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A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been
developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric
effects of the supporting medium, in the context of an interplay between what have traditionally been re-
garded as radiationless and radiative excitation transfer. The approach employs the concept of bath po-
laritons mediating the energy transfer. The transfer rate is derived in terms of the Green’s operator cor-
responding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton
models, the present theory accommodates an arbitrary number of energy levels for each molecule of the
‘medium. This includes, in particular, a case of special interest, where the excitation energy spectrum of
the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in
question, as in the condensed phase normally results from homogeneous and inhomogeneous line
broadening. In such a situation, the photon “dressed” by the medium polarization (the polariton) ac-
quires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this
which leads to the appearance of the exponential decay factor in the microscopically derived pair
transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to
the divergent R ~2 contribution, is solved from first principles. In addition, the medium modifies the dis-
tance dependence of the energy transfer function 4 (R) and also produces extra modifications due to
screening contributions and local field effects. The formalism addresses cases where the surrounding
medium is either absorbing or lossless over the range of energies transferred. In the latter case the ex-
ponential factor does not appear and the dielectric medium effect in the near zone reduces to that which
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is familiar from the theory of radiationless (Forster) energy transfer.

I. INTRODUCTION

Over recent years there has been substantial interest in
the nonrelativistic applications of quantum electro-
dynamics (QED). It has covered a broad range of topics
such as superradiance, 1> spontaneous emission in dielec-
tric structures,>”> anomalous manifestations of QED as-
sociated with a photo1omc band gap,*®” photon pairing
in nonhnear crystals, causality and retardation in energy
transfer,’ ~!6 the Casimir effect, ”"!® bimolecular absorp-
tion and bimolecular scattering of photons, 92! ete.
Among other QED problems, resonant transfer of excita-
tion energy is distinctive for two reasons. First, as the
simplest example of interatomic (or intermolecular) in-
teractions mediated by virtual photons, energy transfer is
a prime candidate for the application of QED. It pro-
vides a test bed for developing concepts such as the possi-
ble violation of causality in intermolecular process-
es. 101315 Second, energy transfer is an interesting
phenomenon per se, having considerable importance in
nature: the most familiar manifestation is, perhaps, the
migration of electronic excitation in photosynthesis. ??

In most of the existing literature, excitation transfer is
traditionally described in terms of short-range radiation-
less and long-range radiative limits (see, e.g., Refs. 23 and
24). The former, which operates over transfer distances
R «<A (A is a reduced wavelength corresponding to the
transfer energy), is assumed to be induced by an instan-
taneous Coulombic interaction. In the case of dipole-
allowed transitions, this mechanism leads to the Forster-
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type R ~° distance dependence of the pair transfer rate.
The latter radiative transfer, operating over distances
R >>1A, is considered to be a two-stage process consisting
of the emission of a (real) photon and its subsequent re-
capture.. The probability of the radiative transfer has the

" R ™% dependence characteristic of a classical spherical

wave.

The less familiar QED approach to resonant energy
transfer, originating from pioneering studies by Avery?
and also by Gomberoff and Power,?® does not
differentiate transfer by the radiative and radiationless
mechanisms, as they prove to correspond, respectively, to
the far- and near-zone limits of a unified theory.
Throughout the whole range of distances, energy transfer
is treated as a concerted second-order process mediated
by a virtual photon.!1%14~16 Here the palr rate of
dipole-dipole energy transfer has both R ~° and R 2
terms, as well as an R ~* contribution which features in
the intermediate region of distances where R ~A. How-
ever, the standard QED derivation of pair rates involves
a quantized electromagnetic field and a pair of molecules
or atoms between which the energy is transferred, with
no consideration of other species which constitute the
medium. Consequently, the R ~2 contribution present in
the pair rates might appear to lead to potentially infinite
ensemble rates. For instance, the total rate of energy
transfer from an initially excited molecule to any of its
surrounding counterparts, calculated as a sum of the cor-
responding pair rates, would linearly increase with the
system dimensions and could therefore grow to infinity. 4
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In our previous paper, it was proposed that the dis-
tance dependence of the pair rate be modified via the phe-
nomenological introduction of exponential (Beer’s law)
decay factors to account for energy losses associated with
the media molecules.!'* Although that resolved the prob-
lems of potentially infinite decay rates and produced
physically reasonably rate equations for the ensemble, the
phenomenological approach lacked justification at the
fundamental microscopic level of QED. Moreover,
preexponential refractive factors, such as those associated
with local field effects, have not been taken into con-
sideration.

Here a comprehensive many-body formulation of mi-
croscopic QED is presented which systematically deals
with these issues and thus fully accounts for intermolecu-
lar dipole-dipole energy transfer in a dielectric medium.
The approach involves the employment of the polariton
concept for representing the mediation of energy transfer.
In contrast to the lossless polariton model, employed re-
cently by Knoester and Mukamel in dealing with the re-
lated problems of intermolecular forces and superradi-
ance in a dielectric medium,! the present theory accom-
modates an arbitrary number of energy levels for each
molecule of the medium (bath). This includes, in particu-
lar, a case of special interest, where the excitation spec-
trum of the bath molecules is sufficiently dense and
smooth that it can be treated as a quasicontinuum in the
energy region of interest. In such a situation, the photon
“dressed” by the medium polarization (the polariton) ac-
quires a finite lifetime, the role of the dissipative subsys-
tem being played by bath molecules. It is this which
leads to the appearance of the exponential decay factor in
the microscopically derived pair transfer rates. The fac-
tor coincides, in the limit of low number density for the
medium molecules, to that obtained on a phenomenologi-
cal basis.!* In addition, the medium modifies the dis-
tance dependence of the energy transfer function 4(R)
and also produces extra modifications due to screening
contributions and local field effect, correctly represented
through full incorporation of umklapp processes. The
formalism addresses cases where the surrounding medi-
um is either absorbing or lossless over the range of ener-
gies transferred. In the latter case, the exponential factor
does not appear and the dielectric medium effect in the
near zone reduces to that which is familiar from the
theory of radiationless (Foster) energy transfer.?

