
ARTICLE IN PRESS
Physica A 344 (2004) 128–133
0378-4371/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/physa
Modeling financial markets by the multiplicative
sequence of trades

V. Gontis�, B. Kaulakys

Institute of Theoretical Physics and Astronomy, Vilnius University, A.Gogtauto 12,

LT-2600 Vilnius, Lithuania

Received 4 December 2003

Available online 6 August 2004
Abstract

We introduce the stochastic multiplicative point process modeling trading activity of

financial markets. Such a model system exhibits power-law spectral density Sðf Þ / 1=f b,

scaled as power of frequency for various values of b between 0.5 and 2. Furthermore, we

analyze the relation between the power-law autocorrelations and the origin of the power-law

probability distribution of the trading activity. The model reproduces the spectral properties

of trading activity and explains the mechanism of power-law distribution in real markets.
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1. Introduction

Power laws are intrinsic features of the economic and financial data. There are
numerous studies of power-law probability distributions in various economic
systems [1–8]. The key result in recent findings is that the cumulative distributions of
returns and trading activity can be well described by a power-law asymptotic
see front matter r 2004 Elsevier B.V. All rights reserved.
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behavior, characterized by an exponent l � 3, well outside the Levy stable regime
0olo2 [8].
The time correlations in the financial time series are studied extensively as well

[8–10]. Gopikrishnan et al. [8,9] provided empirical evidence that the long-range
correlations for volatility were due to trading activity, measured by a number of
transactions N.
Recently, we adapted the model of 1=f noise based on the Brownian motion of

time interval between subsequent pulses, proposed in Refs. [11–14], to model the
share volume traded in the financial markets [15]. The idea to transfer long-time
correlations into the stochastic process of the time interval between trades or time
series of trading activity is in consistence with the detailed studies of the empirical
financial data [8,9] and fruitfully reproduces the spectral properties of the financial
time series [15,16]. Further, we generalized the model defining stochastic multi-
plicative point process to reproduce a variety of self-affine time series exhibiting the
power spectral density Sðf Þ scaling as a power of frequency, Sðf Þ / f �b [17].
In this contribution, we analyze the applicability of the stochastic multiplicative

point process as a model of trading activity in the financial markets. We investigate
the spectral density and counting statistics of model trading activity in comparison
with empirical data from the stock exchange. The model reproduces the spectral
properties of trading activity and explains the mechanism of power-law distribution
in the real markets.
2. The model

We consider a point process IðtÞ as a sequence of the d-type random correlated
pulses

IðtÞ ¼
X

k

akdðt � tkÞ ; ð1Þ

and define the number of trades N j in the time intervals td as an integral of the
signal, N j ¼

R tjþtd
tj

IðtÞdt. Here ak is a contribution of one transaction. When ak ¼ 1,
the signal (1) counts the transactions in the financial market. When ak describes asset
price change during one transaction, the signal counts the price changes. When
ak ¼ �a is a constant, the point process is completely described by the set of times of
the events ftkg or equivalently by the set of interevent intervals ftk ¼ tkþ1 � tkg.
Various stochastic models for tk can be introduced to define a stochastic point
process. In Refs. [11–14] it has been shown analytically that the relatively slow
Brownian fluctuations of the interevent time tk yield 1=f fluctuations of the signal
(1). In Ref. [17] we have generalized the model introducing stochastic multiplicative
process for the interevent time tk,

tkþ1 ¼ tk þ gt2m�1k þ tmksek : ð2Þ

Here the interevent time tk fluctuates due to the external random perturbation by a
sequence of uncorrelated normally distributed random variable fekg with zero
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expectation and unit variance, s denotes the standard deviation of the white noise
and g51 is a damping constant. From the big variety of possible stochastic processes
we have chosen the multiplicative one, which yields multifractal intermittency and
power-law probability distribution functions. Pure multiplicativity corresponds to
m ¼ 1. Other values of m may be considered as well.
The iterative relation (2) can be rewritten as Langevine stochastic differential

equation in k-space

dtk

dk
¼ gt2m�1k þ tmksxðkÞ : ð3Þ

Here we interpret k as continuous variable while hxðkÞxðk0
Þi ¼ dðk � k0

Þ.
The steady-state solution of the stationary Fokker–Planck equation with zero

flow, corresponding to Eq. (3), gives the probability density function for tk in the k-
space (see e.g., Ref. [18])

PkðtkÞ ¼ Ctak ¼
aþ 1

tðaþ1Þmax � tðaþ1Þmin

tak; a ¼ 2g=s2 � 2m : ð4Þ

The steady-state solution (4) assumes Ito convention involved in the relation
between expressions (2)–(4) and the restriction for the diffusion 0otminotkotmax.
We have already derived the formula for the power spectral density of the

multiplicative stochastic point process model, defined by Eqs. (2) and (3) for the
interevent time [17]

