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Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, Vilnius 2600, Lithuania

~Received 18 April 1995; revised manuscript received 13 November 1995!

Quantization of radiation has been performed from first principles in a realistic molecular medium, repre-
sented by an arbitrary number of energy levels~electronic, vibrational, rotational, etc.! for each constituent
molecule. Adopting a polariton model, the field operators have been expanded in terms of normal Bose
operators for polariton creation and annihilation. The expansion coefficients have been derived explicitly for
the normal modes characterized by wavelengths exceeding considerably the characteristic distance of separa-
tion between the molecules. Accordingly, the formalism applies to the long-wavelength region of the spectrum
for which description in terms of the macroscopic refractive index is relevant; furthermore, consideration is
restricted to the nonabsorbing areas of the spectrum. The theory has been formulated in a manner that made
possible a parallel and comparative consideration of operators for both the averaged~macroscopic! and local
fields. Consequently, the mode expansions derived cover both the local displacement-field operator and also
the averaged~macroscopic! operators for the electric, displacement, magnetic, and polarization fields, and the
vectorial potential. The expansions, involving summation over an arbitrary number of branches of polariton
dispersion, manifestly embody the refractive influences as well. To this end, the local-field effects intrinsically
emerge within the present formalism that treats systematically the photon umklapp processes. Relations have
been established between the expansion components of the local and averaged field operators. The relation-
ships support some previous attempts to link the amplitudes of local and macroscopic field operators phenom-
enologically, and are also consistent with the familiar results of classical electrodynamics. Equal-time com-
mutation relations have been demonstrated to be preserved, expressing the operators for the averaged fields in
terms of the normal Bose operators. On the other hand, the commutation relations between the macroscopic
fields are of the same form as those for their microscopic counterparts, subject to the coarse-graining proce-
dure. Finally, the present study dealing with the macroscopic and local operators provides a tool for combined
investigation of both propagation of the quantized fields in molecular dielectrics and also interaction of the
fields with the embedded molecules or atoms.

PACS number~s!: 12.20.Ds, 42.50.2p, 71.36.1c, 32.80.2t

I. INTRODUCTION

The presence of a polarizable medium alters the quantum
fluctuations of the radiation field. Hence, the proper under-
standing of a quantized electromagnetic field in the medium
is important in quantum optics. The usual method to quantize
the radiation introduces the matter phenomenologically
through the linear@1–5# or nonlinear@6–8# susceptibilities.
The approach, initially suggested by Ginzburg@9# and by
Jauch and Watson@10#, relies on the phenomenological
quantization of the macroscopic electromagnetic field. An
alternative procedure, originating from the classical works
by Fano@11#, Hopfield@12#, and Agranovich@13#, introduces
the matter explicitly. Here the quantized radiation field is
considered to be in mutual interaction with the atomic~or
molecular! medium, both constituting a single dynamical
system. The dressed normal modes of such a combined sys-
tem are known as polaritons.

Polaritons are a familiar subject in solid-state physics
@12–18#. In recent years the polariton concept has been ap-
plied to the problems of quantization of radiation in linear
dielectrics@19–23#. Here an important aspect is how to rep-
resent the field operators in terms of normal polariton modes.

Huttner and co-workers@20–22# considered the canonical
quantization of the radiation field in a uniform dielectric me-
dium, modeled by a harmonic oscillator field. As a result, the
normal-mode expansions have been obtained for the macro-
scopic field operators in such a dielectric. It is to be pointed
out that the formalism did not reflect effects due to discrete-
ness of the atomic or molecular medium, including the local-
field effects. The related study by Ho and Kumar@23# ex-
tended the analysis to the case of a nonuniform medium
consisting of discrete quantum oscillators~atoms or mol-
ecules! with one resonance frequency. Another development
by Knoester and Mukamel@19#, also based on the two-level
~one resonance frequency! representation of each atom or
molecule of the medium, involved a consideration of opera-
tors for the microscopic displacement field calculated at the
lattice sites, i.e., the local-field operators. This facilitated the
subsequent analysis of polariton-mediated intermolecular
processes.

The present paper deals with the normal-mode represen-
tation of electromagnetic and polarization fields in a discrete
molecular medium. The study extends in a number of ways
the existent theories@19–23# on the microscopic quantization
of radiation in dielectrics. Unlike the previous works@19–
23#, the theory is formulated in a manner that allows a par-
allel and comparative analysis of normal-mode expansions of
operators for both the averaged~macroscopic! fields and also*Electronic address: gj@itpa.lt
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the local displacement field. Consequently, relations are es-
tablished between the mode components of operators for
macroscopic and local fields. Refractive contributions, in-
cluding the local-field factors, emerge intrinsically in the re-
lationships. At the same time, the relations are consistent
with the familiar results of classic electrodynamics. Next, the
paper considers a discrete molecular medium without any
restriction to a number of excitation frequencies~electronic,
vibrational, rotational, etc.! for each individual molecule.
The arising mathematical difficulties are dealt with through
the application of a matrix formulation@17,24# of the polar-
iton problem and subsequent Green’s function development.
~The Green’s-function technique is related to some extent
with that suggested recently by Juzeliun̄as and Andrews@24#
in the quantum-electrodynamics study of intermolecular en-
ergy transfer in the condensed phases.! As a result, an arbi-
trary number of polariton branches may be accommodated
within the present approach, in contrast to two dispersion
branches that feature in the theories by Knoester and Muka-
mel @19# and Ho and Kumar@23#.

Finally, the present study is based on the multipolar for-
mulation of quantum electrodynamics~QED!, unlike some
of the previous theories employing the minimum coupling
QED @21–23#. This facilitates representation of the operator
for the local displacement field in a form explicitly accom-
modating the local-field factors and other refractive contri-
butions: It is the local displacement operator that describes
the coupling of individual molecules with the radiation field
in the multipolar QED. Hence, the subsequent applications
of the theory to various molecule-radiation processes in the
media, such as spontaneous emission or linear absorption,
are then straightforward@25#. That contrasts with lengthy
and complicated analysis of the spontaneous emission within
the minimal coupling formulation of the QED@23#, in which
the instantaneous Coulomb interaction is to be considered
between the molecules. In this way, our formalism giving the
normal-mode representations of operators for both the mac-
roscopic~averaged! and local fields provides a tool for com-
bined consideration of the problems involving both the
propagation of the quantized fields in molecular dielectrics
and also the interaction of the fields with the embedded mol-
ecules or atoms.

The paper is organized as follows. Section II A introduces
the operators for the electric, electric displacement, and po-
larization fields. In Sec. II B the second-quantized~polariton!
Hamiltonian is defined for a system comprising a quantized
electromagnetic field coupled to a discrete molecular
~atomic! medium. In Secs. III A and III B the matrix formu-
lation of the polariton problem is outlined, followed by the
formal derivation in Sec. III C of the normal-mode expan-
sion of the field operators in terms of the appropriate Green’s
functions. The expansion coefficients are then determined in
Secs. IV A and IV B; the results for the electric, displace-
ment, and polarization fields are summarized in Sec. IV C. In
Sec. IV D the operators for the electric and displacement
fields are transformed from the original Schro¨dinger to the
Heisenberg representation. The normal-mode representations
of the magnetic-field operators are then determined using the
Maxwell equations relating the field operators in the Heisen-
berg representation. Section IV E considers the commutation
relations between the field operators: The original commuta-

tion relations are demonstrated to be preserved expressing
the field operators in terms of normal operators for polariton
creation and annihilation. The concluding remarks are placed
in Sec. V. Appendixes A and B contain details of the deri-
vation of the mode representation of macroscopic operators
for the displacement and polarization fields.

