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Microscopic theory of quantization of radiation in molecular dielectrics:
Normal-mode representation of operators for local and averagedmacroscopiq fields
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Quantization of radiation has been performed from first principles in a realistic molecular medium, repre-
sented by an arbitrary number of energy lev@kectronic, vibrational, rotational, ejcfor each constituent
molecule. Adopting a polariton model, the field operators have been expanded in terms of normal Bose
operators for polariton creation and annihilation. The expansion coefficients have been derived explicitly for
the normal modes characterized by wavelengths exceeding considerably the characteristic distance of separa-
tion between the molecules. Accordingly, the formalism applies to the long-wavelength region of the spectrum
for which description in terms of the macroscopic refractive index is relevant; furthermore, consideration is
restricted to the nonabsorbing areas of the spectrum. The theory has been formulated in a manner that made
possible a parallel and comparative consideration of operators for both the avérayedscopitand local
fields. Consequently, the mode expansions derived cover both the local displacement-field operator and also
the averagedmacroscopitoperators for the electric, displacement, magnetic, and polarization fields, and the
vectorial potential. The expansions, involving summation over an arbitrary number of branches of polariton
dispersion, manifestly embody the refractive influences as well. To this end, the local-field effects intrinsically
emerge within the present formalism that treats systematically the photon umklapp processes. Relations have
been established between the expansion components of the local and averaged field operators. The relation-
ships support some previous attempts to link the amplitudes of local and macroscopic field operators phenom-
enologically, and are also consistent with the familiar results of classical electrodynamics. Equal-time com-
mutation relations have been demonstrated to be preserved, expressing the operators for the averaged fields in
terms of the normal Bose operators. On the other hand, the commutation relations between the macroscopic
fields are of the same form as those for their microscopic counterparts, subject to the coarse-graining proce-
dure. Finally, the present study dealing with the macroscopic and local operators provides a tool for combined
investigation of both propagation of the quantized fields in molecular dielectrics and also interaction of the
fields with the embedded molecules or atoms.

PACS numbgs): 12.20.Ds, 42.50-p, 71.36+c, 32.80-t

I. INTRODUCTION Huttner and co-worker$20—27 considered the canonical
quantization of the radiation field in a uniform dielectric me-

The presence of a polarizable medium alters the quantudium, modeled by a harmonic oscillator field. As a result, the
fluctuations of the radiation field. Hence, the proper undernormal-mode expansions have been obtained for the macro-
standing of a quantized electromagnetic field in the mediunscopic field operators in such a dielectric. It is to be pointed
is important in quantum optics. The usual method to quantizeut that the formalism did not reflect effects due to discrete-
the radiation introduces the matter phenomenologicallyness of the atomic or molecular medium, including the local-
through the lineaf1-5] or nonlinear[6—8] susceptibilities. field effects. The related study by Ho and Kuniag] ex-

The approach, initially suggested by GinzbU&j and by tended the analysis to the case of a nonuniform medium
Jauch and Watsofl10], relies on the phenomenological consisting of discrete quantum oscillato@oms or mol-
quantization of the macroscopic electromagnetic field. Anecules with one resonance frequency. Another development
alternative procedure, originating from the classical worksby Knoester and MukaméglL9], also based on the two-level
by Fand[11], Hopfield[12], and Agranovicl13], introduces (one resonance frequencyepresentation of each atom or
the matter explicitly. Here the quantized radiation field ismolecule of the medium, involved a consideration of opera-
considered to be in mutual interaction with the atortéc  tors for the microscopic displacement field calculated at the
moleculaj medium, both constituting a single dynamical lattice sites, i.e., the local-field operators. This facilitated the
system. The dressed normal modes of such a combined sysdbsequent analysis of polariton-mediated intermolecular
tem are known as polaritons. processes.

Polaritons are a familiar subject in solid-state physics The present paper deals with the normal-mode represen-
[12—18. In recent years the polariton concept has been apation of electromagnetic and polarization fields in a discrete
plied to the problems of quantization of radiation in linear molecular medium. The study extends in a number of ways
dielectrics[19—-23. Here an important aspect is how to rep- the existent theorigd9—23 on the microscopic quantization
resent the field operators in terms of normal polariton modesf radiation in dielectrics. Unlike the previous works9—

23], the theory is formulated in a manner that allows a par-
allel and comparative analysis of normal-mode expansions of
*Electronic address: gj@itpa.lt operators for both the averagédacroscopitfields and also
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the local displacement field. Consequently, relations are egion relations are demonstrated to be preserved expressing
tablished between the mode components of operators fdhe field operators in terms of normal operators for polariton
macroscopic and local fields. Refractive contributions, in-creation and annihilation. The concluding remarks are placed
cluding the local-field factors, emerge intrinsically in the re-in Sec. V. Appendixes A and B contain details of the deri-
lationships. At the same time, the relations are consisteritation of the mode representation of macroscopic operators
with the familiar results of classic electrodynamics. Next, thefor the displacement and polarization fields.
paper considers a discrete molecular medium without any
restriction to a number of excitation frequencie¢ectronic, Il. FORMULATION
vibrational, rotational, etg.for each individual molecule.
The arising mathematical difficulties are dealt with through
the application of a matrix formulatiofl 7,24 of the polar-
iton problem and subsequent Green’s function development. In the minimal coupling formulation of the nonrelativistic
(The Green’s-function technique is related to some exten@ED, the momentum density canonical to the transverse vec-
with that suggested recently by Juzeis and Andrewf24]  torial potentiala’(r) is —g, times the electric fielde'(r)
in the quantum-electrodynamics study of intermolecular ent26—28. In this QED formulation, the radiation-matter cou-
ergy transfer in the condensed phasés a result, an arbi-  pling is represented by the familigra" and alsoa* terms.
trary number of polariton branches may be accommodateth addition, an instantaneous Coulombic interaction couples
within the present approach, in contrast to two dispersiorihe electric charges of the system. Another QED representa-
branches that feature in the theories by Knoester and Mukdion, related to the minimal coupling QED by a canonical
mel [19] and Ho and Kumaf23]. transformation 28,29, entails the full multipolar expansion
Finally, the present study is based on the multipolar for-Of electric, magnetic, and diamagnetic densities of molecules
mulation of quantum electrodynami¢QED), unlike some interacting with the quantized radiation field. In such a mul-
of the previous theories employing the minimum couplingtipolar QED formulation, an instantaneous electrostatic inter-
QED [21-23. This facilitates representation of the operatoraction is cancelled between the molecules, the intermolecular
for the local displacement field in a form explicitly accom- coupling being exclusively due to the exchange of transverse
modating the local-field factors and other refractive contri-photons. The present study makes use of the electric-dipole
butions: It is the local displacement operator that describegpproximation of the multipolar QED. This is normally suf-
the coupling of individual molecules with the radiation field ficient for the situations where the radiation wavelength is
in the multipolar QED. Hence, the subsequent applicationgong compared to the dimensions of moleculestheir chro-
of the theory to various molecule-radiation processes in th&ophoric groups so that the variation of the vectorial po-
media, such as spontaneous emission or linear absorptiotgntial over a molecule may be neglected. The momentum
are then straightforwar@25]. That contrasts with lengthy conjugated ta'(r) is now given by—d*(r), whered"(r) is
and complicated analysis of the spontaneous emission withithe operator for the transverse microscopic displacement
the minimal coupling formulation of the QE[23], in which  field [28];
the instantaneous Coulomb interaction is to be considered
between the molecules. In this way, our formalism giving the

