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We consider the signatures of the integer quantum Hall effect in a degenerate gas of electrically neutral
atomic fermions. An effective magnetic field is achieved by applying two incident light beams with a high
orbital angular momentum. We show how states corresponding to completely filled Landau levels are obtained
and discuss various possibilities to measure the incompressible nature of the trapped two-dimensional gas.
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I. INTRODUCTION

Recent experimental advances in trapping and cooling at-
oms have enabled us to control and engineer the quantum
states of delicate quantum gases such as the degenerate
Fermi gases and Bose-Einstein condensates �1–4�. Ultracold
atomic gases have turned out to be a remarkably good me-
dium for studying a wide range of physical phenomena. This
is mainly due to the fact that it is relatively easy to experi-
mentally manipulate parameters of the system, such as the
strength of interaction between the atoms, the properties of a
lattice in which the atoms are trapped, the geometry of an
external trap etc. Such a freedom of manipulating the param-
eters is usually not accessible in other systems known from
condensed matter or solid state physics. In the present paper
we study trapped spin-polarized fermions. Using fermions
we naturally have a situation that closely resembles the elec-
tronic case with one important exception: the atoms are elec-
trically neutral, and there is no vector potential term due to a
magnetic field acting on the atoms. Therefore a direct anal-
ogy between the atomic and electronic cases is not necessar-
ily straightforward.

The idea of producing effective magnetic fields in quan-
tum gases has been investigated by several authors usually in
connection with optical lattices �5–8� and external rotation
�9,10�. It has recently been realized that in certain situations,
in particular in a rotating frame, trapped atomic quantum
gases can be used to recreate the physical state correspond-
ing to filled Landau levels, and consequently quantum Hall
states �9–15�. Present experimental techniques used for
reaching filled Landau levels involve stirring of a Bose-
Einstein condensate �9,10�. The ultimate goal here is to reach
the state containing as many vortices in the superfluid as
there are atoms. Experimentally it is, however, a rather de-
manding task to accurately control the stirring.

In recent papers �16,17� we have shown how to create an
effective magnetic field without stirring, using two light
beams �to be referred to as the control and probe beams�
where at least one of them carries an orbital angular momen-
tum. The effective magnetic field stems from the interaction
of the laser beams with a medium of three-level atoms in the
electromagnetically induced transparency �EIT� configura-
tion �see Fig. 1�. There is a significant advantage in creating
the effective magnetic field using light, since the key to the
form of the magnetic field lies in the phase and intensity of

the light, concepts which with recent holographic techniques
can be tailored to a remarkable degree nowadays. We are
therefore now in a situation where we can choose different
types of vector potentials and study their influence on quan-
tum gases for both fermions and bosons.

In the present paper we investigate the physical properties
of a degenerate two-dimensional Fermi gas of atoms in the
presence of an effective magnetic field. We start by introduc-
ing the concept of a vector potential and the light-matter
coupling. Subsequently we consider a trapped degenerate
Fermi gas and calculate the effects of a strong magnetic field.
Finally we conclude by discussing the experimental implica-
tions and some future prospects.

FIG. 1. �Color online� �a� The level scheme for electromagneti-
cally induced transparency with the probe beam and control beams
characterized by the Rabi frequencies �p and �c. �b� The experi-
mental setup with two copropagating light beams and a cloud of
cold atoms.
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II. THE MODEL

Let us consider a neutral cloud of three-level atoms inter-
acting with two incident beams of light: a probe beam con-
taining an orbital angular momentum and a uniform control
beam. The atoms are characterized by two hyperfine ground
states 1 and 2 and an excited electronic state 3 �see Fig. 1�.
The two laser beams drive the atoms to the dark state, �D�
��c�1�−�p�2�, representing a coherent superposition of the
two hyperfine ground states 1 and 2. The corresponding
equation for the wave function �D representing the transla-
tional motion of the dark-state atoms is derived in Ref. �17�,

i��t�D =
1

2m
�i� � + Aeff�2�D + Veff�r��D, �1�
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are the effective vector potential and effective trapping po-
tential. The external trapping potential for the dark-state at-
oms is given by

Vext�r� =
V1�r� + ���2�V2�r�� + �21�

1 + ���2
�4�

with Vj being the trapping potential for the atoms in the
hyperfine state j �j=1,2�, and

�21 = ���2 − �1 + �c − �p� �5�

is the energy of the two-photon detuning with ��i the ener-
gies of the hyperfine states. The dimensionless function �
=�p /�c�eiS��� denotes the ratio between the Rabi frequen-
cies for the probe and control beams, where S= �kp−kc� ·r
+�� is the relative phase of the two beams, kp and kc are the
wave vectors, � is the winding number of the probe beam,
and � is the azimuthal angle.

