
PHYSICAL REVIEW A 84, 025602 (2011)

Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms
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We describe a new class of atom-laser coupling schemes which lead to spin-orbit-coupled Hamiltonians
for ultracold neutral atoms. By properly setting the optical phases, a pair of degenerate pseudospin (a linear
combination of internal atomic) states emerge as the lowest-energy eigenstates in the spectrum and are thus
immune to collisionally induced decay. These schemes use N cyclically coupled ground or metastable internal
states. We focus on two situations: a three-level case and a four-level case, where the latter adds a controllable
Dresselhaus contribution. We describe an implementation of the four-level scheme for 87Rb and analyze its
sensitivity to typical laboratory noise sources. Last, we argue that the Rashba Hamiltonian applies only in the
large intensity limit since any laser coupling scheme will produce terms nonlinear in momentum that decline
with intensity.
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Spin-orbit (SO) coupling is essential for realizing topo-
logical insulators, noninteracting fermionic systems with
topological order [1,2], and yet in other contexts it leads to
parasitic effects such as reduced spin coherence times [3]. As
with the progression from the single-particle integer quantum
Hall effect (IQHE) to the interaction-driven fractional quantum
Hall effects (FQHEs), the next important step is realizing the
strongly interacting cousins to the topological insulators, of
which topological superconductors are a first example [4,5].
Since ultracold atoms lack intrinsic SO coupling, numerous
techniques for generating SO coupling (generally equivalent
to non-Abelian gauge potentials [6]) with optical [7–11] and
now rf [12] fields have been suggested, one of which was
recently implemented [13].

Current proposals for realizing SO coupling suffer from
two primary limitations. First, the pair of dressed spin states
composing the effective spin-1/2 system are not the two lowest
energy states, so collisional deexcitation [14] can rapidly
transfer population into the ground state [15]. Second, the
required tripod coupling scheme is difficult to directly realize
in alkali atoms [16] In this Brief Report, we introduce a class
of laser coupling techniques that overcome these difficulties,
and we explore the departure of such models from the ideal
case (suitable only at infinite laser intensity).

In condensed matter systems, SO coupling links the linear
or crystal (not orbital) momentum h̄k to the spin of an electron,
for example. For systems confined to two dimensions (2D),
terms linear in momentum can be represented as a sum
of Rashba α(σ̌xky − σ̌ykx) and Dresselhaus β(σ̌xky + σ̌ykx)
SO couplings [17,18], where σ̌x,y,z are the Pauli matrices.
Proposals for creating SO coupling with neutral atoms use
lasers to link states of different momentum and spin. Because
these lasers impinge from discrete directions, the system lacks
the continuous rotational symmetry of the pure Rashba Hamil-
tonian anticipated in earlier works [10,11,19]. We show how a
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perturbative treatment restores the system’s N -fold rotational
symmetry and demonstrate that these pure couplings are only
exact in the limit of infinite laser-atom coupling strength.

We consider N ground or metastable atomic “spin” states
{|1〉 , |2〉 , . . . , |N〉} cyclicly coupled together with complex
valued matrix elements �j+1,j = −� exp[i(kj ·x + γj )] rep-
resenting plane waves that link consecutive states |j 〉 to
|j + 1〉. Here, � describes the optical coupling strength;
h̄kj and γj are the respective discreet momentum and
phase acquired in the j → j + 1 transition. Throughout
this manuscript we apply “periodic boundary conditions”
|N + 1〉 = |1〉 for spin states. See, for example, the four-state
topology in Fig. 1(a).

Including the motional degrees of freedom, the many-body
Hamiltonian

Ĥ =
∫

d2k
(2π )2

N∑
j=1

{[
h̄2|k|2

2m
+ (−1)j

ε

2

]
φ̂
†
j (k)φ̂j (k)

− �

2
[eiγj φ̂

†
j+1(k + kj )φ̂j (k) + H.c.]

}
(1)

describes a system of atoms with mass m in 2D absent the
ubiquitous confining potential. Here, {φ†

j (k)} is the spinor field
operator describing the creation of an atom with momentum
h̄k in internal state |j 〉; for even N , we introduce ε, describing
a detuning of alternating sign.

In what follows, we require that
∑

ki = 0, so that no
momentum is transferred to an atom during a |1〉 → · · · →
|N〉 → |1〉 transition. We define the momenta exchange with
differences kj = Kj+1 − Kj and require {Kj } to have a zero
average. Moreover, γ̄ may replace the phase γj of each
state vector |j 〉, where γ̄ = ∑

i γi/N [20], without loss of
generality.