II. FORMULATION

A. Operators for the electric displacement and polarization
fields

In the minimal coupling formulation of the nonrelativistic
QED, the momentum density canonical to the transverse vec-
torial potentiala'~r ! is 2«0 times the electric fielde'~r !
@26–28#. In this QED formulation, the radiation-matter cou-
pling is represented by the familiarp•a' and alsoa'2 terms.
In addition, an instantaneous Coulombic interaction couples
the electric charges of the system. Another QED representa-
tion, related to the minimal coupling QED by a canonical
transformation@28,29#, entails the full multipolar expansion
of electric, magnetic, and diamagnetic densities of molecules
interacting with the quantized radiation field. In such a mul-
tipolar QED formulation, an instantaneous electrostatic inter-
action is cancelled between the molecules, the intermolecular
coupling being exclusively due to the exchange of transverse
photons. The present study makes use of the electric-dipole
approximation of the multipolar QED. This is normally suf-
ficient for the situations where the radiation wavelength is
long compared to the dimensions of molecules~or their chro-
mophoric groups!, so that the variation of the vectorial po-
tential over a molecule may be neglected. The momentum
conjugated toa'~r ! is now given by2d'~r !, whered'~r ! is
the operator for the transverse microscopic displacement
field @28#;

d'~r !5«0e
'~r !1p'~r !, ~2.1!

ande'~r ! is the operator for the transverse electric field. For
the time being, we shall consider the full polarization field,

p~r !5(
z

m~z!d~r2r z!, ~2.2!

rather than its solenoidal~divergence-free! componentp'~r !
featured in Eq.~2.1!. The abovem~z! is the operator for the
electric dipole moment of moleculez positioned atr z , and
the summation overz extends to all the molecules of the
system, the term ‘‘molecule’’ being used generically to also
encompass other quantum species such as atoms or chro-
mophoric groups.

The operatorsd'~r ! and p~r ! may be represented as a
Fourier series ink1G modes, allowed by the periodic
boundary conditions~chosen to be the same both for the
radiation field and the matter!,

d'~r !5 i(
k,G

(
l51

2 S \cuk1Gu«0
2V0

D 1/2e~l!~k1G!

3@a~l!~k1G!2a†~l!~2k2G!#ei ~k1G!•r,

~2.3!
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and

p~r !5rN21/2(
k,G

mke
i ~k1G!•r, ~2.4!

with

mk[mk1G5N21/2(
z

m~z!e2 ik–rz, ~2.5!

where

r5N/V0 ~2.6!

is the mean number density,N being the number of mol-
ecules per quantization volumeV0. For convenience, the
above wave vectork1G has been partitioned into the first
Brillouin-zone vectork and the inverse lattice vectorG
@exp~iG•r z!51#, reflecting the lattice symmetry imposed at
this stage on the molecular system: Nevertheless, the results
based on such a model can describe adequately the quantized
fields in a variety of less regular media, as will be discussed
later in this section.

The expansion~2.3! casts the operator for the displace-
ment fieldd'~r ! in a usual way@28# in terms of Bose opera-
torsa†~l!~k1G! anda~l!~k1G! for creation and annihilation
of a photon with wave vectork1G and polarization
e~l!~k1G! ~l51,2!; the latter is chosen to be real and such
that e~l!~2k2G!5e~l!~k1G!. As regards the polarization

field of the medium,p~r !, it will be presented explicitly in
terms of the molecular creation and annihilation operators in
the equation~2.16!. Ultimately, both the displacement and
polarization fields will be expressed in terms of the normal
Bose operators for polariton creation and annihilation. The
mode expansion of the electric-field operatore'~r ! will then
be obtained straightforwardly exploiting the general relation-
ship ~2.1!.

B. Hamiltonian

The full Hamiltonian of the system comprises the radia-
tion ~H rad! and molecular~Hmol! Hamiltonians, and the cou-
pling operatorHcoup,

H5H rad1Hmol1Hcoup. ~2.7!

Here, according to the electric-dipole approximation
@17,28,29#, the HamiltonianHcoup for the radiation-matter
coupling originates from the contributions by the individual
molecules, as

Hcoup52«0
21(

z
m~z!•d'~r z!. ~2.8!

In second quantization, the radiation and molecular Hamilto-
nians, as well as the molecular operator for the dipole mo-
mentm~z! may be expressed as

H rad5(
k,G

(
l51

2

\cuk1Gu@a†~l!~k1G!a~l!~k1G!1a~l!~k1G!a†~l!~k1G!# ~2.9!

Hmol5Eg1(
z,g

(
j51

3

\VgBz,g, j
† Bz,g, j , ~2.10!

m~z!5(
g

(
j51

3

~Bz,g, j
† 1Bz,g, j !mgej , ~2.11!

whereEg denotes the ground-state energy of the molecular
subsystem,ej is the unit vector along a Cartesian axisj , and
Bz,g, j
† (Bz,g, j ) is the Bose operator for creation~annihilation!

of an excitation at the moleculez @30#. When acting on a
ground molecular state, the creation operatorBz,g, j

† promotes
the moleculez to an excited electronic state, characterized by
indexesg and j . It is to be emphasized that an arbitrary
number of excitation frequenciesVg has been included for
each individual molecule. An additional indexj51,2,3 ex-
plicitly refers to the triple degeneracy of the excited molecu-
lar states, the associated transition dipole momentsmgej be-
ing mutually perpendicular: For convenience, the transition
dipolesmg have been chosen to be real.

In this way, the molecules have been assumed to be char-
acterized by isotropic polarizabilities. Such a model may also
represent a common situation where the nonisotropic species

are randomly oriented in their sites. As regards the spatial
arrangement, the molecules are supposed to constitute a
simple cubic lattice. Nevertheless, the main results to come
seem to be insensitive to the possible lack of such a transla-
tional symmetry in a number of important situations. The
potential applications of the theory to spontaneous emission
and other molecule-radiation processes will involve the pho-
tonic areas of polariton dispersion, away from any exciton
resonances. Accordingly, the effects of exciton coherence
~i.e., delocalization of the excited molecular states due to the
lattice symmetry! then do not play a significant role. The
effects of coherence are of minimum importance for exciton
regions of dispersion as well, provided the molecular
linewidths exceed the characteristic value of the resonance
coupling between the molecules. It is therefore expected that
the present analysis of the quantized radiation field in an
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isotropic medium with cubic symmetry may also represent
adequately the radiation modes in a variety of amorphous
media constituted of randomly situated and oriented mol-
ecules.

Transforming the molecular Bose operators to the mo-
mentum space,

Bk,g, j5N21/2(
z
Bz,g, je

2 ik•rz, ~2.12!

Bk,g,l85(
j51

3

@e~l8!~k!•ej #Bk,g, j ~2.13!

@with e(l8)(k)5 k̂[k/k, for l853#, the molecular Hamil-
tonian ~2.10!, the coupling operator~2.8!, and the polariza-
tion field ~2.4! acquire a form, through Eqs.~2.3!, ~2.5!, and
~2.11!,

Hmol5(
k,g

(
l851

3

\Vg~Bk,g,l8
† Bk,g,l81Bk,g,l8Bk,g,l8

†
!, ~2.14!