In this way, the incident light field will act as a vector
potential as in Eq. �1�. The appearance of Aeff is a manifes-
tation of the Berry connection which is encountered in many
different areas of physics �18–20�. If we choose the control
and probe beams copropagating, with the probe beam having
an orbital angular momentum �� per photon and the inten-
sity of the form

���2 =
�0�r/R�2

1 − �0�r/R�2 , �6�

we obtain a uniform magnetic field in the z direction, B=
−2��0�R−2êz, with Aeff=−��0�rR−2ê� and �0	1 a dimen-
sionless parameter. In the following we will choose the har-
monic trapping potentials V1�r� and V2�r� such that Veff�r�
=0 for r	R. In Ref. �17� it is illustrated how this can be
achieved using external potentials which are approximately
harmonic, resulting in Veff being close to zero over a large

region. In addition we assume here a steep barrier at r=R.
Such barriers have recently been experimentally demon-
strated using optical potentials �21�.

The atoms can be safely considered noninteracting, since
for spin-polarized fermions only weak p-wave scattering is
present �1–3,22�. The corresponding single-particle states de-
scribing the trapped fermions are governed by the equation
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III. LANDAU LEVELS

Let us assume we have a two-dimensional Fermi gas with
the atomic motion confined to the xy plane. After rescaling
the radial coordinate r=xR and using the ansatz �D
=
�x�eiq� we obtain the solution in the form of a confluent
hypergeometric function


�x� = x�q�e−�����0/2�x2

1F1
1 + �q�
2

− � �

4����0
+

q

2
�, �q�

+ 1; ����0x2
 �8�

where �= �E−Ez�2mR2 /�2 and Ez is the transverse ground-
state energy. As such, Eq. �8� is rather intractable. We can,
however, obtain analytical expressions for the eigenvalues in
the limit ����0�1, where the energies are of the form

�n,q = 2����0�2n + �q� − q + 1� �9�

with n=0,1 ,2 , . . . and q= . . .−2 ,−1 ,0 ,1 ,2 , . . . . This is in-
deed the Landau result. The Landau system is strictly defined
for an untrapped gas, but for ����0�1, the boundary at r
=R has little effect on the energies �23�. Note that the energy
levels in Eq. �9� are highly degenerate and are spaced by
4��0. These levels are equivalent to the Landau levels of the
charged system. The eigenstates for the Landau states are of
the form


�x� = eiq�x�q�e−����0x2/2Ln
�q������0x2� �10�

where Ln
�q������0x2� is the Laguerre polynomials.

Using the corresponding magnetic length �c=R /�2�0�
the magnetic flux becomes N�=R2 /�c

2=2�0�. The Fermi gas
is therefore described by the completely filled lowest Landau
level if the criterion N=N� is satisfied where N is the number
of atoms. On the other hand, it should be noted that the value
of N� and the degeneracy are also limited by the fact that we
have a finite trap.

It is at this point important to realize that the winding
number � of the light beams can with present technologies be
of the order of a few hundred �24,25�, whereas the parameter
�0 is smaller than 1. A high optical orbital angular momen-
tum is achieved by creating a highly charged optical vortex.
There are many different techniques to create optical vorti-
ces. Highly charged optical vortices are typically made using
spatial light modulators which act as a phase hologram,
where the grating can be programmed to achieve the required
phase of the light beam. This method is mainly limited by the
pixel density in the hologram.
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IV. CHARACTERISTICS OF THE FILLED LANDAU
LEVEL GAS

We will illustrate the completely filled Landau level gas
by looking at the static and dynamical phenomena arising
due to the effective magnetic field. One important question in
this respect is how to distinguish between a gas described by
the completely filled lowest Landau level and a gas that oc-
cupies more than one Landau level. In the atomic case the
situation is slightly more subtle compered to the normal
quantum Hall situation with electrons since with noninteract-
ing atoms the concept of resistivity is not necessarily a useful
and well-defined one.

