refer to Egs. (2.42), (4.3)); NonCommutOpMulti [n,a, #] is
nothing else but 6n(aﬁ). In addition, the function NonCommutOpMulti [n, «, 3, m, i, V]

corresponds t0 Oy, (a3) Oy (y).

In[58]:= NonCommutOpMulti[4, a, f]

. — t t
Out[58]= Qg ** Oq, ** G5, ** a5,

In[50]:= AntiCommutater2 (%, {«, 2}, {8, 2}] //. Trule

Out[59]= - g, ** a_fj Tk g, ** a_fjl + g, ** a_fjl S

2 @, 3

In[60]l= % /. style

. t t t
Outl60]= — 8y @5, 00,05, + By 85, Ja, 3

In[61]'= TwoContractions221[4, a, B, 2, u, v]

OutlE11= 2 Bay ** 85, Say vy S5y 0y ~ 2 Gay % 85 Sag. vy Say. g ~ 2 8ay ** 5 ey vy S5y uy 42 Gay +xab) Say vy S5y
In62l= % /. style

- t t t t
out[e2]= 2 Bep s, L T Bep B3, Sag.vy O5y,0p - 2 Gap @3, Saq vy Ohg.ug 12 Beq Oz, Sag,vy O8g,

Fig. 3: Manipulations with the antisymmetric Fock space operators in NCoperators

There are many more functions in NCop-
erators. Many tasks in atomic physics are
related to the Wigner—Eckart theorem. This
theorem is also found in the present pack-
791 = WignerEckart[%, {j., m}, {k, q}] age. The example of usage is demonstrated
in Fig. 4, where the projection-independent
quantity [jo[|v*)||55] denotes a usual reduced
matrix element of the irreducible tensor oper-
ator v®), Note, throughout the present text,
the notation v* is preferred.

In[78]:= MatrixEl [a, v, f]

out[78]1= (o |V | B)

iz k Ja

out[79]= [ ] [dalv™ Hal

Fig. 4: Wigner—Eckart theorem in NCoperators



D Symbolic computations with NCoperators 92

D.2 RSPT block

The present block involves functions suitable for the symbolic manipulations observed in the
stationary Rayleigh—Schrodinger perturbation theory. In principal, the RSPT block applies the
previously summarised blocks with some specific functions particular with the MBPT. Without
going into too much details concerned with the structure of programmed codes, consider an

example related to the third-order MBPT (Sec. 4). Select the one-body term ﬁﬁ)l :P— P.
By Eq. (4.3),
Rty ={PVOPh:.

The operators 171: §— %, ﬁf): P — 'H given by Egs. (2.40), (2.69a) are deduced to be
equal to

> A2 2 2 2
‘/1 - Z aaagvaﬁa Qg ) = Z aea\]i/wé\’/) + Z avagwx(/é) + Z aeagwé6)7
af ev ve ec

where the single-particle matrix element v, is defined in Eq. (4.5). Recall that only the types
of single-electron orbitals are written below the sums, but not their values.

In[2:= Alll // Clear
Alll :=
Blcck[{xl, x2, %3, x4, x4a, x5, x6, x7, x0},
®L=1/1x
P xx NormalOrder[OneContraction[2, u, v, 2, vel, cal]] ** PxMatrixEl[p,, v1l, v;] *MatrixEl[vel,, v2, call]/
(Foaty = £very ]
P *x NormalOrder [OneContraction[2, u, ¥, 2, ecl, cal]] s* Px*MatrixEl [y, vl, vi] *
MatrixEl[eecl,, v2, cali]/
(5:a11 - 5e:11) +
P+« NormalOrder [OneContraction[2, u, v, 2, ecl, val]] ** P*MatrixEl[p,, vl, v,] *
MatrixEl[ecl,, v2, vali]/
(Evall - eEﬂi” /. {KronDelta[p,, val, ]:+ 0, KronDeltalus, val, ]:» 0} //. Trule // Expand;
x2 = Table[SymbolSum[ x1[[i]], {wy, v1}] //. SumSimplify, {i, 1, Length[x1]}] // Total;
x3 = (x2 /. (> ve2, vo va2}l) + (x2 /. {u>ec2, voea2})+ (x2 /. {g->cec2, v ca2}):
x4 =x3 /. {a__ «SymbolSum[z , var List] s axz};
x5 =x4 //. Elimination;
x6 = (x5 // NormalOrdering) /. P 1;
x7 =x6 /. {vl -+ vy, V2 v;ff} f.style /. style /. style /. style /. style /. style