Hcoup5 (
k,G,g

(
l851

3

(
l51

2

\@C~k,g,l8!~k,G,l!~Bk,g,l8
†

1B2k,g,l8!a
~l!~k1G!1C

~k,g,l8!~k,G,l!
* a†~l!~k1G!~Bk,g,l81B2k,g,l8

†
!#,

~2.15!

p~r !5rN21/2(
k,G

(
g

(
l851

3

mge
~l8!~k!~Bk,g,l81B2k,g,l8

†
!ei ~k1G!•r, ~2.16!

where

C~k,g,l8!~k,G,l!52 i S cuk1Gu
2«0\

r D 1/2mg@e~l8!~k!•e~l!~k1G!# ~2.17!

is the radiation-matter coupling matrix. Accordingly, the
coupling Hamiltonian~2.15! manifestly accommodates pho-
ton umklapp processes~k→k1G!. Here also a specific zero-
point energyEg has been chosen in the molecular Hamil-
tonian ~2.14! to make it symmetric with respect to the
molecular creation and annihilation operators. It is to be
noted that the full HamiltonianH should also contain a field-
independent contribution, represented by the last term of Eq.
~3.6.31! of Ref. @28#. Yet, such a contribution, essential for
the calculations of the radiative Lamb shift, is not important
for the present purposes.

Equations~2.14! and~2.15!, together with~2.9! and~2.7!,
define the full second-quantized Hamiltonian of the system.
The matrix formulation of the problem will be outlined next.

III. MATRIX REPRESENTATION

A. Matrix Hamiltonian

Let us now introduce a uniform notation for the Bose
molecular and radiative operators:

Aa5H a~l!~k1G! for a5~k,G,l!

Bk,g,l8 for a5~k,g,l8!.
~3.1!

Adopting also the tilde convention to indicate momentum
reversal,

~k,g,l8 !̃5~2k,g,l8!, ~k,G,l!̃5~2k,2G,l! ~3.2!

the second-quantized Hamiltonian may be expressed in a
compact manner through the matrix product@24#,

H5
\

2
~A†,ÃuhuA,Ã†!, ~3.3!

whereuA,Ã†) is the row matrix of the creation and annihila-
tion operators,

uA,Ã†)5~Aa1
,Aa2

,...;Aã1

† ,Aã2

† ,...!, ~3.4!

(A†,Ãu is its column counterpart, andh is the matrix Hamil-
tonian to be defined later; for more details see also Ref.@24#.

It is convenient to make use of the following expansion of
the matrix vectors:

uA,Ã†)5(
a

@ ua,1!Aa1ua,2)Aã
† ], ~3.5!

(A†,Ãu5(
a

@Aa
†~a,1u1Aã~a,2u#, ~3.6!

where the summation overa extends to allat ~t51,2,3,...!:
An additional indexi51,2 is due to the involvement of the
double-basis set of the original~molecular and radiation!
modesa in the matrix formulation of the problem. Hereua,i !
@~a,i u# is the orthogonal set of unit row~column! vectors.
~These are not to be confused with the quantum-mechanical
bra and ket state vectors, such as those featured in Ref.@25#.!
For instance,

ua4,2)5~0,0,...;0,0,0,1,0,..!. ~3.7!

The expanded matrix Hamiltonian is given by@24#
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h5hr1hm1hm2r1hr2m , ~3.8!

with

hr5(
k,G

(
l51

2

(
i51

2

uk,G,l,i )cuk1Gu~k,G,l,i u, ~3.9!

hm5(
k,g

(
l851

3

(
i51

2

uk,g,l8,i )Vg~k,g,l8,i u, ~3.10!

hm2r52 i(
k

(
j51

3

uk,matt)j j ~k,radu, ~3.11!

and

hr2m5 i(
k

(
j51

3

uk,rad)j j ~k,mattu. ~3.12!

Here hr and hm are the diagonal matrices of radiative and
molecular frequencies;hr2m andhm2r are the off-diagonal
matrices that describe the radiation-matter coupling, with

uk,matt)j5(
g

(
l851

3

@ uk,g,l8,1!1uk,g,l8,2)]

3ej
~l8!~k!mg , ~3.13!

uk,rad)j5(
G

(
l51

2

@ uk,G,l,1!2uk,G,l,2)]ej
~l!~k1G!

3S cuk1Gu
2«0\

r D 1/2, ~3.14!

the radiative and molecular raw matrices,j ~k,radu and
j ~k,mattu being their column counterparts. Note that the sum-
mation over the inverse lattice vectorG, featured in the ra-
diative matrix vectorsuk,rad!j and j ~k,radu, represents the
photon umklapp processes in the interaction terms~3.11! and
~3.12! of the matrix Hamiltonian.

B. Formal diagonalization

We shall search for a new set of Bose creation and anni-
hilation operators diagonalizing the Hamiltonian. The fol-
lowing transformation of the Bogliubov-Tyablikov type re-
lates the old and new sets of operators:

Ps5(
a

@~s,1uSua,1!Aa1~s,1uSua,2!Aã
† #, ~3.15!

Ps̃
†5(

a
@~s,2uSua,1!Aa1~s,2uSua,2!Aã

† #, ~3.16!

where (s,i uSua,i 8) are the transformation coefficients
~i , i 851,2! and the indexs labels the normal polariton
modesst ~t51,2,3,...!: At this stage, the quasimomentumk

of the polariton is implicitly incorporated into the mode in-
dex s. The linear relation~3.15! and ~3.16! may be com-
pactly expressed as

uP,P̃†)5SuA,Ã†), ~3.17!

or

~P†,P̃u5~A†,Ãu tS* , ~3.18!

with

uP,P̃†)5(
s

@ us,1!Ps1us,2)Ps̃
† ], ~3.19!

(P†,P̃u5(
s

@Ps
†~s,1u1Ps̃~s,2u#, ~3.20!

whereS is a transformation matrix, andus,i ! @~s,i u# is an
orthogonal set of unit row~column! vectors,i51,2.

The transformed second-quantized Hamiltonian is re-
quired to take a diagonal form,

H5~P†,P̃uLuP,P̃†!, ~3.21!

where

L5(
s

(
i51

2

us,i )Ps~s,i ! ~3.22!

is a diagonal matrix Hamiltonian andPs is a polariton fre-
quency. Accordingly, the original matrix Hamiltonianh is
related to its diagonal counterpartL, as

h5 tS*LS. ~3.23!

The Bose commutation relations are to be obeyed by both
the original and transformed sets of operators,Aa , As

† and
Ps , Ps

† . This leads to a condition onS,

Q5SQtS* or S215Q~ tS* !Q, ~3.24!

with

Q5(
i51

2

(
s

us,i )~21! i11(s,i u[S 10 0
21D ~3.25!

a diagonal matrix. Other conditions imposed on the transfor-
mation matrixS are @24#

~s,1uS* ua,1!5~s,2uSua,2!, ~3.26!

~s,1uS* ua,2!5~s,2uSua,1!, ~3.27!

and

~ s̃,i uSuã, j !5~s,i uSua, j ! ~ i , j51,2!. ~3.28!

Finally, performing the inverse transformation, one ob-
tains the following for the combinations of molecular and
radiative operators that feature in the mode expansions~2.3!
and ~2.16! of d'~r ! andp~r !,
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a~l!~k1G!2a†~l!~2k2G!5(
s

$@~k,G,l,1u2~k,G,l,2u#S21us,1!Ps

2~s,1uQSQ@ u2k,2G,l,1!2u2k,2G,l,2!#Ps
†%, ~3.29!

and

Bk,g,l81B2k,g,l8
†

5(
s

$@~k,g,l8,1u1~k,g,l8,2u#S21us,1!Ps1~s,1uQSQ@ u2k,g,l8,1!1u2k,g,l8,2!#Ps
†%, ~3.30!

where the use has also been made of the above equations
~3.24! and ~3.26!–~3.28! for S.