With the substitution ˆ̄ϕ†
j (q) = φ̂

†
j (q + Kj ), the

Hamiltonian [Eq. (1)] separates into an integral∫ ∑
j,j ′ ˆ̄ϕ†

j (q)H̄j,j ′(q)ϕ̄j ′ (q)d2q/(2π )2 over N×N blocks,

H̄j,j ′ (q) = h̄2|q + Kj |2
2m

δj,j ′ + (−1)j
ε

2
δj,j ′

− �

2
[eiγ̄ δj−1,j ′ + H.c.], (2)
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FIG. 1. (Color online) Four-level scheme. (a) Effective coupling
between four internal ground or metastable atomic levels. (b) Spatial
orientation of coupling fields. (c) Uncoupled eigenenergies for � =
ε = 0. The four free parabolas are displaced by Kj in the qx-qy

plane. (d) Dispersion of four dressed states for � = 3 ER , ε = 0, and
γ̄ = π/4, showing the expected Dirac points, one for each pair of
dressed bands.

each labeled by a quasimomentum h̄q. The first (kinetic
energy) term in Eq. (2) describes the 2D displaced parabolas
depicted in Fig. 1(c). In analogy to band structure, the last
(coupling) term in Eq. (2) has the form of an N site 1D periodic
tight-binding Hamiltonian with a “magnetic flux” Nγ̄ and a
“hopping” matrix element �/2, where internal atomic states
play the role of lattice sites. We diagonalize the coupling term
(a zero-order approximation suitable when � is much larger
than all other parameters) by transforming it into the basis
conjugate to the spin-index j with field operators

ϕ̂
†
�(q) = 1

N1/2

N∑
j=1

ei2π�j/N ˆ̄ϕ†
j (q).

The diagonalization provides the eigenenergies E� =
−� cos(2π�/N − γ̄ ) of the coupling Hamiltonian, where � ∈
{0, . . . ,N − 1} is analogous to the usual crystal momentum.
The ground state can be made twofold degenerate by tuning
γ̄ to “magic” phases γ̄ = 2π (p + 1/2)/N for p ∈ Z. The
manufactured degeneracy between states at � = 0 and 1 for
γ̄ = π/N is illustrated by Fig. 2 for N = 3 and 4.

When the displacement vectors Kj reside on the ver-
tices of a regular polygon, Kj = −kL sin(2πj/N )ex +
kL cos(2πj/N )ey , the full Hamiltonian matrix is

H�,�′(q) = (q2 + 1 + E�)δ�,�′

+ [(iqx + qy)δ�−1,�′ + H.c.] + ε

2
δ�−N/2,�′ , (3)

3210
-1.0

-0.5

0.0

0.5

1.0

210

(b)(a)

FIG. 2. (Color online) Eigenenergies E� of the coupling term in
Eq. (2) showing the cosinusoidal energies evaluated at integer �. (a)
Three-level case with γ̄ = π/3 and (b) four-level case with γ̄ = π/4.
For both cases we identify pseudospin states |↑〉 and |↓〉 with the
lowest energy pair of states.

where momenta and energies are expressed in recoil units,
kL and EL = h̄2k2

L/2m, respectively. Assuming γ̄ ≈ π/N , we
focus on the manifold of two nearly degenerate states with
� = 0 and � = 1, yielding the pseudospins |↓〉 and |↑〉 depicted
in Fig. 2.

In what follows, we derive an effective 2 × 2 Hamiltonian
Ȟ ≈ Ȟ (0) + Ȟ (2) + Ȟ (3) for this manifold up to third order
in powers of �−1. In the subspace spanned by the lowest
energy pseudospin-pair we obtain (up to a constant) a zero-
order Hamiltonian of the Rashba form

Ȟ (0) = |q|21̌ + (σ̌xqy − σ̌yqx) + 
Z

2
σ̌z, (4)

with a Zeeman field 
Z = E1 − E0 ≈ −2�γ̄ ′ sin(π/N ) gen-
erated by slight changes γ̄ ′ = γ̄ − π/N from the magic phase.
At finite coupling �, we adiabatically eliminate the excited
states order-by-order in perturbation theory giving effective
terms H (n) in the ground manifold Hamiltonian.