Smðf Þ ¼
2Ca2ffiffiffi

p
p

tð3� 2mÞf
g
pf

� �a=ð3�2mÞ

Re

Z xmax

xmin

exp �i x �
p
4

� �n o

� erfcð
ffiffiffiffiffiffiffiffi
�ix

p
Þxa=ð3�2mÞ�1

2 dx ; ð5Þ

where �t ¼ tkh i ¼ T=ðkmax � kminÞ is the expectation of tk. Here, we introduce the
scaled variable x ¼ pf t3�2m=g and xmin ¼ pf t3�2mmin =g; xmax ¼ pf t3�2mmax =g.
Expression (5) is appropriate for the numerical calculations of the power spectral

density of the generalized multiplicative point process defined by Eqs. (1) and (2). In
the limit tmin ! 0 and tmax ! 1 we obtain an explicit expression

Smðf Þ ¼
Ca2ffiffiffi

p
p

tð3� 2mÞf
g
pf

� �a=ð3�2mÞ Gð1
2
þ a

3�2mÞ

cosð pa
2ð3�2mÞÞ

: ð6Þ

Eq. (6) reveals that the multiplicative point process (2) results in the power spectral
density Sðf Þ � 1=f b with the scaling exponent

b ¼ 1þ
2g=s2 � 2m
3� 2m

: ð7Þ

Let us compare our analytical results (5) and (6) with the numerical calculations of
the power spectral density according to Eqs. (1) and (2). In Fig. 1 we present the
numerically calculated power spectral density Sðf Þ of the signal IðtÞ for m ¼ 0:5 and
a ¼ 2g=s2 � 1 ¼ 0, �0:5 and +0.5. Numerical results confirm that the multiplicative
point process exhibits the power spectral density scaled as Sðf Þ � 1=f b. Eq. (5)
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Fig. 1. Power spectral density Sðf Þ vs frequency f calculated numerically according to Eqs. (1) and (2) with

the parameters m ¼ 0:5, s ¼ 0:02 and different relaxations of the signal g. We restrict the diffusion of the

interevent time in the interval tmin ¼ 10�6; tmax ¼ 1 with the reflective boundary condition at tmin and

transition to the white noise, tkþ1 ¼ tmax þ sek, for tk4tmax. The straight lines represent the results given
by the explicit formula (6).
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describes the model power spectral density very well in a wide range of parameters.
The explicit formula (6) gives a good approximation of power spectral density for the
parameters when b ’ 1. These results confirm the earlier finding [11–14] that the
power spectral density is related to the probability distribution of the interevent time
tk and 1=f noise occurs when this distribution is flat, i.e., when a ¼ 0.
It is likely that such a stochastic model with parameters in the region 0:5pbp1:5

may be adaptable for a wide variety of different systems. In this paper we will discuss
the applicability of the model for the financial market.
We derived pdf of N for the pure multiplicative model with m ¼ 1 in [17]

PðNÞ ¼
C0t2þa

d ð1þ gNÞ

N3það1þ g
2

NÞ
3þa �

1

N3þa ; N5g�1 ;

1

N5þ2a ; Nbg�1 :

8>><
>>:

ð8Þ

Probability distribution function for N obtained from the numerical simulation of
the model is in good agreement with the analytical result (8).
3. Discussion and conclusions

We have introduced a multiplicative stochastic model for the time intervals
between events of point process. Such a model of time series has only a few
parameters defining the statistical properties of the system, i.e., the power-law
behavior of the distribution function and the scaled power spectral density of the
signal. The ability of the model to simulate 1=f noise as well as to reproduce signals
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with the values of power spectral density slope b between 0.5 and 1.5 promises a wide
variety of applications of the model.
Let us present shortly the possible interpretations of the empirical data of the

trading activity in the financial markets. With a very natural assumption of
transactions in the financial markets as point events we can model the number of
transactions N j in equal time intervals td as the outcome of the described
multiplicative point process. We already know from available studies [8] that the
empirical data exhibit power spectral density in the low-frequency limit with the
slope b ’ 0:7. Empirical data from the Lithuanian Stock Exchange for the most
liquid assets confirm the same value b ’ 0:7, (see Fig. 2). For the pure multiplicative
model with m ¼ 1 this results in a ¼ 2g=s2 � 2m ’ �0:3. The corresponding
cumulative distribution of N in the tail of high values (see Eq. (8)) has the exponent
l ¼ 4þ 2a ¼ 3:4. This is in excellent agreement with the empirical cumulative
distribution exponent 3.4 defined in Ref. [8] for 1000 stocks of the three major US
stock markets.
The numerical results confirm that the multiplicative stochastic model of the time

interval between trades in the financial market is able to reproduce the main
statistical properties of trading activity N and its power spectral density. The power-
law exponents of the pdf of the interevent time, a, and the cumulative distribution of
the trading activity, l, as well as the slope of power spectral density, b, are defined by
Fig. 2. Power spectral density Sðf Þ vs frequency f calculated numerically from the empirical data of the 3

most liquid stocks from the Lithuanian Stock Exchange. Straight line fits Sðf Þ / f �0:7.
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just one parameter of the model 2g=s2. The model suggests a simple mechanism of
the power-law statistics of trading activity in the financial markets.
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