We start by calculating the single-particle mass current. In
order to do this we have to use the correct form of the current
operator �26� which now takes the form

Jk�x� = −
i

2
��†�Dk�� − �Dk��†�� �11�

where Dk=�k− iAeff
k /q. Using the eigenstates in Eqs. �10� and

�11� we obtain the current density

Jq�x� = 
q
*J
q = Cq

2x2q−1e−�0�x2� q

�0�
− x2�ê�, �12�

where Cq is a normalization constant. The current is clearly
zero at the central distance r�=��q� /�0� and flows in oppo-
site directions on either side of r�. The total current is con-
sequently going to be zero.

In the spirit of the integer quantum Hall effect in a
Corbino geometry we may ask ourselves, what happens if we
add a potential linear in r of the form V�r�=
r? If
mR2
�c /�2���0�2�1 the solutions of Eq. �7� can be ap-
proximated by shifting the solutions in Eq. �10� by the factor

 /2�0�. The resulting single-particle current density then
takes the form

Jq�x� = Cq
2�x −

1

2
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x
� q
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�13�

where the current is no longer zero as in the previous case.
The total current per particle in the � direction and in the
lowest Landau level becomes Jtot

q =�dx Jq�x�=
��0���q
+1/2� / �4q!��
��0� / �4�q�. This also shows that the veloc-
ity varies as 1 /r since the single-particle state is centered at
r=r�=�2qR /��0�; hence the flow is irrotational. On the
level of our approximations the current does not depend on
which Landau level is occupied. Therefore the current de-
pends nontrivially on the particle number which manifests
itself as a jump in the derivative with respect to particle
number or magnetic field. In Fig. 2 we show the total current
Jtot=�q=0

N−1Jtot
q =��0�
��N+1/2� / �2�N−1�!��
��0�N /2 as

a function of particle number N.
The physics of the lowest completely filled Landau level

is in itself an interesting concept and shows some rather in-
triguing scenarios from both a fundamental and an experi-
mental point of view �27�. One of the most important ques-
tions concerning the atomic quantum Hall state is what to
measure. For a gas described by the completely filled Landau

level, the density is going to be homogeneous, since the den-
sity is effectively built up by shifted Gaussians correspond-
ing to the different angular momenta as can be seen in Eq.
�8�. This also means we have added an external potential in
order to have Veff=0. This is not necessary but makes the
situation simpler and more intuitive. Consequently, if there is
no probe beam carrying orbital angular momentum propagat-
ing through the gas, the atoms will be subject to an external
harmonic trap and hence will show a density profile qua-
dratic in r, clearly different from the filled Landau state �see
inset in Fig. 3�. From an experimentalist’s point of view a
direct observation of the density of the cloud in the trap is
not necessarily the most convenient way of observing the
atoms. Another possibility is to consider the free expansion
of the cloud.

Since the trapped fermions can be considered noninteract-
ing we can calculate the dynamics of the freely expanding
cloud using the single-particle propagator,

K�r,r�,�,��;t� =
1

i4��
e�i/4���r2+r�2−2rr� cos��−����, �14�

where � is the rescaled time t= �2mR2 /��� and r is in units of
R. After a straightforward integration we obtain the dynamics
of the freely expanding cloud using the states in Eq. �8� �see
Fig. 3�. The dynamics of the cloud described by the single
completely filled Landau level is self-similar and is captured
by the scaling parameter �L=�1+4�2��0��2. In Fig. 3 we
show the mean width defined as ����=2��dr r2��r� /�N
which can readily be calculated using the states in Eq. �8�.
The lowest completely filled Landau level is found to expand
as ����=�L����2�N+1� /��0 �28�.