Since Eq. (3) is cyclic for ε = 0, we expect an energy
shift at order n = 2 in perturbation theory (effectively a Stark
shift) and pseudospin-changing terms at order n = N − 1.
These terms serve to restore the N -fold rotational symmetry
absent from Eq. (4) and in the analogous expressions of earlier
proposals [8,11,19]. To understand the departure from the
Rashba Hamiltonian, we first consider the simpler ε = 0 case.

For the N = 3 case the second-order effective Hamiltonian

Ȟ (2) = − 2

3�

[|q|21̌ + 2σ̌x

(
q2

y − q2
x

) + σ̌yqxqy

]
restores the expected threefold symmetry. For N = 4, the
second-order term acts as a state-independent Stark shift, but
the third-order correction

Ȟ (3) = 1

2�2

[
σ̌x

(
q3

y − 3qyq
2
x

) − σ̌y

(
q3

x − 3q2
yqx

)]
restores the fourfold rotational symmetry. This term is rem-
iniscent of the cubic Dresselhaus SO coupling present in
GaAs 2D electron systems [3,21]. The Rashba Hamiltonian’s
[Eq. (4)] ground-state energy is minimized on the ring where
|q| = 1/2; the perturbative terms modulate both the momenta
and the energy where the minima occur [22]. Figure 3(a) shows
this modulated energy for the four-level case at � = 3EL;
Fig. 3(b) plots the peak-to-peak amplitude of the energy
modulations. The perturbative analysis given by the dashed
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FIG. 3. (Color online) (a) Energy of the lowest eigenstate for N =
4, � = 3EL, ε = 0, and γ̄ = π/4 plotted in the qx-qy plane showing
the fourfold rotational symmetry. The graph is colored according to
the energy, and white curves mark contours of equal energy. The
yellow dashed line depicts the azimuthal modulation of the radius
in momentum of the energy minimum. (b) Peak-to-peak magnitude
of the azimuthal energy modulations Emod plotted as a function of
coupling �, showing a rapid suppression for N = 4 as compared
to N = 3. The solid red curves, the result of exactly solving the
full Hamiltonian, quickly converge to the perturbation result (black
dashed lines).

lines rapidly converges to the numerical solution to the full
Hamiltonian given by the solid curves. Since the magnitude of
the modulations scale like �2−N , the three-level case requires
an impractically large � > 100EL to reduce the corrections to
the Rashba Hamiltonian below 10−3EL, while the four-level
case requires just � = 10EL. Interestingly, the familiar tripod
scheme [6,8,10,11,19] reduces to our N = 3 ring model when
far detuned from the excited state, with γ̄ = 0 for red detuning
and γ̄ = π/3 for blue detuning. By contrast, the corrections
to the Rashba model converge as �−2 in the standard resonant
tripod (a four-level system).

The alternating detuning ε featured in Eq. (2) leads to a
superlattice in the above-mentioned band-structure anal-
ogy, and its contribution can be included exactly. How-
ever, for a more painless description, we take ε/� 	 1,
which for N = 4 adds a tunable Dresselhaus term ȞD =

(a) Coupling diagram (b) Layout

BEC

FIG. 4. (Color online) Four-level ring coupling scheme in 87Rb
involving hyperfine states |F,mF 〉 Raman-coupled by a total of five
lasers marked σ1, σ2, σ3, π1, and π2. (a) Level diagram: Each red
curve represents a two-photon Raman transition with polarizations
as marked by the field symbols. The ring states are mapped to
physical states according to |1〉 = |2,0〉, |2〉 = |1,−1〉, |3〉 = |1,0〉,
and |4〉 = |2,1〉. A 6.8-GHz microwave field with coupling strength
�μ ac Zeeman shifts the internal states |1,0〉 and |2,0〉. (b) Schematic
layout: A bias magnetic field B0 ≈ 0.2 mT lies along ŷ. Lasers π1 and
π2 are π polarized. Lasers σ1, σ2, and σ3 are left circularly polarized
and their relative phases define Nγ̄ = 2φσ2 − φσ1 − φσ3 .

(ELε/
√

2�kL)(σ̌xqy + σ̌yqx) at second order in �−1 (in
original units). Thus, our scheme produces both Rashba
and Dresselhaus couplings with strengths α = EL/kL and
β = ELε/

√
2�kL along with a ẑ-aligned Zeeman field 
Z ≈

−√
2�γ̄ ′. The laser configuration specifies α, the alternating

laser detunings set β, and 
Z is controlled by the average
phase γ̄ . Together this allows for nearly complete control of
the SO Hamiltonian.

