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We show that the de-excitation process of a dipole emitter can be altered controllably when it is embedded
in a dielectric wedge of an arbitrary angle 0��0�2�. We focus here on the case of a dielectric wedge
bounded by a perfect conductor and show that the de-excitation process for different wedges, distinguished by
�0, displays a wide range of features. Besides the dependence on the emitter location at the narrow end, the
de-excitation process exhibits a strong dipole orientational dependence, suggesting that the system might serve
as a qubit in a controllable scalable hardware architecture for the purpose of quantum information processing.
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There is currently a heightened research effort devoted to
the important goal of identifying a qubit and a suitable envi-
ronment that forms the basis for a scalable hardware archi-
tecture for the practical realization of quantum information
processing �1�. A physical system that has recently been sug-
gested as a candidate for such a purpose involves localized
emitters in the form of atoms, molecules, or quantum dots
embedded in a nanocrystal �2�. The suggestion was particu-
larly persuasive as it followed the success of experiments
performed by Grangier and co-workers who, for the first
time, to the best of our knowledge, were able to demonstrate
quantum cryptography using a nitrogen vacancy in a dia-
mond nanocrystal as a single-photon source �3,4�. It has,
however, been realized that a more versatile scenario could
be achieved by making use of the interplay between dielec-
tric cavity confinement and dipole orientation. Cavity con-
finement can control processes since it can lead to the en-
hancement and the complete suppression of the de-excitation
process �5–8�, with further control provided by the manipu-
lation of the dipole orientation by optical means.

A different dielectric cavity QED system that we wish to
highlight here, that seems promising for the purpose of quan-
tum information processing, is the system in which a dipole
emitter is localized near the sharp end of a material wedge.
As far as the authors know, this quantum optical system has
not been considered before, so its properties are hitherto un-
known. The system, as shown schematically in Fig. 1, is a
wedge-shaped dielectric slice of an arbitrary angle �0. The
two planar surfaces of the wedge intersect along the z axis
and are in contact with another material that, in general,
could be another dielectric or a metal, but here we shall
consider the case of a dielectric wedge bordered by a high
conductivity metal, to be referred to as a perfect conductor.
The dipole emitter is shown situated in the wedge region at
the space point R= �x ,y ,0�= �r� ,0���r� ,� ,0� in cylindrical
polar coordinates, with the planar surfaces of the wedge de-
fined by the equations �=0 and �=�0.

The total Hamiltonian of the electromagnetic fields inter-
acting with the emitter is given by

H = ��0�†� −
1

�0
� · D�R� + Hf , �1�

where D is the electric displacement operator of the field.
The internal motion of the emitter is represented here in
terms of only two states: �e�, of energy Ee, and �g�, of energy
Eg, such that Ee−Eg=��0, where �0 is the dipole excitation
frequency. The operators � and �† are lowering and
raising operators for internal atomic states, so that �
= 	��eg��+�†� represents the dipole moment vector operator
of the emitter. Here Hf is the quantized Hamiltonian of the
electromagnetic fields in the dielectric region satisfying the
boundary conditions at the conductor surfaces, namely, the
vanishing of the components of the electric and magnetic
fields tangential to the conductor surfaces. In the dielectric
Hf has the usual form of expression as the sum of electric
and magnetic energy densities integrated over all space and
its quantization follows a standard path �9�, the result of
which is described below for the wedge geometry in ques-
tion. The de-excitation rate for an excited emitter whose di-
pole moment vector is oriented in the direction �̂ is given by
the golden rule:

FIG. 1. Schematic drawing showing the dielectric wedge sub-
tending an acute angle �0 in contact with a perfect conductor. The
dipolar emitter is represented by the arrow positioned at the general
point R of cylindrical coordinates �r� ,� ,0�. The wedge interfaces
are defined by the equations �=0 and �=�0.
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	�̂�R� =
2�

�2�0
2


Q

�	e;�0�− � · D�R��g;�Q��2
„��Q� − �0… ,

�2�

where ��Q� stands for a one-quantum state of the electro-
magnetic field satisfying the boundary conditions at the
wedge surfaces; ���Q� is the one-quantum energy and ��0�
stands for the electromagnetic vacuum field state. The quan-
tized electric displacement field operator, D is evaluated at
the position vector R of the emitter. The evaluation of the
de-excitation rate requires the construction of the displace-
ment field vector operator D in terms of field quanta satisfy-
ing electromagnetic boundary conditions at the wedge inter-
faces. For perfectly conducting boundaries the field modes
emerge as either transverse electric TE, for which Ez=0, or
transverse magnetic TM for which Bz=0. Using cylindrical
coordinates R= �r� ,z� we write

D�R� = 

�=1,2



n
� d2k��Fk�,n

��� �r�,z,t�a��k�,n� − H.c. ,

�3�

where k� is a two-dimensional wave vector in the x-y plane.
The operator a��k� ,n� and its Hermitian conjugate are anni-
hilation and creation operators for the quanta of the mode of
polarization �, where � is either TE for which �=1, or TM,
for which �=2. Their commutation rules are those for
bosons