Clearly the expansion of a single completely filled lowest
Landau level compared to the situation with also the second
Landau level filled is not going to be much different, since
the expansion is still self-similar, apart from contributions
from the edge states. The density of the trapped cloud is
going to be homogeneous and will remain so when expand-
ing. This is seen from the energy spectrum in Eq. �9�. For an
energy corresponding to the second Landau level we can
have n=1 and q�0 but also n=0 and q=−1. But this cor-
rection is only of the order of a single particle and will not be
measurable; hence the expansion dynamics will be the same
as in the lowest Landau level. There will, however, be a
significant difference if we consider the two extreme situa-
tions with a Fermi gas described as a completely filled low-
est Landau level and the situation when the effective mag-

FIG. 2. The current as a function of particle number N and its
derivative clearly show the transition between the Landau levels at
N=NL.
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netic field is weak. If the magnetic field is weak the trapped
Fermi gas is well described by spherical Bessel functions
corresponding to the eigenfunctions of a cylindrically
trapped Fermi gas. The expansion dynamics can still be cal-
culated with the free-particle propagator in Eq. �14�. The
important difference is evident in the expansion which is no
longer going to be self-similar. Figure 3 shows the mean
width of the cloud as a function of time compared to the
completely filled lowest Landau level. The broken self-
similarity is most clearly seen in a series of snapshots of the
density compared to the density of the completely filled Lan-
dau level. The lowest Landau level states expand much faster
than states belonging to higher Landau levels corresponding
to the weak magnetic field case. This is easily understood
since the lowest Landau level states are pure angular mo-
menta states with no radial excitation, whereas the gas with a
weak magnetic field contains states with radial excitations
but lower angular momenta, and hence lower kinetic energy.

V. CONCLUSIONS

Throughout this paper we have considered a two-
dimensional trapped Fermi gas. It is important to remember
that a two-dimensional Fermi gas imposes some rather strict
conditions on the external trap configuration. The two-
dimensionality is preserved if the Fermi energy is lower than
the relevant transverse ground-state energy. The relevant en-
ergy scale is here the effective cyclotron frequency which for
typical radii of the cloud �a few tens of micrometers� can be
of the order of 100 Hz; hence the transverse trap frequency
needs to be significantly stronger than this. Such traps are
indeed readily available �29�. The effective magnetic field
relies on the stability of the dark state. As discussed in Ref.
�17�, with typical experimental parameters, the dark state
will be stable for times significantly longer than the normal
lifetime for a trapped cloud, making the effective magnetic
field created by optical orbital angular momentum a feasible
technique for achieving strong magnetic fields. Clearly, from
an experimental point of view, the biggest challenge is found
in the detection of the mass current in the cloud. There are,
however, powerful techniques based on slow light propaga-
tion and the dragging of the light �26,30� which will identify
a mass current in the cloud in situ. Another possibility is to
measure the shape oscillations which should be affected by
the current.

In this paper we have investigated the concept of com-
pletely filled Landau levels in trapped Fermi gases. The ef-
fective magnetic field was created using light with orbital
angular momentum. The recent advances in creating exotic
light beams where both phase and intensity can be manipu-
lated, allows us to consider many different forms of the ef-
fective magnetic field. We have restricted ourselves to the
“textbook” scenario with a homogeneous effective magnetic
field. It is important to note here that this scenario is different
from other techniques where filled Landau levels are consid-
ered. In the case of bosons in a harmonic trap, the gas is
stirred to create many vortices resulting in an angular mo-
mentum which would correspond to the trap ground-state
energy. In our case the situation is much simpler. Only a
static external trap needs to be added which matches the
corresponding cyclotron frequency. If the frequency of the
added harmonic trap does not match the cyclotron frequency,
the important degeneracy will be lifted, but as long as

N = qmax 	
2

1 − 1/�1 + ���/�c�2
� 4� �c

��
�2

�15�

where �c=��0� / �mR2� and �� is the preferably small de-
viation, the atoms that fill the lowest Landau level will not
mix with the higher levels.
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FIG. 3. �Color online� �a� The non-self similar expansion of the
cloud of atoms corresponding to a weak magnetic field where many
Landau levels are occupied ��0�=0.1� and Veff=0. The different
curves correspond to the times �=0,0.02,0.04,0.06,0.08,0.10
where � is in units of 2mR2 /�. The inset shows a comparison be-
tween the densities at �=0 for ��0=0.1 which occupies many Lan-
dau levels and the cloud of atoms described by the single com-
pletely filled lowest Landau state, N=��0=100 and Veff�x�=0 for
x	1. In both figures the total number of particles was N=100. �b�
The diameter ����=2��dr r2��r� /�N for the completely filled Lan-
dau state is seen to expand much more rapidly than the state corre-
sponding to a weak magnetic field ��0�=0.1�.
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