In[4]:= Alll

=EE t =

+ | y ££ \ . \
Oy Oy (ag|vy | pa)(my 1377 |6g Gy Gngy (T2 [ [mg ) (py vy |y
+

Ooutl4]= -
Eay — Emy Emy — Ery

Fig. 5: The generation of ﬁﬁ)l terms with NCoperators

In Fig. 5, the generation of /ﬁﬁ)l terms is demonstrated. Many of the functions in Fig.
5 are easy to detect by their names: NormalOrder [] denotes ::; OneContraction|]

denotes the one-pair contractions (¢ = 1) between XA/l and Q?); KronDelta[] is obviously
the Kronecker delta function. Other supplementary functions are to be used for various technical
simplifications. In Out [4], (a|vS/f|b) = wﬁ)(sb — &,) (recall the irrep 75) and (a|v1|b) = v
(recall the irrep 7).

In NCoperators, the three types—core (c), valence (v), excited (e)—of single-electron or-

bitals are designated by
T

a.: ccl,cc2,etc.; ag: cal,ca2,etc.
. 1 2 . T. 1 2
ay : vel,vcl etc.; ag: val,val, etc.

T

a.: ecl,ec2,etc.; ag: eal,ea2,etc.

In a standard output (such as Out [4]), the notations of orbitals are simplified to
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sz, by, c2,da, €3, fo
Mo, N2, D2, G2, ka2, I
T2, S2, tQ; U, W2, T2

c: ap,by,c,di,er fi
Vi omy,ni,p,q, kG
e: T1,817t1,U1,W1,x1

o <l ol

Therefore, in accordance with Fig. 5, the generated terms hn | are
3
gl)l - Z CLVCL Uvewev Z CLVCL UCVWVC : (Dl)

The next step is to restrict the model space P to its irreducible subspaces P, that is, to expand
hﬁ);l into the sum of irreducible tensor operators W (A, \¢). Refer to Egs. (4.4), (4.17a).

(2)

Consider the operators hﬁ)f associated to w'")". In this case, it is easily done by using the
) a,@

expression for SU(2)—invariant in the first row of Tab. 12: simply replace f(2\,\3)/(e5 —€4)

with Q%WA) (recall Remark 4.1.1). But the present invariant has been obtained also making
use of NCoperators. Thus, for the sake of clarity, the full procedure of angular reduction will
be demonstrated. This is, however, easy to perform.

In Eq. (D.1), the first term contains the product of type Z vww(zﬁ) ,
the product of type > u Mﬁwé,2+. These products determine the single-particle effective matrix
elements. Then

Z Uvewég)+ = Z (_1)>\e+mef(7—1)\v/\e)<)\va/\e - me|7_1m1>

e AeMe

while the second one —

1)rems Z QT (M) (Aemeds — mg | AM),

Z UC\—,w‘(,%)J“ = Z (—1))‘V+mvf(7'1)\c)\‘—,)<)\cmc)\\—, — mg|Timy)

c AcMe

DA S Q@A) (Aemy A — me AM).

A
Finally, recalling that a,al = (—1)+7 3= WA (A Ne)(Aymy Ay — mg|AM), the expression
in the first row of Tab. 15 (the case m = n = £ = 1) is obtained by using the result in Fig. 1.