C. Field operators

The operators for the electric displacement and polariza-
tion fields may now be formally represented through the po-
lariton Bose operatorsPk,m,l andPk,m,l

† . @From now on, the
k dependence will be displayed explicitly in the mode index
s[~k,m,l!: here the subindexm will refer to branches of

polariton dispersion~m51,2,3,...!, the third subindexl being
reserved to label the degenerate sublevels within the
branches#. Consider the operators for the mean~i.e., macro-
scopic! displacement and polarization fields,d̄'~r ! and p̄~r !,
as well as the operatord'~r z! for the local displacement field:
The latter, representing the displacement field at the molecu-
lar sitesz, describes coupling of the radiation field with the
individual molecules. Calling on Eqs.~2.3!, ~2.16!, ~3.29!,
and ~3.30!, one finds for the Cartesian components of the
field operators,

dj
'~r z!5 i\«0N

21/2 (
k,m,l

@ j~k,raduS21uk,m,l,1!Pk,m,le
ik•rz2~k,m,l,1uQSQuk,rad! j Pk,m,l

† e2 ik•rz#, ~3.31!

d̄ j
'~r !5 i\«0N

21/2 (
k,m,l

@ j~k,rad0uS21uk,m,l,1!Pk,m,le
ik•r2~k,m,l,1uQSQuk,rad0! j Pk,m,l

† e2 ik•r#, ~3.32!

and

p̄ j~r !5rN21/2 (
k,m,l

@ j~k,mattuS21uk,m,l,1!Pk,m,le
ik•r1~k,m,l,1uQSQuk,matt! j Pk,m,l

† e2 ik•r#, ~3.33!

where

uk,rad0) j[I r0uk,rad)j5 (
l51

2

@ uk,0,l,1!2uk,0,l,2)]ej
~l!~k!

3S ck

2«0\
r D 1/2, ~3.34!

and uk,matt!j is as in Eq.~3.13!, the matrixI r0 being defined
by Eq. ~A6! in Appendix A. The latterI r0 projects the full
radiative matrix vectoruk,rad!j @given by Eq.~3.14!# onto the
subspace of the first-Brillouin-zone photons, producing
uk,rad0!j . Consequently, the expansion of the new radiative
matrix vectoruk,rad0!j involves only theG50 term.

In this way, the macroscopic fieldsd̄'~r ! and p̄~r ! no
longer contain summations over the inverse lattice vectorG,
since all the contributions from the terms withGÞ0 vanish
during the averaging over the elementary cell@exp(iG•r )

5dG,0#. Furthermore, it is implied that the first-Brillouin-
zone vectork covers the region where

k!2p~N/V!1/3[2p/a ~N/V[r5a23!, ~3.35!

in the mode expansions~3.32! and ~3.33! of the averaged
fields, so thatexp(ik•r )'exp(ik•r ). The condition~3.35!,
which will be extended subsequently to the local-field expan-
sion ~3.31! as well, is fully appropriate for the consideration
of the infrared, optical, or ultraviolet modes of light in the
condensed media: In these regions of the spectrum, the ra-
diation wavelengthl52p/k exceeds greatly the characteris-
tic distancea of intermolecular separation in the condensed
molecular system.

To deal with the matrix elements ofS entering the above
mode expansions, let us consider the following Green func-
tion:
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G̈l j
w~k,v!5(

m,l
F l~k,wuS21uk,m,l,1!~k,m,l,1uQSQuk,w! j

v2vk
~m! 1

l~k,wuS21uk,m,l,2!~k,m,l,2uQSQuk,w! j

2v2vk
~m! G

[ l~k,wuG̈~v!uk,w! j , ~3.36!

where

vk
~m![Pk,m,l , m51,2,3,... ~3.37!

will denote the eigenfrequency of the~k,m,l![s
mode: v k

(m) depends onk[uku, since the system in question
is isotropic. Here alsouk,w!j is the following abbreviation for
the radiative matrix vectors:

uk,w) j5 H uk,rad)j
uk,rad0) j

for w5rad
for w5rad0 ,

~3.38!

and

G̈~v!5@vQ2h#21 ~3.39!

is the Green’s matrix corresponding to the matrix Hamil-
tonianh, with Q as in Eq.~3.25!. Note that the umlaut has
been placed over the Green’s matrixG̈~v! to differentiate it
from the inverse lattice vectorG.

For each eigenfrequencyv k
(m) in the dispersion branchm,

one has

FIG. 1. Graphical solution of Eq.~4.4! for Mmol53. ~a! Mo-
lecular polarizabilitya~v!, Eq. ~4.3!, plotted schematically as a
function of frequencyv. Vertical dashed lines at molecular frequen-
ciesV1, V2, andV3 correspond to the infinities ofa~v!. The po-
larizability curves cross the horizontal dashed lines at the points
v5z1

( j ) andv5z2
( j11) ~j51,2,3!, representing, respectively, infini-

ties and zeros of the relative dielectric permittivity
« r[n25~112ar/3«0!/
~12ar/3«0!. ~b! Subsequent plot ofn2~v! as a function ofv. The
eigenfrequenciesvk

(m) ~m51,2,3,4! are then determined by the in-
tersection points with the curvec2k2/v2.

FIG. 2. Schematic plot of the dispersion curvesvk
(m)

~m51,...,Mmol11! for ~a! Mmol51 ~Hopfield model! and ~b!
Mmol52. The third diagram~c! illustrates a situation in which a
dense set of dispersion curves is featured. Note that all the diagrams
represent the long-wavelength region of the spectrum (k!2p/a)
under consideration. For greater values ofk, the effects of spatial
dispersion are to be considered.
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(
l

l~k,wuS21uk,m,l,1!~k,m,l,1uQSQuk,w! j

5 lim
v→vk

~m!

~v2vk
~m!!G̈l j

w~k,v!, ~3.40!

where the summation on the left-hand side extends to the
degenerate sublevels of the branch, characterized by different
polarization indexesl. The above equation relates the matrix
elements entering the expansions~3.31! and ~3.32! to the
Green’s functionG̈ l j

w ~k,v!. The relationship~3.40! will be
exploited in the following derivations of the mode expan-
sions.

IV. NORMAL-MODE REPRESENTATION OF THE FIELD
OPERATORS

A. Local displacement field

We shall first search for the normal-mode expansion of
the operatord'~r z! for the local displacement field. For
k!2p/a, the corresponding Green’s functionG̈ l j

w ~k,v!
~with w5rad! has been obtained previously@24# giving @31#

G̈l j
rad~k,v!

5
r

3\«0

1

n2 S n212

3 D 2 @2~nv/c!21k2#d l j23klkj
~nv/c!22k2

,

~4.1!

wheren[n~v! is the refractive index,

n25« r511
ar/«0

12ar/3«0
, ~4.2!

with

a[a~v!5a~2v!5
1

\ (
g

S mg
2

Vg2v
1

mg
2

Vg1v D
~4.3!

being the molecular polarizability. The above«r5«/«0 is the
relative dielectric permittivity that apparently satisfies the
Clausius-Mossotti relation: This is due to the systematic in-
corporation of photon umklapp processes into the theory.
Note that the effects of the spatial dispersion~dependence of
«r on k! are beyond the scope of the present study.

Our analysis will concentrate on the transverse normal
modes of the system: Only these modes contribute to the
operators for the transverse quantized fields under consider-
ation. The corresponding eigenfrequencies are the poles of
the Green’s function~4.1! at

vk
~m!5ck/n~vk

~m!!. ~4.4!