normal-mode representations of operators for both the mac- ) L
roscopic(averagetiand local fields provides a tool for com- ande’(r) is the operator for the transverse electric field. For

bined consideration of the problems involving both thethe time being, we shall consider the full polarization field,

propagation of the quantized fields in molecular dielectrics

and also the interaction of the fields with the embedded mol- _ _

ecules or atoms. p(r)—g ML) S(r—ry), (2.2
The paper is organized as follows. Section Il A introduces

the operators for the electric, electric displacement, and poather than its solenoiddtlivergence-freecomponenip*(r)
larization fields. In Sec. Il B the second-quantizpdlariton  featured in Eq(2.1). The aboveu({) is the operator for the
Hamiltonian is defined for a system comprising a quantizeclectric dipole moment of moleculé positioned atr, and
electromagnetic field coupled to a discrete moleculathe summation over extends to all the molecules of the
(atomig medium. In Secs. Il A and Il B the matrix formu-  system, the term “molecule” being used generically to also
lation of the polariton problem is outlined, followed by the encompass other quantum Species such as atoms or chro-
formal derivation in Sec. Ill C of the normal-mode expan- mophoric groups.

sion of the field operators in terms of the appropriate Green’s The operatorsd'(r) and p(r) may be represented as a
functions. The expansion coefficients are then determined ifourier series ink+G modes, allowed by the periodic

Secs. IV A and IV B; the results for the electric, displace-poundary conditiongchosen to be the same both for the
ment, and polarization fields are summarized in Sec. IV C. Inadiation field and the matter
Sec. IV D the operators for the electric and displacement

A. Operators for the electric displacement and polarization
fields

dt(r)y=gqe"(r)+p*(r), (2.2

fields are transformed from the original SchHimger to the 2 112

. : : ) ficlk+Gleq
Heisenberg representation. The normal-mode representations d(r)=i>», >, |————| eéMk+G)
of the magnetic-field operators are then determined using the kG A=1 2Vo

Maxwell equations relating the field operators in the Heisen- o) ot L i(K+G)-r
berg representation. Section IV E considers the commutation x[at(k+G)—at™(—k=G)]e '
relations between the field operators: The original commuta- (2.3
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and field of the mediump(r), it will be presented explicitly in
terms of the molecular creation and annihilation operators in

2.4 the equation(2.16). Ultimately, both the displacement and
polarization fields will be expressed in terms of the normal
Bose operators for polariton creation and annihilation. The

p(r)sz71/22 Mkei(k+G)'r,
k,G

with mode expansion of the electric-field operagofr) will then
be obtained straightforwardly exploiting the general relation-
MkEMk+G:N_l/ZE u(oe ke, (2.5 ship (2.1).
{

where B. Hamiltonian

The full Hamiltonian of the system comprises the radia-
p=N/Vy (28 tion (H,,y and moleculakH,,) Hamiltonians, and the cou-

is the mean number densitid being the number of mol- pling operatorH oy,

ecules per quantization volumé,. For convenience, the H =H aq* H o+ Heoup- 2.7
above wave vectok+G has been partitioned into the first P

BriIIo_uin-zoEe Ve‘?l[ork_ ancﬂ] ”?e inverse lattice vectdd  pore  according to the electric-dipole  approximation
[expliG-r,)=1], reflecting the lattice symmetry imposed at 17 58 59 the HamiltonianH ., for the radiation-matter

this stage on the molecular system: Nevertheless, the resully, jing originates from the contributions by the individual
based on such a model can describe adequately the quantizeg o les. as

fields in a variety of less regular media, as will be discussed
later in this section.

The_ expfmspr(z.S) casts the o_perator for the displace- H coup™ _8512 M(§)~di(r{). (2.9
ment fieldd~(r) in a usual way 28] in terms of Bose opera- 3
torsa™(k+G) anda™(k+G) for creation and annihilation
of a photon with wave vectoik+G and polarization In second quantization, the radiation and molecular Hamilto-
e(")(k+G) (A=1,2); the latter is chosen to be real and suchnians, as well as the molecular operator for the dipole mo-
that éN(—k—G)=eM(k+G). As regards the polarization mentu({) may be expressed as

2
H,ad:g; zl hclk+G|[a'™(k+G)aM(k+G)+aM(k+G)a'™(k+G)] (2.9
— T
Himoi= Eg+{27 jgl nQ,BL B, (2.10
3
MO=2 2, (BL, +Bey)isg, (2.11