A much more complicated task is to find Q<2)+(A) To generate the single-particle effective

(2)

matrix elements w T make use of the generalised Bloch equation in Eq. (4.2). It follows that

(ﬁ) is the sum of wl(] )HJ (afp) Vi, j = 1,2, where the coefficients ng;)iﬂfl(ozﬁ) are obtained

from the terms
{RVQWP — RAVBUPY,

The operator R—also known as the resolvent [34]—is defined here by the action on some
functional ,ﬁz(xjcl , Ij‘w . ,x}a, Tiy, Tiyy - ., T, ) on H so that

~ — 1
Rﬁ(m}l,m}Z, e ,x}a,xﬁ,xﬁ,ﬁ. LLTp) = [@a(ff)} fo(x}l,xk, e ,m}a,xﬁ, Thyyo s Tf,).
The energy denominator &, ( f f) is found from Eq. (2.65); the vectors z f, (x}k) Vk=1,2,...,a
of the single-particle Hilbert space are identified to be the single-particle eigenstates | fi.) ({fx]).

The example how to generate the wﬁ)l terms is demonstrated in Figs. 6-7: in Fig. 6, the

terms {RV1 P}1 are generated, while in Fig. 7, the terms {RQ PV ﬁ}l are derived. As a
result, wﬁ?l contains 9 expansion terms