The graphical solution of Eq.~4.4! is depicted in Fig. 1. It is
obvious that more than one normal frequencyv k

(m)

~m51,2,...,Mmol11! corresponds to each value ofk, Mmol
being a number of molecular frequenciesVg involved @32#.
For instance, the single-frequency~Hopfield! model em-
ployed by Knoester and Mukamel@19# and also Ho and Ku-
mar @23#, provides two polariton branches. Examples of dis-
persion curves with various values ofMmol are presented in
Fig. 2. As the number of molecular frequencies increases, the
dispersion branches may start to form dense sets of disper-
sion curves, as illustrated in Fig. 2~c!. Hence, the present
theory may accommodate adequately the contributions due
to densely spaced molecular sublevels of vibrational, rota-
tional, and other origins.

Substituting Eqs.~4.1! and~4.4! into Eq.~3.40!, one finds

(
l

l~k,raduS21uk,m,l,1!~k,m,l,1uQSQuk,rad! j5
rvk

~m!ng
~m!

2c«0\n~vk
~m!!

F @n~vk
~m!!#212

3 G2~d l j2 k̂l k̂ j ! ~4.5!

with k̂l5kl /k, where

ng
~m!5cH d@vn~v!#

dv J 21U
v5v

k
~m!

5
dvk

~m!

dk
~4.6!

is the group velocity of polariton in themth branch of dispersion. Solutions of Eq.~4.5! are characterized by two independent
polarization components~l51,2! for each eigenfrequencyv k

(m),

j~k,raduS21uk,m,l,1!5@~k,m,l,1uQSQuk,rad! j #*5S rvk
~m!ng

~m!

2c«0\n~vk
~m!!

D 1/2F @n~vk
~m!!#212

3 Gej~l!~k!. ~4.7!

Here use has been made of the following:

(
l51

2

el
~l!~k!•ej

~l!~k!5~d l j2 k̂l k̂ j !, ~4.8!

where the transverse polarization vectors,e~l!~k!'k ~with l51,2!, have already featured in Eq.~2.3!. The explicit mode
representation of the local operatord'~r z! is now straightforward. This will be carried out in the summarizing Sec. IV C.
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B. Mean displacement and polarization fields

Consider next the mode expansion of the operatord̄'~r ! for the averaged~macroscopic! displacement field. The corre-
sponding Green’s functionG̈ l j

w ~k,v! ~with w5rad0! has been derived in Appendix A, giving

G̈l j
rad0~k,v!5

rn2

\«0

k2d l j2klkj
~nv/c!22k2

~4.9!

for k!2p/a. Repeating the procedure outlined above, one finds

j~k,rad0uS21uk,m,l,1!5@~k,m,l,1uQSQuk,rad0! j #*5S rvk
~m!ng

~m!

2c«0\n~vk
~m!!

D 1/2@n~vk
~m!#2ej

~l!~k! ~4.10!

~l51,2!, where the phase of the above matrix element has been chosen demanding that the mode expansions for the local and
averaged displacement fields@determined by Eqs.~4.10! and ~4.7!, respectively# should coincide in the limit of an infinitely
dilute medium~n→1!. Finally, to determine the polarization fieldp̄'~r !, Eq. ~3.33!, we shall make use of the following~see
Appendix B!:

j~k,mattuS21uk,m,l,1!5 j~k,raduS21uk,m,l,1!i\a~vk
~m!!, ~4.11!

a~v k
(m)! being the molecular polarizability atv5v k

(m). The above relates the material matrix element of interest to its radiative
counterpartj ~k,raduS

21uk,m,l,1!: The latter has been already obtained in Eq.~4.7!.

C. Summary of results on electric, displacement, and polarization fields

Substituting Eqs.~4.7!, ~4.10!, and~4.11! into ~3.31!–~3.33!, the operators for the displacement and polarization fields take
the form

d'~r z!5 i(
k

(
m

(
l51

2 S «0\vk
~m!ng

~m!

2cV0n~vk
~m!!

D 1/2F @n~vk
~m!!#212

3 Ge~l!~k!~eik•rzPk,m,l2e2 ik•rzPk,m,l
† !, ~4.12!

d̄'~r !5 i(
k

(
m

(
l51

2 S «0\vk
~m!ng

~m!

2cV0n~vk
~m!!

D 1/2@n~vk
~m!!#2e~l!~k!~eik•rPk,m,l2e2 ik•rPk,m,l

† !, ~4.13!

and

p̄'~r !5 i(
k

(
m

(
l51

2 S «0\vk
~m!ng

~m!

2cV0n~vk
~m!!

D 1/2$@n~vk
~m!!#221%e~l!~k!~eik•rPk,m,l2e2 ik•rPk,m,l

† !, ~4.14!

where, in the last equation, we have exploited the following relation:

ar

«0
S n212

3 D5n221. ~4.15!

The above summations overk extend tok!2p/a: As discussed earlier, this restriction is fully appropriate for consideration
of infrared, optical, and ultraviolet modes of radiation in the condensed molecular systems. The mode expansions manifestly
accommodate summations over the branch indexm, the emerging refractive indexn(v k

(m)), and group velocity
n g
(m)[ng(v k

(m)) being the branch-dependent quantities.
The electric-field operator may now be determined using the general relationship~2.1! between the electric, displacement,

and polarization fields, to yield

ē'~r !5 i(
k

(
m

(
l51

2 S \vk
~m!ng

~m!

2«0cV0n~vk
~m!!

D 1/2e~l!~k!~eik•rPk,m,l2e2 ik•rPk,m,l
† !, ~4.16!

which is consistent with the previous result by Ho and Kumar@23# based on the model restricted to two branches~m51,2! of
polariton dispersion. Recasting the field operators in terms of~k,m! mode components,

d'~r z!5(
k,m

dk,m
' ~r z!, d̄'~r !5(

k,m
d̄k,m

' ~r !, ~4.17!

etc., it is straightforward to find the following relationships between the mode components of various field operators:
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dk,m
' ~r z!5

1

« r
~m! S « r

~m!12

3 D d̄k,m' ~r z!, ~4.18!

d̄k,m
' ~r !5«0« r

~m!ēk,m
' ~r !, ~4.19!

p̄k,m
' ~r !5«0~« r

~m!21!ēk,m
' ~r !, ~4.20!

where

« r
~m![« r~vk

~m!!5@n~vk
~m!!#2 ~4.21!

is an abbreviation for the relative dielectric permittivity in the dispersion branchm. Equations~4.18!–~4.20! are apparently the
quantum version of the familiar formulas of the classical electrodynamics relating electric, displacement, and polarization
fields. It is instructive to note that the branch indexm explicitly features in these expressions.

D. Heisenberg representation and magnetic operators

Performing a transformation from the original Schro¨dinger representation to the Heisenberg representation, the time vari-
able emerges in the field operators. The operators for the electric and displacement fields become then

ē'~r ,t !5 i(
k

(
m

(
l51

2 S \vk
~m!ng

~m!

2«0cV0n~vk
~m!!

D 1/2e~l!~k!~ei ~k•r2vk
~m!t !Pk,m,l2e2 i ~k•r2vk

~m!t !Pk,m,l
† !, ~4.22!

and

d̄'~r ,t !5 i(
k

(
m

(
l51

2 S «0\vk
~m!ng

~m!

2cV0n~vk
~m!!