whereEy4 denotes the ground-state energy of the moleculaare randomly oriented in their sites. As regards the spatial
subsysteme; is the unit vector along a Cartesian akisand ~ arrangement, the molecules are supposed to constitute a
B}‘%j (B¢,,.j) is the Bose operator for creatigannihilation simple cubic lattice. Nevertheless, the main results to come
of an excitation at the moleculg [30]. When acting on a seem to be insensitive to the possible lack of such a transla-
ground molecular state, the creation operﬁég’j promotes tional symmetry in a number of important situations. The
the molecule’ to an excited electronic state, characterized byPotential applications of the theory to spontaneous emission
indexesy and j. It is to be emphasized that an arbitrary and other molecule-radiation processes will involve the pho-
number of excitation frequencie®, has been included for tonic areas of polariton dispersion, away from any exciton
each individual molecule. An additional indgx1,2,3 ex- resonances. Accordingly, the effects of exciton coherence
plicitly refers to the triple degeneracy of the excited molecu-(i.e., delocalization of the excited molecular states due to the
lar states, the associated transition dipole momenes be-  lattice symmetry then do not play a significant role. The
ing mutually perpendicular: For convenience, the transitioreffects of coherence are of minimum importance for exciton
dipolesu., have been chosen to be real. regions of dispersion as well, provided the molecular
In this way, the molecules have been assumed to be chalinewidths exceed the characteristic value of the resonance
acterized by isotropic polarizabilities. Such a model may als@oupling between the molecules. It is therefore expected that
represent a common situation where the nonisotropic specigbe present analysis of the quantized radiation field in an
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isotropic medium with cubic symmetry may also represent 3 ,
adequately the radiation modes in a variety of amorphous Bk'w\,=2 [e )(k)-ej]Bk,%j (2.13
media constituted of randomly situated and oriented mol- =1
ecules.
Transforming the molecular Bose operators to the mo- ) R
mentum space, [with €*)(k)=k=k/k, for \'=3], the molecular Hamil-
tonian (2.10, the coupling operatof2.8), and the polariza-
B, _:NflIZE B, e ik (2.12 tion field (2.4) acquire a form, through Eq§2.3), (2.5), and
Y] 7 &y ’ (211)'
3
Hmolzkz; 21 RO (By 5 Bicyar + Biyn Bl o), (2.14
3 2
_ t * t t
|-|Coup—k’G’7 21 21 ALCya )6 By B yaNAMN(K+G) +Cly 1 6@ M (K+G)(By i +BL, )],
(2.15
3
p=pN"Y2> 3 3 @ )(K)(Byyp +BL, e TOT, (2.16
kG v \=1 v
where
LS IR RPN
Cik, ko= I 2egh p| m,le"(k)-eV(k+G)] (2.17

is the radiation-matter coupling matrix. Accordingly, the f ~ -

coupling Hamiltonian(2.15 manifestly accommodates pho- H=3 (AT, Alh[A,AT), (3.3

ton umklapp process€k—k+G). Here also a specific zero-

point energyEy has been chosen in the molecular Hamil-where|A,A") is the row matrix of the creation and annihila-

tonian (2.14 to make it symmetric with respect to the tion operators,

molecular creation and annihilation operators. It is to be _

noted that the full Hamiltoniakl should also contain a field- |A,A’r):(Aa1 ,Aaz,...;Ag ,Ag yee)s (3.9

independent contribution, represented by the last term of Eq. v

(3.6.3) of Ref.[28]. Yet, such a contribution, essential for (A" A| is its column counterpart, arfdlis the matrix Hamil-

the calculations of the radiative Lamb shift, is not importanttonian to be defined later; for more details see also 4.

for the present purposes. It is convenient to make use of the following expansion of
Equationg2.14) and(2.15), together with(2.9) and(2.7), the matrix vectors:

define the full second-quantized Hamiltonian of the system.

The matrix formulation of the problem will be outlined next.

AAN =2 [|a,DA,+|a,2)Ad], (3.5
Ill. MATRIX REPRESENTATION ’
A. Matrix Hamiltonian (AT A= [Al(a,1]+Az(a,2]], (3.6
Let us now introduce a uniform notation for the Bose
molecular and radiative operators: where the summation over extends to alky (t=1,2,3,..):

0 _ An additional indexi =1,2 is due to the involvement of the
_[aM(k+G)  for a=(k,G,\) double-basis set of the origindolecular and radiation
A= , (3.1 : : : )
Bk,yn  for a=(k,y,\"). modesa in the matrix formulation of the problem. Hefe,i)

_ . _ o [(«i[] is the orthogonal set of unit rowcolumn vectors.
Adopting also the tilde convention to indicate momentum(These are not to be confused with the quantum-mechanical
reversal, bra and ket state vectors, such as those featured iff g
For instance,

|a4,2)=(0,0,...0,0,0,1,0, ). (3.7)

K,y N)=(—Ky\), (KGX)=(-k,—~G)) (3.2

the second-quantized Hamiltonian may be expressed in a
compact manner through the matrix prod{@4], The expanded matrix Hamiltonian is given 4]
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h=h,+hpm+hy_+h,_pm, (3.8)  of the polariton is implicitly incorporated into the mode in-
dex o. The linear relation(3.15 and (3.16 may be com-
with pactly expressed as
2 |P,P)=5|A,AT), (3.17
h=2 2 2 [kGN\iclk+G|(k,G\il, (3.9
k,G A\=11i=1 or
S | | (P,P|=(A Al's?, (319
hy=2>, > 2 |ky N DQ (KN, (3.10 _
Ky nr=11=1 with
: Bt t
hm_r:_iE E |k,matt)jj(k,rad, (31]) |P’P ):E [|0-11)PU+|0-12)P;]1 (319)
kK j=1 o
and i = t
(PT.P[=2 [P}(0,1]+P5(0.2], (3.20
3 a
hr_m=i; 21 |k, rad); (k,matt. (312  whereS is a transformation matrix, anfir,i) [(o,i[] is an
=

orthogonal set of unit rowicolumn vectors,i=1,2.
The transformed second-quantized Hamiltonian is re-

Here h, and h,, are the diagonal matrices of radiative and quired to take a diagonal form,

molecular frequencied, _,, andh,,_, are the off-diagonal

matrices that describe the radiation-matter coupling, with H=(P' 5|A|P ET) (3.21)
3 where
kmaty=2 > [k, 7\ D+[ky\"2)] ,
Y A=1
, A= > |o)(a,i) (3.22
xe (K, (3.13 v i=1| )

is a diagonal matrix Hamiltonian and, is a polariton fre-
quency. Accordingly, the original matrix Hamiltonidn is

2
- _ o)
|k, rad) }G: gl [Ik,.G A1)~ [k,G\,2)]eM (k+G) related to its diagonal counterpakt as

clk+G| |2 h=!S*AS. (3.23
XN Zez Pl (3.19
0

The Bose commutation relations are to be obeyed by both

iqi T
the radiative and molecular raw matricef.{k,rad and the orJlrgmaI.and transformed .s.ets of operatéxs, A, and
;(k,matt being their column counterparts. Note that the sum-Po: Py This leads to a condition o8,
mation over the inverse lattice vect@r, featured in the ra- _ 1t
diative matrix vectorsk,rad; and ;(k,rad, represents the Q=s@s* or S=Q('s")Q. (329
photon umklapp processes in the interaction tef8%1) and  \yith
(3.12 of the matrix Hamiltonian.