Implementation. In the following, we specialize to a four-
state configuration within the F = 1 and F = 2 hyperfine
manifolds of 87Rb’s 5S1/2 ground electronic state [illustrated
in Fig. 4(a)]. Each pair of states is Raman coupled by two
lasers tuned between the 5P3/2 and 5P1/2 atomic excited
manifolds (EL ≈ h × 2500 Hz). Although there are nominally
eight transitions coupling four states we reuse three coupling
lasers. The symbols σ1, σ2, σ3, π1, and π2 each implicitly
denote a laser frequency (that may be inferred from the level
diagram in Fig. 4(a), the energy of each state |j 〉, and the
choice of two-photon detuning for one set of Raman lasers)
and a direction given by Fig. 4(b). The first three symbols
denote left circular polarization and their relative phases
define Nγ̄ = 2φσ2 − φσ1 − φσ3 . Lasers π1 and π2 are linearly
polarized along the magnetic field and produce canceling
phases in the Hamiltonian and thus do not contribute to
the phase sum. Additionally, state labels will match those
of the paper given the ordering of frequency νπ1 > νσ3 >

νπ2 > νσ2 > νσ1 . A bias field along ŷ and an ac Zeeman shift
provided by a microwave field along x̂ produce a composite
Zeeman shift that spectroscopically isolates [13] the hyperfine
changing transitions by at least 10�. In addition, |2〉 and
|4〉 shift together with an applied magnetic field, allowing
straightforward control of the detuning ε, thus contributing
Dresselhaus coupling.

In practice, electronic equipment will introduce unwanted
time-varying terms into the Hamiltonian. However, the effects
of magnetic field detuning 
ε, laser intensity shifts 
�
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and phase shifts 
γ̄ can have negligible contributions in
typical laboratory settings. In the scheme shown in Fig. 4,
time-varying magnetic fields induce identical linear Zeeman
shifts of |2〉 and |4〉 that cancel at lowest order in perturbation
theory (while |1〉 and |3〉 are first-order insensitive to magnetic
fields). These Zeeman shifts give an additional Dresselhaus
contribution Ȟ
D ∝ 
ε(σ̌xqy + σ̌yqx); near the minima of
the Rashba Hamiltonian, the energy shift from the resulting
Dresselhaus term would be 0.0005EL for our 
ε ≈ h × 50 Hz
detuning noise amplitude [13].

Shifts (resulting from laser intensity noise) in a sin-
gle �j,j+1 matrix element add coupling terms Ȟ
� ≈
−√

2
�j,j+1(K j + K j+1) · σ̌/8kL, where σ̌ is the vector of
Pauli matrices. For lasers stabilized at the 0.1% level, and
with � = 10EL, the unwanted coupling terms have magnitude
0.002EL.

Phase shifts 
γ̄ directly modulate the effective Zeeman
fields Ȟ
φ ≈ −√

2�
γ̄ σ̌z/2, which opens a gap at the Dirac
point. For 87Rb, we require the resulting gap energy to be less
than a typical T = 10 nK temperature. For � = 10EL, the rms
phase noise must have an amplitude 
γ̄ < 0.04 rad. Even for
independent lasers, this level of phase stability is routine [24].

Discussion. Inspection of Eq. (3) shows that Dirac points
are present for all � and ε provided γ̄ = π/N , even when
perturbative corrections are important. As a result, properties

of fermion systems which depend only on the topology
of the dressed-state dispersion may be insensitive to small
corrections to Eq. (3). In contrast, bosons generally condense
at the energy minima. Thus, for insufficient laser coupling,
local minima may spoil correlation physics potentially arising
from the Rashba Hamiltonian’s degenerate ring of minima
[19,23].

The proposed coupling scheme provides a robust platform
for generating SO coupling for neutral atoms. Because the
two spin states are the lowest energy dressed states, atom-
atom interactions cannot induce collisional decay [14,15]. In
addition, this technique can require considerably less laser
intensity than prior far-detuned schemes to reach nearly
pure SO coupled Hamiltonians, greatly reducing spontaneous
emission. Lastly our specific implementation uses only the
δmF = 0, ± 1 Raman transitions allowed at large atomic
detuning in the alkali-metal atoms [6,11].
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