2
W%l%(“ﬁ )(e5 — €a) Z Uauwug Z Uuﬂ‘”&?;
u(ap) v(
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In[16]= RV1iQlPconnectedOnePair // Clear
RV1QlPconnectedOnePair = Block[{wl, w2, w3, wi, w5, w&, w7, w8, w9, wl0, wll, wl2, wl3, wl4, wl5},
wl[a , A ] := NormalOrder[OneContraction[2, @, /4, 2, ec2, ca2]] *MatrixEl[ec2,, Vva, ca2 ] fA[2, ec2, cal2] +
NormalOrder[OneCentractien([2, a, 4, 2, ec2, va2]] *MatrixEl[ec2,, v, va2,] /A2, ec2, va2] +
NormalOrder [OneContraction[2, a, A, 2, vc2, ca2]] *MatrixEl[vec2,, vz, ca2;] /A[2, vc2, cal];
w2la_, A ] t=wll[a, A] // Expand;
wila_, £.] s=w2[a, F]«MatrixEl[a,, v;, F1] // Expand;
wi[B ] 2= (w3 [a, B8] f. {a ->ecl}) + (wi3[a, Al /. {a > vel}) + (w2 [a, F] /. {a »ccl});
w5 = (wd[B] /. {B—eal}) + (wd[B] /. {B— val}) + (wi[B] /. {f —+ call);
w6 = w5 // Expand;
wl =wé f. {
KronDelta [Subscript[ecl, k_], Subscript[ea2, 1_]]: 0,
KronDelta[Subscript([vel, k_], Subscript[wva2, 1_]] = 0,
KronDelta [Subscript[cal, k], Subscript[ece2, 1 _]]:» 0}:
wi = Table[Q#x w7 [[f]] #+« P, {£, 1, Length[w7]}] // Total;
wS = (w8 //. MBPTrules) //. PQrules;
wl0 = w2 // NormalOrdering;
wll =wl0 //. Eliminatien;
wl2 = (wll /[ 8e) // Expand;
wl3 = wl2 //. denominatorll;
wl4 = Table [RenameState[wl3[[i]], {cel,, cal,, ecl,, eal,, vecl,, val,, cc2,;, ca2,;, ec2,, eal,, vc2,, va2i}],
{i, 1, Length[wl3]}] // Total;
wlb = wld //. WaveOpSimplify //. WaveCpSimplify2
1:
In[18]= (SymbolSum[RV1QlPconnectedOnePair, {ca2,, eal,, val,}] //. SumExpand //. SumSimplify) /. {
SymbolSum[z , var List] sz} f. P21 /.Q0-1/.style /. style /. style /. style /. style
Opy G‘!'ig {ay vy ez (prlvzlar s  ap, G‘c"g (mq vy [ payiprlvzlez)  arp “23 rolvilpad(prlvalea  ay G‘;a {ay vy lagy(ty |valag )
o (:E"l B E.”l.:‘ ‘:Eﬂz “Ep ' ' ‘:Efz - E”‘l.:‘ {Efz “Ep ' ’ T En ) liE"l T En J {Eﬂz Ut )
Ay ﬂgz (tylvalegy (my |y 1) . ary ﬂc'g (rolvytoy(trvalea)  ay ﬂfuz {ay vy [mg ) (ty|valay . ary 0;',2 (rofvy [ty (tylva P2l
'i‘ECz “Emy) (=g - =y 'i‘ECz “en) {ECE -ey) l::E"J. Y, dgfﬂz -ey) 'i‘Epa - ‘E'J.::‘ (:E.ﬂa -ey)
o 6 : (2) .
Fig. 6: The generation of wyy;; terms: part 1
In[19]:= RR1PV1POnePair // Clear
RQ1PV1POnePair = Block[{wl, w2, w3, wi, w5, wé, w7, w8, w9, wl0, wll, wl2, wl3, wl4, wlS},
wl[ux , v_] := NormalOrder[OneContraction[2, ec2, ca2, 2, x, v]] *MatrixEl [ecZ,, vy, ca2;] /A[2, ec2, ca2] +
NormalOrder [OneContraction[2, ec2, val2, 2, g, v]] *MatrixEl[ec2,, vy, va2,]/A[2, ec2, val] +
NormalOrder [OneContraction[2, we2, cal2, 2, x, v]] *MatrixEl[ve2,, v, cal ] /A2, vel, cal];
w2[u , v.] t=wl[ux, v] // Expand;
w3ilu , v ] t=w2[x, v]*MatrixEl[wms, vy, vy] // Expand;
wh[v_ ] :=w3d[p, v] /. {u->vecl};
wS =wd[v] /. {v » val};
wt = w5 // Expand;
wl=ws /. {
KronDelta[Subscript[ecl, k], Subscript[ea2, 1 _]]:s 0,
KronDelta[Subscript[vel, k_], Subscript[vaz, 1_]]: 0,
KronDelta[Subscript[cal, k_], Subscript[ce2, 1_]]:» 0,
KronDelta[Subscript[ec2, k_], Subscript[eal, 1_]]:s 0,
KrenDelta[Subscript([ve2, k_], Subscript[val, 1_]]: 0,
KronDelta[Subscript[ca2, k_], Subscript[eel, 1 _]]:s0
}i
w8 = (Q*x (w7 // NormalOrdering) *x P) //. MBPTrulesExpand;
w2 = (w8 //. MBPTrules) //. PQrules;
wll =wd //. Elimination;
wll = (wl0/ de) // Expand;
wl2 = wll //. denominatorll;
wl3 = RenameState[wl2, {ccl,, cal,, ecl,, eal,, vcl,, val,, cc2,;, ca2;, ec2,, eal,, vc2,, va2,}];
wld = wl3 //. WaveOpSimplify //. WaveCpSimplify2
1:
In[21]:= (SymbolSum[RQ1PV1POnePair, {va2;}] //. SumSimplify) /. P+1/.Q—+1/.style /. style /. style /. style
ap, a}‘g {ty vz |mq ) (mq vy [ma)
Qut[21]= ; 7 \
lemy — &6y ) [Emg — €4y )

)

Fig. 7: The generation of wﬁ;l terms: part 2
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where p(ve) = p(ec) = v,e; pu(ev) = e; v(ve) = v(ec) = c¢; v(ev) = v,c. Analogous
computations must be performed for the rest of coefficients wg?Q, wg?Q, wgg, and thus

w0 = w?, (@) + 0 Dy(aB) + wiy(aB) + w2 (o).

where

c p=v,e
w21 2(055 3 — 801 Z Z Uca,uﬁw;(}c)a
c p=v,e
2 2 ~ ~(1
wéQ)g(ozﬂ)(Eg — 504) = vcavewévi/@'
c,v,e

The expressions are identified in Tab. 12, where the corresponding SU(2)—invariants are se-
lected (recall the distinct notations for distinct intermediate irreps defined by Eqgs. (4.11)-

(4.16)). Then split the solution for w(zﬁ) into the sum of w' ﬁ)J’ and w%)_. Make use of Eq.