10
o_1 (329

2
B. Formal diagonalization Q:;l z lo,i) (= 1) Hoi|=

We shall search for a new set of Bose creation and anni- ) N .
hilation operators diagonalizing the Hamiltonian. The fol- @ diagonal matrix. Other conditions imposed on the transfor-
lowing transformation of the Bogliubov-Tyablikov type re- Mation matrixS are[24]
lates the old and new sets of operators:

(0,1S* |, 1) =(0,2Fa,2), (3.26

P,=> [(0,1Sa,)A,+ (0,15 ,2AL], (3.19 (0,18 |a,2)=(0,29|a,D), (3.27)
and

PL=> [(0,2S e, )A.+ (0,25 a,2AL], (3.16 (0.i|S[a,j)=(o,i|]Fa,j) (i,j=1,2. (3.28

Finally, performing the inverse transformation, one ob-
where (o,i|S|a,i’) are the transformation coefficients tains the following for the combinations of molecular and
(i, i"'=1,2 and the indexc labels the normal polariton radiative operators that feature in the mode expansipr8
modeso; (t=1,2,3,..): At this stage, the quasimomentdm and(2.16 of d*(r) andp(r),
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aM(k+G)—at™(—k-G)=> {[(k,G,\,1—(k,G,\,21S Yo, )P,

—(0,1QSd|-k,—G\,1)—|-k,—G,\,2)P}, (3.29

and

Biy+ By =2 (LK v A+ (K, v\ 21570, )P, +(0,2QS Q| —k, 7.\ D +| -k, v\ 2PL}, (3.30

where the use has also been made of the above equatiopslariton dispersioim=1,2,3,..), the third subindex being

(3.24 and (3.26—(3.28 for S. reserved to label the degenerate sublevels within the
branche$ Consider the operators for the me@e., macro-
C. Field operators scopig displacement and polarization fields,(r) andp(r),

o ~as well as the operat«nF(rg) for the local displacement field:
The operators for the electric displacement and polarizaThe |atter, representing the displacement field at the molecu-
tion fields may now be formally represented through the po{ar sites, describes coupling of the radiation field with the
lariton Bose operatorBy , , and Plym. [From now on, the individual molecules. Calling on Eqg$2.3), (2.16), (3.29,
k dependence will be displayed explicitly in the mode indexand (3.30, one finds for the Cartesian components of the
o=(k,m,\): here the subindexn will refer to branches of field operators,

df(rg>=iﬁsoN‘1’2k§A[J-<k,rad8‘1|k,m,x,npk,m,xe‘k'%—<k,m,x,1|QSQk,raa>jPl,m,xe‘ik'%], (3.31)

d_jL(r)=iﬁsoN_1/2k§)\ [;(k,rach|S™Yk,m,\, 1) Py € = (k,m,\, 1] QSQk,rach) P} e "], (3.32
and
P (N=pN"Y2> [(k,mat}S™*k,m\,1)Py m,€* "+ (k,m\,1QSQk,math; P} e * 1], (3.33
k,m,\ Y
[
where =g o). Furthermore, it is implied that the first-Brillouin-

zone vectok covers the region where

2
|k,rach);=1 |k,rady= > [|k,0\,1)—|k,0\,2)]e* (k)
A=t k<2x(N/V)¥#=2xm/a (N/V=p=a~%), (3.39

ck 1/2

><( p) , (3.39

2g0h in the mode expansion&.32 and (3.33 of the averaged

- - : : ! fields, so thatexpik-r)=~exp(k-r). The condition(3.35),

and|k,mat1)j _IS asin Eq.(3.13), the matrix| "o pelng defined which will be extended subsequently to the local-field expan-
by Eq. (A6) in Appendix A. The Iatteﬂ,o projects the full  gjop (3.3) as well, is fully appropriate for the consideration
radiative matrix vectofk,rad); [given by Eq.(3.14] onto the  of the infrared, optical, or ultraviolet modes of light in the
subspace of the first-Brillouin-zone photons, producingcondensed media: In these regions of the spectrum, the ra-
lk,rad); . Consequently, the expansion of the new radiativediation wavelength=27/k exceeds greatly the characteris-
matrix vector|k,rady); involves only theG=0 term. tic distancea of intermolecular separation in the condensed

In this way, the macroscopic field$"(r) and p(r) no  molecular system.
longer contain summations over the inverse lattice veGtor To deal with the matrix elements & entering the above
since all the contributions from the terms wiB%0 vanish  mode expansions, let us consider the following Green func-
during the averaging over the elementary delkp(G-r) tion:
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(K, @|S™Hk,m\, 1) (k,m,\,1]QSQK, ), . (K, @|S™Hk,m\,2)(k,m,\,2QSQK, )

Gﬁ(k,w)ZE ) o (m)
m,\ W~ Wy w— Wy
=(k,¢|G(w)|K,¢);, (336
|
where is the Green’s matrix corresponding to the matrix Hamil-
tonianh, with Q as in Eq.(3.295. Note that the umlaut has
w(km)EHk,m,)\r m=1,23... (3.3  been plaged over thg Green’s matfiXw) to differentiate it
from the inverse lattice vectds.
will denote the eigenfrequency of the(k,m\)=0c For each eigenfrequenay\™ in the dispersion branam,
mode: w{™ depends olk=|k|, since the system in question ©n€ has
is isotropic. Here alsdk,(p)j is the following abbreviation for
the radiative matrix vectors: o™
k
_[Ik,rad)  for ¢=rad
|k,€0)j_ |k,racb)j for <p=rado, (3-38) (a)
=
and
G(w)=[@Q—h]"* (3.39 i
k
o\"
m= ®)
20
s
-0
)
m=1
k
o™
0 @) Z(1) . [N 4 ) —
O Zfoi E ) L @y @ —
|
| ——
FIG. 1. Graphical solution of Eq4.4) for M ,,,=3. (a Mo-

lecular polarizability «(w), Eq. (4.3), plotted schematically as a k

function of frequencyw. Vertical dashed lines at molecular frequen-

cies 4, Q,, and Q5 correspond to the infinities af(w). The po-

larizability curves cross the horizontal dashed lines at the points FIG. 2. Schematic plot of the dispersion curvesﬁm)
0=z andw=2z""Y (j=1,2,3, representing, respectively, infini- (m=1,...Mo+1) for (@ Mpy,=1 (Hopfield model and (b)

ties and zeros of the relative dielectric permittivity M,=2. The third diagram(c) illustrates a situation in which a
£,=n°=(1+2apl3sy)/ dense set of dispersion curves is featured. Note that all the diagrams
(1—apl/3eg). (b) Subsequent plot ai?(w) as a function ofv. The  represent the long-wavelength region of the spectrirg{=/a)
eigenfrequencies(™ (m=1,2,3,4 are then determined by the in- under consideration. For greater valueskothe effects of spatial
tersection points with the curve?k?/w?. dispersion are to be considered.
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1 with
2 ik @[STHk,m N D) (k,m\,1QS K, ), , ,
k ca(o)=a(—o)= s D |y
. a=a(w)=a(—w)=
= lim (0—o{™)Gf(kw), (3.40 S Q-0 Qe s
(m) .