D 1/2@n~vk
~m!!#2e~l!~k!~ei ~k•r2vk

~m!t !Pk,m,l2e2 i ~k•r2vk
~m!t !Pk,m,l

† !. ~4.23!

The mode expansion of the magnetic operatorsh̄'~r ,t! andb̄'~r ,t! may now be obtained using the Maxwell equations for the
field operators in the Heisenberg representation,

“3h̄'~r ,t !5
]d̄'~r ,t !

]t
, ~4.24!

“3ē'~r ,t !52
]b̄'~r ,t !

]t
. ~4.25!

The first equation determines the magnetic-field operator as

h̄'~r ,t !5 i(
k

(
m

(
l51

2 S \vk
~m!ng

~m!n~vk
~m!!

2m0cV0
D 1/2k̂3e~l!~k!~ei ~k•r2vk

~m!t !Pk,m,l2e2 i ~k•r2vk
~m!t !Pk,m,l

† !, ~4.26!

with m051/«0c
2 being the magnetic permeability of vacuum. The second Maxwell equation defines the magnetic induction

vectorb̄'~r ,t!: For the nonmagnetic medium under consideration, we haveb̄'~r ,t!5m0h̄
'~r ,t!. Finally, the familiar expressions

relate the operators for the magnetic induction and electric fields to the vectorial potential, as

b̄'5¹3ā', ~4.27!

ē'52
]ā'

]t
, ~4.28!

giving the following normal-mode representation for the latter:

ā'~r ,t !5(
k

(
m

(
l51

2 S \ng
~m!

2«0cV0vk
~m!n~vk

~m!!
D 1/2e~l!~k!~ei ~k•r2vk

~m!t !Pk,m,l1e2 i ~k•r2vk
~m!t !Pk,m,l

† !. ~4.29!

Note, that att50 the Heisenberg operators reduce to those of the original Schro¨dinger representation, so thath̄'~r !5h̄'~r ,0!,
b̄'~r !5b̄'~r ,0!, andā'~r !5ā'~r ,0!.
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E. Commutation relations between the field operators

The commutation relations between various field operators should be retained recasting the field operators in terms of
normal operators for polariton creation and annihilation. To demonstrate this, consider the commutation relation between the
averaged operators for the vectorial potential and displacement fields: These two quantities constitute a pair of canonical
variables in the multipolar formulation of QED under consideration@28#. The averaged field operators read, in terms of the
original Bose operators for photon creation and annihilation,

d̄'~r !5 i(
k

(
l51

2 S \ck«0
2V0

D 1/2e~l!~k!@a~l!~k!eik•r2a†~l!~k!e2 ik•r#, ~4.30!

ā'~r !5(
k

(
l51

2 S \

2«0ckV0
D 1/2e~l!~k!@a~l!~k!eik•r1a†~l!~k!e2 ik•r#, ~4.31!

where the summation over the wave vector is restricted to the first-Brillouin-zone vectork ~with k!2p/a!, as the terms with
GÞ0 disappear during the procedure of averaging over the elementary cell. The following commutation relation is held
between the Cartesian components of the averaged operators:

@ āl
'~r !,d̄ j

'~r 8!#52 i\
1

V0
(
k

~d l j2 k̂l k̂ j !e
ik•~r2r8! ~4.32!

52 i\d̄ l j
'~r2r 8!. ~4.33!

Here d̄ l j
'~r2r 8! is the smoothened~coarse-grained! transversed function that replaces the ordinary transversed function,

d l j
'~r !5

1

V0
(
k,G

~d l j2 k̂l k̂ j !e
i ~k1G!•r ~4.34!

featuring in the commutation relation@28# between the microscopic~nonaveraged! field operatorsa l
'~r ! andd j

'~r 8!.
Next we shall exploit the normal-mode expansions~4.23! and ~4.29! for the averaged operators. The equal-time commu-

tation relation then takes the form

@ āl
'~r !,d̄ j

'~r 8!#52 i\
1

cV0
(
k

~d l j2 k̂l k̂ j !e
ik•~r2r8!(

m
ng

~m!n~vk
~m!!. ~4.35!

Employing the equality@22#

(
m

ng
~m!n~vk

~m!!5c, ~4.36!

the commutation relations~4.32! and ~4.35! prove to be identical. This is a consequence of the canonical nature of the
transformation from the original set of molecular and radiative Bose operators to the set of normal Bose operators for
polaritons.

On a similar basis, one can check other commutation relations. Since@22#

(
m

ng
~m! Yn~vk

~m!!5c, ~4.37!

the equal-time commutator between the averaged fields~4.22! and ~4.29! is

@ āl
'~r !,ēj

'~r 8!#52 i\
1

«0cV0
(
k

~d l j2 k̂l k̂ j !e
ik•~r2r8!(

m
ng

~m! Yn~vk
~m!! ~4.38!

52
i\

«0
d̄ l j

'~r2r 8!, ~4.39!

so that the operators for the vectorial potential and the material polarization field commute, as required

@ āl
'~r !,p̄ j

'~r 8!#[@ āl
'~r !,d̄ j

'~r 8!#2@ āl
'~r !,«0ēj

'~r 8!#50. ~4.40!
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It is noteworthy that Eqs.~4.36! and~4.37! represent gen-
eral relationships, established by Huttner and Barnett@22#
utilizing the analytical properties of« r(v)[n2(v). On the
other hand, demanding now that the commutation relations
are to be preserved, one arrives then to the same relation-
ships~4.36! and ~4.37!, confirming their validity.

V. CONCLUDING REMARKS

Microscopic quantization of radiation has been carried out
in a realistic molecular medium, represented by an arbitrary
number of energy levels~electronic, vibrational, rotational,
etc.! for each molecule of the system. Adopting a polariton
model, the field operators have been expanded in terms of
normal Bose operators for polariton creation and annihila-
tion. The expansion coefficients have been explicitly derived
for the normal modes that are characterized by wavelengths
exceeding considerably the characteristic distancea of sepa-
ration between the molecules constituting the dielectric me-
dium. Accordingly, the formalism applies to the long-
wavelength region of the spectrum for which description in
terms of the macroscopic refractive index is relevant. The
theory has been formulated in a manner that made possible a
parallel comparative consideration of operators for both the
averaged~macroscopic! fields and also the local displace-
ment field. Consequently, the relationships@given by Eqs.
~4.18!–~4.20!# have been established between the mode com-
ponents of macroscopic and local-field operators: Refractive
contributions, including the local-field factors, explicitly fea-
ture in these relations. The relationships support some previ-
ous attempts to link the amplitudes of local and macroscopic
field operators phenomenologically~see, for instance, Refs.
@33, 34#! and are consistent with the familiar results of the
classical electrodynamics as well.

Equal-time commutation relations have been demon-
strated to be preserved, expressing the operators for the av-
eraged fields in terms of the normal Bose operators for po-
lariton creation and annihilation. This is due to the fact that
more than one normal frequencyv k

(m) ~m51,2,...,Mmol11!
corresponds to each wave vectork in our field expansions,
Mmol being the number of molecular frequencies involved.
Ignoring any of theMmol11 dispersion branches would alter
the commutation relations leading to violation of microcau-
sality: As discussed earlier@22,23#, this happens in the quan-
tization schemes with one-to-one correspondence between
the wave vector and the frequency. On the other hand, the
commutation relations between the macroscopic fields are of
the same form as those for their microscopic counterparts,
subject to the coarse-graining procedure. For example, the
transversed function, featuring in the canonical commuta-
tion relation between the microscopic operators for the vec-
torial potential and the displacement field, is now to be re-
placed by the course-grained transversed function ~4.33!.