(4.17a). Finally, the solutions for Qfl 52 are displayed in Egs. (C.1)-(C.2) in Appendix C.
The algorithm of generation and angular reduction of /f;ﬁ)l terms is suited to the rest of

operators 3 Ttis by no means obvious that the procedure to find out the effective matrix

mmn;é*
elements associated to 2 with n > 2 is much more complicated, though the idea holds true
for all of them:

2 2 __ 2 1 )55 D
n=2: W%E%W = 212j2:1 Wz(j;)g)j—Q(OfﬁMV)a Q( )= {RVQ( )P RQ( )5‘/{5}1'—5-]‘—237
n=3" Wogcuon = Duijet Wigi+j—3(@BCAVN), {RVQ P RQ PVP}H—J’—?):’

2 2 _ PPNIPN
n=4: Wl e = wio(aBCpra), 8 _ B0 P — ROW PV, P,

assuming that for ¢ = 2, 3, the condition ¢ + 57 — £ > 0 is valid.
D.3 UEP block

The present block is the most technical one, as it is closely related to the operating system used.
The UEP block has been designed for the Unix systems and it can be skipped for those who are
keen on other systems. Nevertheless, the block actualises many useful features, though it is still
permanently augmented. The main idea is to convert obtained symbolic preparation into the C
code for a more rapid calculation of the quantities under consideration.

External programming is a way of communication between Mathematica interface and some
other (external) programs (such as C). Differently from the structured programming actualised
by using MathLink, the unstructured programming does not require any other external «tunnels»
except for the user’s own terminal.

To make the UEP block operate, the

S Mathematica header file mdefs.h must be lo-
£[1, 15., 14., 15.] // Pining // Chop // N cated in the directory, where all system header
(0024001, -0.00146234) files are situated. In most Unix systems,
Cfunction[f, float. {n. x. ¥, 2} (1. 15. 14.. 15.}, the directory is usr/include/. The header

{int, float, float, float}] // Timing

is supplemented with the C-based functions
that are necessary for the atomic calculations:

{0.016001, -0.0014623}

o s o IR ClebschGordanC[], SixJSymbolC[],
cemtion 15, Siones (os s 91 o (1) 35 e 350, NineJSymbolCI[], etc. The MathLink li-

{int, fleat, fleat, float}] // Timing braries lleL32l3Cl, libML32i.s0 are substi-
(0.004, 0.0004171} tuted in /usr/lib or /usr/local/lib.

The example of the usage of C-based
functions within Mathematica interface is
demonstrated in Fig. 8, where the function

Fig. 8: Example of an application of the UEP block
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Timing[] clearly demonstrates the main benefit of such type of programming that stipulates,
therefore, the further on improvements in the same direction.

Perspectives In addition to the briefly studied possibilities of the application of NCoperators,
one more option can be found in the present package. It is a diagrammatic visualisation of
expansion terms. The example is demonstrated in Fig. 9. A newbie equipment of NCoperators
is actualised by using the Mathematica functions Graphics|[], Show[]. Likewise in the
case of UEP block, the present feature is not fully operational at this time.

The diagrammatic visualisation has the only one advantage to compare with the algebraic
formulation of atomic MBPT. It is an easy to behold visualisation of complex algebraic ex-
pressions. It is not a mere mnemonic device, though. A number of rules to handle the diagrams
designed for atomic and nuclear spectroscopy are formulated. However, as demonstrated in Sec.
4, such visualisation is inefficient due to a huge number of expansion terms. Consequently, there
are two alternatives: whether to write programs that are capable to visualise expansion terms
diagrammatically and afterwards to convert them into a usual algebraic form or to take aim at
the algebraic approach such as developed in Sec. 4. The NCoperators package has been de-
signed to be of versatile disposition as much as it is possible. Therefore, the direction that must
be chosen strongly depends on the future demands.
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