[Chmd O

) i being the molecular polarizability. The abowg=¢l/e is the
where the summation on the left-hand side extends to thgative dielectric permittivity that apparently satisfies the

degenerate sublevels of the branch, characterized by differegijssius-Mossotti relation: This is due to the systematic in-
polarization indexea. The above equation relates the matrix corporation of photon umklapp processes into the theory.
elements entering the expansiof&31) and (3.32 to the  Note that the effects of the spatial dispersidependence of
Green’s functionG f (k,w). The relationship(3.40 will be ¢ onk) are beyond the scope of the present study.
exploited in the following derivations of the mode expan-  Our analysis will concentrate on the transverse normal

sions. modes of the system: Only these modes contribute to the
operators for the transverse quantized fields under consider-
IV. NORMAL-MODE REPRESENTATION OF THE FIELD ation. The corresponding eigenfrequencies are the poles of
OPERATORS the Green’s functiori4.1) at
A. Local displacement field o™=ck/n(o{™). (4.9

We shall first search for the normal-mode expansion ofrhe graphical solution of Eq4.4) is depicted in Fig. 1. It is
the operatordL(rg) for the local displacement field. For opvious that more than one normal frequenay\™
k<2w/a, the Corresponding Green’s fUnCtiOGﬁ"(k,w) (m: 1,2,._.Mmo|+1) Corresponds to each value kf Mmol
(with p=rad has been obtained previougl®4] giving [31]  peing a number of molecular frequenci@s involved [32].

For instance, the single-frequend¥opfield model em-

A~ raf

Gij ko) ployed by Knoester and Mukamgl9] and also Ho and Ku-
b (2020, Skl T2, proudes o polrton e, Bxamples of s
" 3figgn?| 3 (nw/c)?—k2 : mol

Fig. 2. As the number of molecular frequencies increases, the
4.2 dispersion branches may start to form dense sets of disper-
] o sion curves, as illustrated in Fig(Q. Hence, the present
wheren=n(w) is the refractive index, theory may accommodate adequately the contributions due
to densely spaced molecular sublevels of vibrational, rota-
= (4.2  tional, and other origins.
1—apl3ey Substituting Egs(4.1) and(4.4) into Eq.(3.40, one finds

(m)_,(m) (m)y12 2
_ pwy v [N(e ") ]"+2 ~
2 i(krads ™k 1) (km\ 4QS Tk rad =5t 3 (8= kik)) (4.5
with k;=k,/k, where
dlwn(w)]] ! do(™
= Cf T de =ak 9

w=a{™

is the group velocity of polariton in theath branch of dispersion. Solutions of Eg.5) are characterized by two independent
polarization component§.=1,2) for each eigenfrequency (™,

(m)_ (m) 1/2 (m)y12
j(k,radS™[k,m,\,1)=[(k,m,\,1]QSQk,rad;]* _(ZCsoﬁn(w(km)) 3 e (k). 4.7
Here use has been made of the following:
2
2 &M (k)€ (k)= (0~ kiky), 4.8

where the transverse polarization vecta@d)(k)Lk (with \=1,2), have already featured in EqR.3). The explicit mode
representation of the local operatdfr(rg) is now straightforward. This will be carried out in the summarizing Sec. IV C.
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B. Mean displacement and polarization fields

Consider next the mode expansion of the operEc(r) for the averagedmacroscopit displacement field. The corre-
sponding Green'’s functloﬁs i (k,w) (with p=rad) has been derived in Appendix A, giving

radO ﬂ k8, — kik;
(k)= heo (Nwlc)2—k? “.9
for k<2m/a. Repeating the procedure outlined above, one finds
(m)_ (m) 12
K rach|S™Hk,m\, 1) =[ (k,m\, 1 QSQK, radh); ]* = | st 9 (™ 26N (k (4.10
]( 1ract) 1m1 1)_[( vmy ’ Q 1rad))J] - ZCSOhn(w(km)) [n(wk ]ej ( ) .

(A=1,2), where the phase of the above matrix element has been chosen demanding that the mode expansions for the local and
averaged displacement fielfidetermined by Eq94.10 and(4.7), respectively should coincide in the limit of an infinitely

dilute medium(n—1). Finally, to determine the polarization fief (r), Eq. (3.33, we shall make use of the followingee

Appendix B:

i(k,mat{S™*|k,m,\,1) =;(k,rad S *|k,m,\, Ditia(wl™), (4.10)

a(w{™) being the molecular polarizability at=w{™. The above relates the material matrix element of interest to its radiative
counterpartjf(k,radS’1|k,m,)\,1): The latter has been already obtained in Eq7).

C. Summary of results on electric, displacement, and polarization fields
Substituting Egs(4.7), (4.10, and(4.11) into (3.3)—(3.33, the operators for the displacement and polarization fields take
the form
[n(w™)]?+2
3

é eofi o™ ™ 12
=1\ 2cVon( ™)

#0)-3 3

}e()\)(k)(eik'rgpk,m,x_eik‘rgpl,m,x), (4.12

1/2
_ZCV n(w(%))) [n(w&m))]Ze(A)(k)(eikrpk‘m')\_ e—ik~rpl‘m‘)\)’ (4.13)
0 k

E(r)=i; %

( sofiw(™v{M™

A=1

and

2cV0n(w§")) {[n(@™1*= 13NV (K) (€% Py mr—e ™ Pl ), (4.14

(km) V(m) ) 1/2
where, in the last equation, we have exploited the following relation:

ap
€o

=n?-1. (4.15

n2+2
3

The above summations ovkrextend tok<2s/a: As discussed earlier, this restriction is fully appropriate for consideration
of infrared, optical, and ultraviolet modes of radiation in the condensed molecular systems The mode expansions manifestly
accommodate summations over the branch inaex the emerging refractive index(w{™), and group velocity
v{M=v (w{™) being the branch-dependent quantities.
The electrlc field operator may now be determined using the general relatiq@sbipetween the electric, displacement,
and polarization fields, to yield

ﬁa) (m) (m

12
(\) ik-r _ a—ikrpt
eMk) (e P e P , 4.1
280CV0n(a)(m))) ( )( k,m,\ k,m,)\) ( 6)

F0-3 33|

which is consistent with the previous result by Ho and Kuf2®] based on the model restricted to two branctmes-1,2) of
polariton dispersion. Recasting the field operators in term,of) mode components,

d'(r)=2 dilr), =2 dn(D), (4.17

etc., it is straightforward to find the following relationships between the mode components of various field operators:
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1 [(e™M+2
di,m(rg): —m (—) dk m(Te),s (4.18
A (1) = 208 ™6 (1), (4.19
Pim(D=e0(e{™— 1)L (1), (4.20
where
e™=e/(w™)=[n(w{™)]? (429

is an abbreviation for the relative dielectric permittivity in the dispersion bramcBquationg4.18—(4.20 are apparently the
guantum version of the familiar formulas of the classical electrodynamics relating electric, displacement, and polarization
fields. It is instructive to note that the branch indexexplicitly features in these expressions.