�a��k�,n�,a��
† �k��,n��� = 
���
nn�
�k� − k��� . �4�

The vector functions Fk�,n
��� �r� ,z , t� are the mode spatial dis-

tribution functions. For TE modes, �=1, the mode functions
can be written as

Fk�,n
�1� �r�,z,t� = Ck�,n�Jm�k�r��

n�

�0
sin�n�

�

�0
� r̂�

r�

−
�Jm�k�r��

�r�

cos�n�
�

�0
��̂�ei�kzz−��k�,n�t�,

�5�

where carets denote unit vectors and kz is given by

kz
2 = ��2/c2 − k�

2 �6�

with ����k� ,n� being the mode frequency. In Eq. �5� and
subsequently, Jm�x� are Bessel functions, where m is related
to integer n�0 b

m =
n�

�0
. �7�

Ck�,n
are mode normalization factors given by

Ck�,n
= � ��

2���0k�
2�1/2

. �8�

For the TM mode ��=2� we have

Fk�,n
�2� �r�,z,t� = Ck�,n��k��

�Jm�k�r��
�r�

sin�n�
�

�0
�r�̂

+ �k��Jm�k�r��
n�

�0
cos�n�

�

�0
� �̂

r�

+
ck�

2

���
Jm�k�r��sin�n�

�

�0
�ẑ�ei�kzz−��k�,n�t�,

�9�

where

�k�� = �1 −
c2k�

2

��2�1/2

. �10�

The normalization of the fields has been carried out so that
the electromagnetic field Hamiltonian Hf, described in the
context of Eq. �1�, reduces to the canonical form:

Hf =
1

2 

�=1,2



n
� dk����k�,n��a�

†�k�,n�a��k�,n�

+ a��k�,n�a�
†�k�,n�� . �11�

This amounts to the condition

�Fk�,n
��� �r�,z,t� · Fk�,n

���*�r�,z,t�d2r�dz = 1
2���k�,n� , �12�

where we have suppressed the subscript � in � for the ease
of notation.

The procedure for evaluating the de-excitation rate in-
volves substituting from Eqs. �5� and �9� in Eq. �3� and sub-
sequently in Eq. �2�. It turns out that for a general angle �0
and after carrying out straightforward integrations, the ensu-
ing expression for 	 cannot be reduced any further to a
simple analytical form and, in general, the final steps in the
evaluation inevitably involve some numerical analysis.

There are four different types of dielectric environments
in which the emitter can be localized. These are distin-
guished by the range of the angle �0 as follows: �a�
0��0��, representing a dielectric wedge surrounded by a
metal that occupies most of the space; �b� �0=�, represent-
ing a dielectric half-space in contact with a metallic half-
space. This is the much discussed case of an emitter in front
of a planar metallic surface �2,5–9�; �c� ���0�2� in
which the metallic region forms a wedge and the dielectric
occupies most of the space; and, finally, �d� ��2� in which
the conductor forms a sheet of infinitesimal thickness occu-
pying the half-plane x-z embedded in a dielectric bulk. In
this way, the wedge geometry accommodates a variety of
situations ranging between a half metal plane and a full
metal plane. It should be emphazised that all elements of our
formalism, including the quantized fields defined above, are
applicable to all these cases with �0 assuming any value
within the continuous range between 0 and 2�. Throughout,
the emitter is assumed to be localized in the dielectric at a
well-defined position, which is considered to be controllably
variable. It is possible to examine the manner in which the
de-excitation rate distribution for emitters localized in the z
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=0 plane evolves with changing angle �0 in the different
environment cases mentioned above. The results, displayed
below, are in the form of gray scale graphs in which the rate
is enhanced in certain regions �regions of super-radiance�
continuously decreasing to regions where it is suppressed
�regions of subradiance�. The rate is normalized in terms of
the rate 	0 in an infinite dielectric given by

	0 =
4�2�0

3

3��0c3�
R , �13�

where R is a factor accounting for the local field corrections
�10–13� and depends on �, the relative permittivity of the
dielectric in which the emitter is embedded. In Figs. 2�a� and
2�b� we should note the marked change in behavior when the
dipole orientation is switched from perpendicular, i.e., along
the edge �z axis� to being in-plane �i.e., in the x-y plane�.
Note also that in the parallel dipole orientation case, the re-
gion nearest to the narrow end of the wedge, Fig. 2�b�, is a
region of enhancement, while the corresponding region in
the perpendicular dipole orientation is a region of high sup-
pression. Excited emitters with perpendicular dipole orienta-
tions situated in this region, in principle, preserve their state

of excitation indefinitely. In fact it can be seen that regions of
enhancement in Fig. 2�a� correspond to regions of suppres-
sion in Fig. 2�b� and vice versa. If an emitter localized in a
dark region is suddenly made to change its dipole orientation
by optical means, for example, from parallel to perpendicu-
lar, the emitter could be de-excited at an enhanced rate, i.e.,
the emission changes from subradiant to super-radiant, de-
pending on the location of the emitter. It is envisaged that
this in situ control of de-excitation from subradiant to super-
radiant could be useful in quantum information processing.
We have checked by explicit evaluation that the analytical
framework for a general �0 reproduces the well-known re-
sults for the two types of dipole orientations for an emitter in
front of a metallic half-space by setting �0=�, which repre-
sents a useful check of the correctness of the procedure.
Finally we should highlight the interesting extreme case of
the general system we have defined, namely, the case in
which the angle �0 becomes approximately equal to 2�. In
this limit the dipole emitter is near a metallic half-plane oc-
cupying half the x-z plane, embedded in a full-space dielec-
tric bulk. The results for the relative de-excitation rate 	 /	0
are displayed in Fig. 3 for the two dipole orientations. It is
seen that the rate varies symmetrically around the line of