The mode-expansion expansion~4.12! of d'~r z! may be
applied analyzing various molecule-radiation processes and
also field-assisted molecule-molecule process.@It is the op-
erator for the local displacement fieldd'~r z! that describes
the coupling of the electromagnetic field with individual
moleculesz.# One may thus arrive quite straightforwardly
@25# to then[(n212))/3]2 refractive modification of the rate
of spontaneous emission by a guest molecule embedded in a

host molecular dielectric. The result is consistent with the
conclusions by previous microscopic QED considerations of
spontaneous emission in the condensed phases@19,23#, based
on one-frequency~two-level! representations for each mol-
ecule constituting the dielectric medium. Note that our for-
malism provides more realistic representation of the host me-
dium, as now an arbitrary number of molecular levels
contributes to the refractive indexn. Next, addressing the
mode expansion~4.12! to the linear absorption, the molecu-
lar absorption cross section can be shown@25# to experience
then21[(n212)/3]2 modification in a dielectric medium. It
is to be emphasized that the present theory~like the previous
ones @19–23#! deals with the normal modes for which
ka!p. Hence, the above consideration of the spontaneous
emission~as well as the linear absorption! does not apply to
the absorbing areas of the spectrum in which the excitonlike
modes withk>p/a play an important role. Indeed, as dem-
onstrated in Fig. 2~c!, absorbing regions of the spectrum are
characterized by dense sets of flat excitonlike dispersion
curves with vanishing group velocities. Hence, for spontane-
ous emission within such an absorption region, the polariton
modes with large values ofk (k>p/a) may play an impor-
tant role, as they might be in resonance with the emission
frequency. However, these modes have not been accommo-
dated in the present theory concentrating on the modes with
k!p/a for which description in terms of the refractive index
n is relevant.

Finally, the time and space evolution of macroscopic field
operators can be analyzed utilizing the appropriate normal-
mode expansions for the averaged fields. In this way, the
present study, giving the normal-mode representations of op-
erators for both the macroscopic~averaged! and local fields,
provides a tool for a combined investigation of both propa-
gation of the quantized fields in molecular dielectrics and
also the interaction of the fields with the embedded mol-
ecules or atoms.
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APPENDIX A: DERIVATION OF THE GREEN’S
FUNCTION G̈lj

rad0

1. Alternative partitioning of the system

The representation~3.8! of the matrix Hamiltonian is
based on partitioning of the full system into the material and
radiative subsystems. In this Appendix, the full system will
be divided in an alternative way into another two sub-
systems: The first one, denoted bys, will now comprise a
material partm coupled to the subspacer 0 of the first-
Brillouin-zone photons, the second subsystemr x consisting
of other photons that do not belong to the first Brillouin
zone. The full matrix Hamiltonian may be cast then in terms
of its components, as

h5hrx1hs1hm2r x
1hrx2m , ~A1!

wherehs is the matrix Hamiltonian for the subsystems,
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hs5hm1hr01hm2r0
1hr02m. ~A2!

The remaining new components can also be expressed
through the old ones, featured in the original representation
~3.8! of the matrix Hamiltonian, as

hr05I r0hrI r0, hrx5I r xhr I r x, ~A3!

hm2r0
5hm2r I r0, hr02m5I r0hr2m , ~A4!

hm2r x
5hm2r I r x, hrx2m5I r xhr2m , ~A5!

whereI r0, I r x, and I m are the following matrices for projec-
tion onto the subsystemsr 0, r x , andm, respectively:

I r05(
k

(
l51

2

(
i51

2

uk,0,l,i )~k,0,l,i u, ~A6!

I r x5I r2I r05(
k

(
GÞ0

(
l51

2

(
i51

2

uk,G,l,i )~k,G,l,i u,

~A7!

and

I m5(
k,g

(
l851

3

(
i51

2

uk,g,l8,i )~k,g,l8,i u. ~A8!

The matrix for projection onto the subsystems is then

I s5I r01I m . ~A9!

In this way, the termshm2r x
andhrx2m for the interaction

between the two subsystems,s andr x , have been defined by
Eqs. ~A.5! excluding the contributions by the non-first-
Brillouin-zone photons from the original interaction matrices
hm2r andhr2m . The excluded termshm2r0

andhr02m have
been incorporated into the Hamiltonianhs . Accordingly, the
matrix Hamiltonian splits naturally into the zero-order
Hamiltonianh08 and the interaction matrixn8, as

h5h081n8, ~A10!

with

h085hs1hrx, ~A11!

and

n85hrx2m1hm2r x
, ~A12!

where the primes refer to the alternative partitioning of the
full system.

2. Effective Dyson equation for the subsystems and its formal
solution

The Dyson equation may now be written for the Green’s
matrix ~3.39! of the partitioned matrix Hamiltonian~A10!,

G̈5G̈081G̈08n8G̈, ~A13!

with

G̈08[G̈08~v!5@vQ2h08#21 ~A14!

being the zero-order Green’s matrix: The prime overG̈08 will
help to differentiate it from the ordinary zero-order Green’s
matrix,

G̈0[G̈0~v!5@vQ2~hm1hr !#
21

5@vQ2~hm1hr01hrx!#
21, ~A15!

that will feature later in Eq.~A30!. Note that unlikeG̈0,
the primed Green’s matrixG̈08 accommodates the coupl-
ing termshm2r0

andhr02m , featured in Eq.~A2!.
Recursive substitution of the left-hand side of the Dyson

equation~A.13! into its right-hand side with subsequent pro-
jection onto the subsystems, produces a Dyson-type equa-
tion for the projected Green’s functionG̈s[I sG̈I s ,

G̈s5G̈s
081G̈s

08nm
effG̈s , ~A16!

where

nm
eff5hm2r x

G̈08hrx2m

5(
k

(
l51

3

(
j51

3

uk,matt)l l ~k,raduI r xG̈
08I r xuk,rad! j j ~k,mattu ~A18!

~A17!

is the operator for the effective interaction within the subsystems due to the influences of the subsystemx. In Eq. ~A18!, use
has been made of Eqs.~A5!, ~3.11!, and~3.12! to explicitly represent the coupling matriceshm2r x

, andhrx2m . Since

I r xG̈
08I r x5I r xG̈

0I r x, ~A19!

the radiative Green’s function entering Eq.~A18! is

l~k,raduI r xG̈
08I r xuk,rad! j5

r

«0\
(
GÞ0

uk1Gu2d l j2~k1G! l~k1G! j
~v/c!22uk1Gu2

, ~A20!
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where the contribution by theG50 term has been excluded due to the matrixI r x projecting the radiative matrix vectoruk,rad!j
@given by Eq.~3.14!# onto the subspacer x . Performing summation over the inverse lattice vectorG @19,24#, Eq. ~A20! takes
the form fork!G,

l~k,rad uI r xG̈
08I r xuk,rad! j5

r

3«0\

@2~v/c!21k2#d l j23klkj
~v/c!22k2

2
r

«0\

k2d l j2klkj
~v/c!22k2

5
2

3

r

«0\
d l j . ~A21!

Substituting Eq.~A21! into ~A18!, one finds a final expres-
sion for the matrixnm

eff ,

nm
eff5

2

3

r

«0\
(
k

(
j51

3

uk,matt)j j ~k,mattu, ~A22!

so that the effective Dyson equation~A16! for the subsystem
s has now been fully determined. Its formal solution reads

G̈s[G̈s~v!5@vQIs2hs
eff#21, ~A23!

wherehs
eff is the effective Hamiltonian for the subsystems,

hs
eff5hs

eff01~hm2r0
1hr02m! ~A24!

and

hs
eff05~hm1nm

eff!1hr0. ~A25!