D. Heisenberg representation and magnetic operators

Performing a transformation from the original Sctlimger representation to the Heisenberg representation, the time vari-
able emerges in the field operators. The operators for the electric and displacement fields become then

fiw (m) (m) 1/2 ' - . (m
Srn=id 2 2 (m) (k) (kAP —e TR ), (422
and
2 (m) ,(m) |\ 1/2
eoh wy o () ler ()
dl(rt :IEk: %: E (m) [n(wf(m))]Ze(A)(k)(euk.r oy t)Pk,m,)\_e i(k-r—awp t)Pl,m,A)' (4.23
A= 0

The mode expansion of the magnetic operaEr(s ) andg(r ,t) may now be obtained using the Maxwell equations for the
field operators in the Heisenberg representation,

— 0@(r,t)
Vxh (r,t):T, (4.29

bt (r t
Vx?(r,t):—%). (4.25

The first equation determines the magnetic-field operator as
2 (m) (m (m)y\ 1/2
— . h oy n(wy™)| 2. Cero(m) m)

hl(l’,t):|; % )\21 ZMOCV kXe()\)(k)(e|(k-r oy t)Pk, _e i(k-r— wk t)Pkm)\) (426)

with ug=1/s,c? being the magnetic permeability of vacuum. The second Maxwell equation defines the magnetic induction
vectorb*(r t): For the nonmagnetic medium under consideration, we bawgt)=ush*(r t). Finally, the familiar expressions
relate the operators for the magnetic induction and electric fields to the vectorial potential, as

bl=vxa, (4.27)
— Jdar
el=— 0 (4.29

giving the following normal-mode representation for the latter:

ﬁy(m) 1/2 " m
A i(k-r—w " —i(k-r—opytpt
2800V0w(m)n(wf<m)) e( )(k)(el( %k t)Pk,m,)\'i'e (o t)Pk,m|)\)' (4'29)

al(r,t)= 222

Note, that at =0 the Heisenberg operators reduce to those of the original Siciger representation, so tﬁgt(r)=m(r,0),
bt (r)=b*(r,0), anda(r)=a’(r,0).
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E. Commutation relations between the field operators

The commutation relations between various field operators should be retained recasting the field operators in terms of
normal operators for polariton creation and annihilation. To demonstrate this, consider the commutation relation between the
averaged operators for the vectorial potential and displacement fields: These two quantities constitute a pair of canonical
variables in the multipolar formulation of QED under considerafid8]. The averaged field operators read, in terms of the
original Bose operators for photon creation and annihilation,

1/2
r)_lz ;1( ¢ 80) eM(k)aM(k)e* r—af®(k)e ik, (4.30

12
eM(k[aM(k)e*+a™ (ke k1, (4.30)

E é <Zeockvo

where the summation over the wave vector is restricted to the first-Brillouin-zone kettdth k<27/a), as the terms with
G#0 disappear during the procedure of averaging over the elementary cell. The following commutation relation is held
between the Cartesian components of the averaged operators:

— 1 U ,
[ar (), di (r)]=—ih = 2 (8 —kik)e' 1) (4.32
0 k
|ﬁ5 (r=r’). (4.33
Here5 j(r—r’) is the smoothene(toarse-grainediransverse’ function that replaces the ordinary transvessinction,
1 aAn
SE(r) =2 (8 —kiki)e ke (4.34
i Vo %N i

featuring in the commutation relatid@8] between the microscopimonaveragedfield operatorsa;(r) anddji(r’).
Next we shall exploit the normal-mode expansi¢a23 and (4.29 for the averaged operators. The equal-time commu-
tation relation then takes the form

— 1 aa
[ar (r),d (r")]=—i WZ (8;—kikp)e® Y piMn(w™). (4.35
0 k m
Employing the equality22]
% vMn(wf™) =c, (4.36

the commutation relation§4.32 and (4.35 prove to be identical. This is a consequence of the canonical nature of the
transformation from the original set of molecular and radiative Bose operators to the set of normal Bose operators for
polaritons.

On a similar basis, one can check other commutation relations. §i@¢e

%‘, vy /n(w(km))zc, (4.37)
the equal-time commutator between the averaged fidld? and(4.29 is
(A (1.5 (r)]==ih = 20 (0 —kike* T3 v /n(w(k“”) (4.39
-
__8_05|Lj(r_rr), (4.39

so that the operators for the vectorial potential and the material polarization field commute, as required

[ar (r),pr(r')]=[ar (r),d(r')]-[a (r),e0e (r')]=0. (4.40



3554 GEDIMINAS JUZELIUNAS 53

It is noteworthy that Eq94.36) and(4.37) represent gen- host molecular dielectric. The result is consistent with the
eral relationships, established by Huttner and Barf@2]  conclusions by previous microscopic QED considerations of
utilizing the analytical properties of,(w)=n?(w). On the  spontaneous emission in the condensed pHd€e23, based
other hand, demanding now that the commutation relationsn one-frequencytwo-leve) representations for each mol-
are to be preserved, one arrives then to the same relatioecule constituting the dielectric medium. Note that our for-
ships(4.36 and (4.37), confirming their validity. malism provides more realistic representation of the host me-

dium, as now an arbitrary number of molecular levels
contributes to the refractive indax. Next, addressing the
V. CONCLUDING REMARKS mode expansio4.12 to the linear absorption, the molecu-
ar absorption cross section can be shd@®] to experience