FIG. 2. Dielectric wedge for which �0=� /4 embedded in a
perfect conductor. The main figure shows the spatial distributions of
the relative emission rate 	 /	0 for dipole emitters in the x-y plane
when the dipole moment is �a� oriented along the z axis �perpen-
dicular case� and �b� oriented parallel to the x-y plane �along the
azimuthal direction �̂�. Distances are in units of k0

−1 where
k0=�0 /2�, where �0 is the dipole transition wavelength. The
brightest regions represent maximum emission rates. The inset for
each case shows the variation of the corresponding relative rate at
points along the symmetry line �=� /8.

FIG. 3. Metallic half-plane embedded in a dielectric ��0�2��.
Spatial distributions of the relative emission rate �referred to as 	
for convenience� for dipole emitters in the x-y plane when the di-
pole moment is �a� oriented along the z axis �perpendicular case�
and �b� oriented in the x-y plane—along the radial direction r�̂.
Distances are measured as in Fig. 2 and the brightest regions are
regions of highest emission rates. The insets for each case show the
variation of the corresponding relative rate at points along the sym-
metry line ��=�� in the upper inset, and along a line at �=� /50 in
the lower.
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termination �the positive x axis� for all excited emitters lo-
calized in the dielectric in the vicinity of the edge. We have
checked by explicit evaluations that at sufficiently large dis-
tances from the termination line the de-excitation rate distri-
butions on either side of the half-plane approach those ap-
propriate for an emitter in front of a perfect conductor plane.
This is clearly seen in Fig. 3�a�. A change in the dipole
orientation as seen in Fig. 3�b� modifies the rate distribution
markedly, with considerable enhancement experienced in the
vicinity of the termination line. As far as the authors know,
this is the first time that a treatment of this kind for dipole
decay near the termination line of a metallic half-plane has
been put forward and so is of interest in its own right.

At very short distances of the emitters from the dielectric-
conductor interfaces, one needs to modify the model to in-
corporate nonradiative losses due to finite conductivity and
take account of surface roughness. In practice, one would
seek to position the emitters in the vicinity of super-radiance
or subradiance regions located at distances that are of the
order of a significant fraction of a wavelength. For optical
transitions, these are of the order of hundreds of nanometers
from the interfaces and so, as a first approximation, any non-
radiative �resistive� effects can be safely ignored.

In conclusion we have put forward a general framework
that quantifies the de-excitation rate for dipolar emitters em-
bedded in a wedge-shaped dielectric surrounded by high
conductivity metal. The treatment is general in the sense that
it is capable of predicting de-excitation rate distributions for
the case of a wedge of an arbitrary angle �0 and we have
highlighted the significance of the results in the limit of �
close to 2�, corresponding to dipole decay near the termina-
tion line of a metallic half-plane.

The prospect of the applicability of the work presented
here to the area of quantum information processing rests in
the suggestion that the de-excitation rate of dipole emitters
near the narrow end of the wedge can be controlled optically

from totally dark to super-radiant by a change of dipole ori-
entation. Work is now in progress to explore the two-body
and multibody cooperative effects in the same environment,
since such effects are envisaged to be important for the real-
ization of two-bit quantum gates �14–16�. The general situ-
ation differs considerably from the familiar problem of a pair
of dipoles in front of a plane �corresponding to a specific
case where �0=� in our analysis�. For instance, if we have
two dipoles at different points, one parallel and one perpen-
dicular to one of the metal planes, the two dipoles are totally
uncoupled through the field for �0=�. However, in a more
general situation, the pendicular and parallel dipoles would
be coupled for all wedge angles with �0��. This is just one
transparent example of the uniqueness of the wedge case that
makes its results quite distinct from the well-known single
and parallel plane cases �17�. The processes of addressing
and the readout of qubits are envisaged to be achievable in a
similar manner to that for the situation in ion traps �18�, but
the solid state environment, for example, the case of color
centered in a wedge-shaped nanocrystal, is clearly advanta-
geous in terms of scalability. It would be particularly advan-
tageous to exploit the absence of unwanted color center re-
coil in the processes of emission and absorption and the
implications of this for the control of decoherence. The ex-
perimental realization of the system we suggest here is not
expected to pose difficulties since any desired shape made
with a variety of different materials can now be created,
thanks to recent advances in material preparation at the
nanoscale using modern deposition techniques and lithogra-
phy. These advances, coupled with parallel advances in the
detection of atomic and molecular position to nanometre ac-
curacy �19� should make the predictions we have made here
amenable to direct experimental investigation.
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