In this way, the coupling of the subsystems with the high-
frequency ~non-first-Brillouin zone! photons has been de-
scribed in an effective manner through the operatornm

eff . Re-
tention of this operator is essential for a proper description of
the local-field effects.

3. Green’s matrix for the radiative subspacer 0

The effective Hamiltonianhs
eff of the systems has been

partitioned by Eq.~A24! into the zero-order effective Hamil-

tonian hs
eff0 and the interaction term (hm2r0

1hr02m): The
latter term represents coupling of the material part of the
subsystems to the subspacer 0 of the first-Brillouin-zone
photons. The material subsystem may now be excluded ap-
plying a procedure analogous to that outlined in the previous
subsection eliminating the subspacer x . As a result, the fol-
lowing effective Dyson equation is obtained for the projected
Green’s matrixG̈r0

,

G̈r0
5G̈r0

0 1G̈r0
0 ~hr02mG̈m

eff0hm2r0
!G̈r0

, ~A26!

where

G̈r0
0 5@vQIr02hr0#

21 ~A27!

is the zero-order Green’s matrix for the radiative subsystem,
and

G̈m
eff05@vQIm2hm2nm

eff#21 ~A28!

is the zero-order effective Green’s matrix for the material
subsystem. Substituting Eqs.~A4!, ~A6!, ~3.11!–~3.14!
and ~3.34! into Eq. ~A26!, one finds a closed equation
for the radiative Green’s function G̈l j

rad0(k,v)
[ l(k,rad0uG̈r0

uk,rad0) j ,

G̈l j
rad0~k,v!5G̈l j

0 ~k,v!1 (
p51

3

(
q51

3

G̈lp
0 ~k,v!p~k,mattuG̈m

eff0uk,matt!qG̈q j
rad0~k,v!. ~A29!

G̈ l j
0 ~k,v! being the zero-order Green’s function for the sub-

systemr 0,

G̈l j
0 ~k,v![ l~k,rad0uG̈r0

0 uk,rad0! j5
r

«0\

k2d l j2klkj
~v/c!22k2

.

~A30!

To make further progress, the material Green’s function

p(k,mattuG̈m
eff0uk,matt)q is to be determined. The following

effective Dyson equation holds for the Green’s matrix~A28!:

G̈m
eff05G̈m

0 1G̈m
0 nm

effG̈m
eff0, ~A31!

with

G̈m
0 5@vQIm2hm#21. ~A32!

Substituting Eq.~A22! for nm
eff into Eq. ~A31!, one obtains

l~k,mattuG̈m
eff0uk,matt! j52\ad l j

2
2

3

ar

«0
l~k,mattuG̈m

eff0uk,matt! j ,

~A33!

where use has been made of the following:

l~k,mattuG̈m
0 uk,matt! j52\a~v!d l j , ~A34!
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with a~v![a being the molecular polarizability given by Eq.
~4.3!. Hence,

l~k,mattuG̈m
eff0uk,matt! j52\a8d l j , ~A35!

with

a85aS 11
2

3

ar

«0
D 21

. ~A36!

Substituting Eq.~A35! into Eq.~A29!, the formal solution of
the resulting equation reads

G̈l j
rad0~k,v!5~\a8!21$d l j2@11\a8G̈0~k,v!# l j

21%,
~A37!

whereG̈0~k,v! is the abbreviation for the 333 matrix given
by Eq. ~A30!. Inverting the matrix in the square brackets
yields

@11\a8G̈0~k!# l j
215

@~v/c!22k2#d l j2klkja8r/«0
~v/c!22k2~12a8r/«0!

.

~A38!

Finally, substituting the last result into Eq.~A37! and using
the identity for the refractive index~4.2!,

n22512a8r/«0 , ~A39!

one arrives to the required result~4.9! for the Green’s func-
tion G̈l j

rad0.

APPENDIX B: RELATIONSHIP BETWEEN THE
MATERIAL AND RADIATIVE MATRIX ELEMENTS

Combining the basic equations for diagonalization~3.23!
and ~3.24!, it follows that

hS215QS21QL. ~B1!

Multiplying Eq. ~B1! on the right byus8,1& and making use
of Eqs.~3.22! and ~3.25!, one has

~QPs2h!S21us,1)50. ~B2!

Employing the partitioning~3.8! for the matrix Hamiltonian
h, Eq. ~B2! may be rewritten as

S21us,1)5G̈0~Ps!~hm2r1hr2m!S21us,1), ~B3!

whereG̈0~Ps! is the zero-order Green’s matrix given by Eq.
~A15!. Accordingly,

j~k,mattuS21us,1!

52 i(
l51

3

j~k,mattuG̈m
0 ~Ps!uk,matt! l l ~k,raduS21us,1!,

~B4!

where use has been made of Eq.~3.11! for hm2r . Using Eq.
~A34!, one finds

j~k,mattuS21us,1!5 i\a~Ps! j~k,raduS21us,1!. ~B5!

Finally, since s[~k,m,l! and Ps[v k
(m), the above is

equivalent to Eq.~4.11! of the main text.

@1# E. H. Pantell and H. E. Puthoff,Fundamentals of Quantum
Electronics~Wiley, New York, 1969!.

@2# A. Yariv, Quantum Electronics, 3rd ed. ~Wiley, New York,
1989!.

@3# I. Abram, Phys. Rev. A35, 4661~1987!.
@4# R. J. Glauber and M. Lewenstein, Phys. Rev. A43, 467

~1991!.
@5# B. J. Dalton, E. S. Guerra, and P. L. Knight~unpublished!.
@6# M. Hillery and L. D. Mlodinow, Phys. Rev. A30, 1860

~1984!.
@7# P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B4, 1565

~1987!.
@8# I. Abram and E. Cohen, Phys. Rev. A44, 500 ~1991!.
@9# V. L. Ginzburg, Zh. Eksp. Teor. Fiz.10, 589 ~1940!.

@10# J. M. Jauch and K. M. Watson, Phys. Rev.74, 950~1948!; 74,
1485 ~1948!; 75, 1249~1949!.

@11# U. Fano, Phys. Rev.103, 1202~1956!.
@12# J. J. Hopfield, Phys. Rev.112, 1555~1958!.
@13# V. M. Agranovich, Zh. Eksp. Teor. Fiz.37, 430 ~1959! @Sov.

Phys. JETP37, 307 ~1960!#.
@14# A. S. Davydov and V. A. Onishchuk, Phys. Status Solidi24,

373 ~1967!.
@15# R. K. Bullough and B. V. Thompson, J. Phys. C3, 1780

~1970!.
@16# M. R. Philpott, J. Chem Phys.52, 5842~1970!.
@17# M. Orrit and P. Kottis, Adv. Chem. Phys.74, 1 ~1988!.
@18# D. S. Citrin, Phys. Rev. B51, 14 361~1995!.

@19# J. Knoester and S. Mukamel, Phys. Rev. A40, 7065~1989!.
@20# B. Huttner, J. J. Baumberg, and S. M. Barnett, Europhys. Lett.

16, 177 ~1991!.
@21# B. Huttner and S. M. Barnett, Europhys. Lett.18, 487 ~1992!.
@22# B. Huttner and S. M. Barnett, Phys. Rev. A46, 4306~1992!.
@23# S.-T. Ho and P. Kumar, J. Opt. Soc. Am. B10, 1620~1993!.
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