Microscopic quantization of radiation has been carried ou = P ; - .
picq }Lhen 1 (n2+ 2)/3]? modification in a dielectric medium. It

in a realistic molecular medium, represented by an arbitrar : ) .
P ; to be emphasized that the present thebkg the previous
number of energy leveléelectronic, vibrational, rotational, N . ;
oy & ones [19-23) deals with the normal modes for which

etc) for each molecule of the system. Adopting a polariton

model, the field operators have been expanded in terms 3@%77: Hence, the abovg consideration of the spontaneous
emission(as well as the linear absorptipdoes not apply to

normal Bose operators for polariton creation and annihila-h bsorbing ar £ th rum in which the excitonlik
tion. The expansion coefficients have been explicitly derive& € absorbing areas of the spectru ch the excitonlike

for the normal modes that are characterized by Wavelength@OOIeS W't.hkg. w/a play an Important role. Indeed, as dem-
exceeding considerably the characteristic distamoé sepa- onstrated_ln Fig. @), absorbing regions of _the .SPeCtT“m are
ration between the molecules constituting the dielectric me_character_|zed b_y (_jense sets of .fl_at excitonlike dispersion
dium. Accordingly, the formalism applies to the long- curves \.N'th van!shlng group velocme_s. Hence, for spontane-
wavelength region of the spectrum for which description inQUs emission within such an aBsorptlon region, thg polariton
terms of the macroscopic refractive index is relevant. Th odes with large values 6f (k==/a) may play an impor-

theory has been formulated in a manner that made possible!d't r0le. as they might be in resonance with the emission

parallel comparative consideration of operators for both thédre?ljjencilh Howeve:, t'Lhese modes that\(e not ?ﬁen agcom”.‘tﬁ'
averaged(macroscopig fields and also the local displace- ated In the present theory concentraling on thé moades wi

ment field. Consequently, the relationshijgsven by Egs. k< 7r/a for which description in terms of the refractive index

(4.18—(4.20] have been established between the mode com? 1S .relevant. . . -

ponents of macroscopic and local-field operators: Refractive Finally, the time and space _e_vplunon of macroscopic field
contributions, including the local-field factors, explicitly fea- operators can be analyzed utilizing th_e appropriate normal-
ture in these relations. The relationships support some prevp—qOde expansions for the averaged fields. In this way, the

ous attempts to link the amplitudes of local and macroscopi@retsem fstugy,tr?mng the normaj-mode rgpr%s?ntaltlgnlsd of op-
field operators phenomenologicaligee, for instance, Refs. erators for bo e macroscopfaveragefland local fields,

[33, 34)) and are consistent with the familiar results of the pro_vides a tool for a compined_investigation O.f bOth. propa-
clas'sical electrodynamics as well gation of the quantized fields in molecular dielectrics and

Equal-time commutation relat.ions have been demondSO the interaction of the fields with the embedded mol-
strated to be preserved, expressing the operators for the a@‘—:UIeS or atoms.

eraged fields in terms of the normal Bose operators for po-

lariton creation and annihilation. This is due to the fact that ACKNOWLEDGMENTS
more than one normal frequenaf™ (M=1,2,...M o +1) .
corresponds to each wave vectoin our field expansions, It is a pleasure to thank D. L. Andrews and S. M. Barnett

M ., being the number of molecular frequencies involved.for helpful discussions.
Ignoring any of theM ,,,+1 dispersion branches would alter
the commutation relations leading to violation of microcau-
sality: As discussed earli¢2,23, this happens in the quan-
tization schemes with one-to-one correspondence between
the wave vector and the frequency. On the other hand, the 1. Alternative partitioning of the system
comnutalon elalons bebueen he macroscopi el 12 The representatond.o of the matix Hamionian i
. L Pased on partitioning of the full system into the material and
subject to the coarse-graining procedure. For example, the .~ " : . .
transversed function, featuring in the canonical commuta- radla'q\{e supsystems. n th_|s Appen_dlx, the full system wil
tion relation between the microscopic operators for the vecp e divided in an alternative way Into another two Sub-
. . . . . systems: The first one, denoted bywill now comprise a
torial potential and the displacement field, is now to be re-

: ; material partm coupled to the subspacg, of the first-
placed by the course-grained transvefdenction (4.33). e -
The mode-expansion expansioh12 of d*(r,) may be Brillouin-zone photons, the second subsystentonsisting

. . ) . of other photons that do not belong to the first Brillouin
applied analyzing various molecule-radiation processes and

. . : Zone. The full matrix Hamiltonian may be cast then in terms
also field-assisted molecule-molecule proc¢hsis the op- of its components. as
erator for the local displacement fieth‘(rg) that describes P ’
the coupling of the electromagnetic field with individual h=h, +hgthmn_, +h, _m, (A1)
molecules{.] One may thus arrive quite straightforwardly X X
[25] to then[(n?+ 2))/3]? refractive modification of the rate
of spontaneous emission by a guest molecule embedded invéhereh is the matrix Hamiltonian for the subsystesn

APPENDIX A: DERIVATION OF THE GREEN'S
FUNCTION G™®
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hs=hm+he g+ Dy . (A2)  with
The remaining new components can also be expressed h®' =hg+ h . (Al1)
through the old ones, featured in the original representation
(3.8 of the matrix Hamiltonian, as and
hrozlrohrlroa hrlerxhrlrxa (A3) V,:hrx—m+ hm—rxi (A12)
hm—rg=hm-rlry hrp=m=lrhrm, (Ad)  where the primes refer to the alternative partitioning of the
full system.
hm—rX:hm—rIrxl hrx—mzlrxhr—ma (AS5)

) . . 2. Effective Dyson equation for the subsystens and its formal
wherel, , I, , andl are the following matrices for projec- solution

tion onto the subsystenms, r,, andm, respectively: The Dyson equation may now be written for the Green'’s

2 2 matrix (3.39 of the partitioned matrix HamiltoniagA10),

W= 2 2 [KON(KON, (A6) o

o =iz G=G" +GY v'G, (A13)
2 2 .
with
TR 2 2 2 -
(A7) G%'=G"(w)=[wQ—h"]"" (A14)
and being the zero-order Green's matrix: The prime o@&r will
s 2 help to differentiate it from the ordinary zero-order Green’s
. . matrix,
=2 2 El K,y N DY\l (A)
Y A'=11=

GO=G"(w)=[wQ~(hm+h)] "

The matrix for projection onto the subsystenis then :[wQ_(hm+hro+th)]7lv (AL5)
ls=1¢,*Im- (A9)
that will feature later in Eq(A30). Note that unlikeG®,

In this way, the terméi,,_, andh, _, for the interaction the primed Green’s matribG® accommodates the coupl-
between the two subsystemsandrx, have been defined by ing termsh,_, andh, _r,, featured in Eq(A2).
Egs. (A.5) excluding the contributions by the non-first- Recursive substltutlon of the left-hand side of the Dyson
Brillouin-zone photons from the original interaction matrices equation(A.13) into its right-hand side with subsequent pro-
hy—r andh,_p,. The excluded termb,,_, andh, _, have jection onto the subsystes) produces a Dyson-type equa-
been incorporated into the Hamiltonitg. Accordingly, the  tion for the projected Green’s functidBs=1Gls,
matrix Hamiltonian splits naturally into the zero-order

Hamiltonianh® and the interaction matrix’, as G=GY +GY oGy, (A16)
h=h%+ ", (A10)  where
|
Vemﬁ: hmfrxéorhrxfm (AL7)
3
=> > > |k,matty(k,radl, G'I, |k,rad;;(k,matf (A18)
k (=1j=1 X X

is the operator for the effective interaction within the subsyssedne to the influences of the subsystenin Eq. (A18), use
has been made of Eg8A5), (3.11), and(3.12 to explicitly represent the coupling matricb,%_,x, and h,x_m. Since

I Gl =1, GO, , (A19)
the radiative Green’s function entering E#18) is

[k+G|?8);— (k+G) (k+G);
(wl/c)*~[k+G[* ’

(k,radl, G0 I, |k,rad);= Lﬁ > (A20)
G#0
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where the contribution by th& =0 term has been excluded due to the maltrixmrojecting the radiative matrix vectdj(,rao)j

[given by Eq.(3.14)] onto the subspace,. Performing summation over the inverse lattice ve&drl19,24), Eq. (A20) takes
the form fork<G,

2 2
0’ _ P [2((1)/C) +k ]5|J_3k|k _ P k (S“ k|k z P ‘
(korad |l G™y [k rad =32 (w/c)2—K? sofi (@lC)7—K2~ 3 sgh M- (A2D)

Substituting Eq(A21) into (A18), one finds a final expres-

. 0 . .
i s’ tonian hgﬁ and the interaction termh(n_r0+ h,o_m): The
sion for the matrixv,, ,

latter term represents coupling of the material part of the
p 3 subsystems to the subspace, of the first-Brillouin-zone
oo > 2 |k, matt); (k, mat, (A22) ph(_)tons. The material subsystem may now b_e excludec_l ap-
k=1 plying a procedure analogous to that outlined in the previous
subsection eliminating the subspage As a result, the fol-
lowing effective Dyson equation is obtained for the projected
Green’s matrixGrO,

OQIN

so that the effective Dyson equatioh16) for the subsystem
s has now been fully determined. Its formal solution reads

Gs=Gy(w)=[wQls—h¢" . (A23) L ey NP
Gr,=Gry* Gr (N, nGR hin-r )Gy, (A26)
f . . . . 0 "o "or To m 0 0

wherehg" is the effective Hamiltonian for the subsystesm

h"=hE™+ (N, + Py ) (A2a) Where
and GP =[wQl,,~h, ] (A27)
he=(h,_+ 1M +h (A25)
s m°om fo’ is the zero-order Green’s matrix for the radiative subsystem,
In this way, the coupling of the subsystesiwith the high- and
frequency (non-first-Brillouin zoné photons has been de- "
scribed in an effective manner through the operafﬁr. Re- anﬁ =[wQly—hy,— vﬁf]‘l (A28)
tention of this operator is essential for a proper description of
the local-field effects. is the zero-order effective Green’s matrix for the material
subsystem. Substituting EqgA4), (A6), (3.11)—(3.14
3. Green’s matrix for the radiative subspacer g and (3.34 into Eq. (A26), one finds a closed equation
The effective Hamiltoniarh®™ of the systens has been for the radiative Green’s  function G{jado(k,w)
partitioned by Eq(A24) into the zero-order effective Hamil- E,(k,raq)|GrO|k,raq,)j,
|
G (K, 0) =Gl (k,w) + 2 2 G (k, @) ok, matf GE™ |k, maty, G (K, ). (A29)
=1qg=1
|
Gﬂ-(k,w) being the zero-order Green’s function for the sub- G2 =[wQly—hy] % (A32)
systemr g,
p K25 —kik Substituting Eq(A22) for vemﬁ into Eq. (A31), one obtains
; . i — Kk
G,Oj(k,w)z,(k,raq)|G?O|k,rad3)J—=ﬁ m o0
0 (A30) |(k,mathm |k,matl)j=—ha5|j
2 w
To make further progress, the material Green’s function ~3 i |(k,mat¢Gemﬁo|k,man)j ,
. 0,
p(k,matthnff [k, matt), is to be determined. The following ‘o
effective Dyson equation holds for the Green’s matA28): (A33)
éemﬁozéom_}_é%vtranﬁéﬁqﬁo, (A31) where use has been made of the following:

with ((k,matt G|k, math;= —fa(w)dj, (A34)
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with a(w)=a being the molecular polarizability given by Eq.

(4.3). Hence,
(k,matt G|k, math; = —#a's;,  (A35)
with
2 ap\ 7t
a'=a|ll+z-—| . (A36)
3 €p

Substituting Eq(A35) into Eq. (A29), the formal solution of
the resulting equation reads

Gl (k@)= (ha') 48~ [1+ha' Gk,w)]j '},
(A37)

Whereéo(k,w) is the abbreviation for the>33 matrix given

by Eqg. (A30). Inverting the matrix in the square brackets

yields

. . [(wlc)®—Kk2]68, —kka'pleg
0 -1_ ] ]
Lt Gy = e 2—ka(1= o pleo)

(A38)

Finally, substituting the last result into EGA37) and using
the identity for the refractive indefd.2),
n2=1-a'pleg, (A39)

one grrives to the required res@t.9) for the Green'’s func-
tion Glr].ado.

3557

APPENDIX B: RELATIONSHIP BETWEEN THE
MATERIAL AND RADIATIVE MATRIX ELEMENTS

Combining the basic equations for diagonalizatiB23

and(3.24), it follows that

hS 1=QS QA. (B1)

Multiplying Eq. (B1) on the right by|o’,1) and making use

of Egs.(3.22 and (3.25, one has

(QIl,—h)S Y e,1)=0.

Employing the partitioning3.8) for the matrix Hamiltonian
h, Eq. (B2) may be rewritten as

S o,1)=GI1,) (hy— +h, ) S 0,2),

(B2)

(B3)

Where("SO(HU) is the zero-order Green’s matrix given by Eq.

(A15). Accordingly,

i(k,mattS™*|o,1)
3
:—i|21 i(k,matfG2(11,)|k, math; (k,rad S|, 1),

(B4)

where use has been made of E811) for h,,,_, . Using Eg.

(A34), one finds
i(k,mattS Yo, 1) =ifia(Il,);(k,radS *|o,1). (B5)

Finally, since o=(k,m)\) and II,=o{™, the above is

equivalent to Eq(4.11) of the main text.
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