The paper is organized as follows. In the next section,
the full system is first defined in terms of two subsystems,
one comprising a pair of atoms or molecules between
which energy is transferred and the other a bath compris-
ing the surrounding material medium and the radiation
field. Section II also introduces the Hamiltonian of the
system and defines the pair transfer rate. Section III
completes the representation of the bath by invoking the
polariton concept through a modified form of a matrix
formulation, first suggested by Orrit and Kottis,?’ of the
second-quantized polariton Hamiltonian. The energy
transfer rate is subsequently (Sec. IV) derived in terms of
the Green’s operator corresponding to the matrix Hamil-
tonian. As a result, determination of the transfer rate
reduces to a problem of finding the appropriate Green’s

function. This allows us to bypass the eigenstate problem
which frequently features in polariton-related topics (see,
for instance, Refs. 1 and 28). Since an arbitrary number
of molecular levels is involved in our polariton model, a
straightforward diagonalization of the Hamiltonian
would be mathematically intractable. Finally, a discus-
sion of the results and their applicability is presented in
Sec. V, and the derivations of some of the results are
given in two appendixes.

II. GENERAL FORMULATION

The system of interest is an ensemble of molecules in-
teracting with a quantized electromagnetic field. The
molecular part of the system is comprised of a selected
pair of molecules 4 and B and the surrounding bath mol-
ecules. Although for convenience 4 and B will be re-
ferred to as guest species, they do not necessarily differ in
type from the bath molecules which constitute the host
material. Here and hereafter the term “molecule” is used
generically to also encompass atoms.

To deal with the field-assisted transfer of excitation en-
ergy between A4 and B, we will make use of the multipo-
lar representation of QED.?"?° The term “multipolar”
explicitly indicates that the theory originates in a formu-
lation of the coupling which entails the full multipolar ex-
pansion of electronic, magnetic, and diamagnetic densi-
ties of molecules interacting with the quantized field. For
present purposes we will nonetheless restrict ourselves to
the electric-dipole approximation. This is sufficient and
generally appropriate for the description of dipole-
allowed molecular or intermolecular processes provided
the molecular dimensions are small enough compared to
a characteristic scale of distances. For intermolecular
problems of interest, the role of these characteristic
lengths is played by the separations between molecules;
the characteristic distance for molecular absorption,
emission, or scattering processes is the corresponding
wavelength of light.

A. Hamiltonian

Let us divide the full system into the guest subsystem
and the bath. The latter is chosen to be a coupled system
of the electromagnetic field and the host molecules. The
total Hamiltonian H 7 splits naturally into the zero-order
Hamiltonian H° and the operator ¥ [to be given explicit-
ly in Eq. (2.5)] representing the mutual guest-bath in-
teraction:

H'™=H’+V, @.1)
where
H=H, +Hy+Hy, » 2.2)
Hygipn =Haq+ Hyoq T Heoup > (2.3)
Hyow= 3 Hy. 2.4
X+ A,B

Here H,,, is a bath Hamiltonian comprising a sum of
the free radiation (H,_4) and molecular (Hy,,) Hamil-
tonians, as well as the radiation-matter coupling operator
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H qyp, to be defined below in Eq. (2.6); Hy are the Hamil-
tonians of individual molecules, with X being a molecular
index which can span both guest and host species.

In accordance with the multipolar QED formulation,
the total Hamiltonian Hy does not contain terms (such as
H ,p) to invoke direct intermolecular coupling. The in-
teraction between the radiation and matter originates
from contributions by individual molecules. The contri-
butions by the 4 and B species give rise to the guest-bath
interaction V, whereas those due to the host molecules
are responsible for the matter-radiation coupling within
the bath, H

29

coup:
V=H{+Hf, (2.5)
Hew= X HY, 2.6)
X+ A,B

where the molecular-radiation interaction operators Hit
are, in the electric-dipole approximation,

Hift= — 5 p(X)-dX(ry) . 2.7)

The above €, is the vacuum dielectric permittivity, p(X)
and ry are, respectively, the dipole moment operator and
position vector of the molecule X and d*(r) is the opera-
tor for the transverse electric displacement field. The
latter can be cast in terms of a normal-mode expansion, 2’
expressible as

172

#iclk +Gle
__Q ie‘“(k-i—G)

Lp)=
dir)= 3 27,

k,G,A

X[aM(k+G)—a"™(—k—G)]
X eilk+Grr (2.8)

Here a™(k+G) and a™(k+G) are the photon
creation and annihilation operators, ¥, is the quantiza-
tion volume, and the sum is taken over the radiation
modes characterized by the wave vector k+G and the
unit polarization vector e*(k+G). For convenience,
the former wave vector is partitioned into the first
Brillouin-zone vector k and the inverse lattice vector G
in order to anticipate the lattice symmetry to be imposed
on the host medium in Sec. III A. The latter polarization
vector is considered to be real (corresponding to the field
expansion in terms of linearly polarized plane waves) and
such that eM(k+G)=e™(—k—G). On a similar basis,
the mode representation of the radiation Hamiltonian
reads as

Hpg= 3 a™(k+G)a™k+Giclk+G|+e
k,G,A

vac ?

(2.9)

where 7ic|k+G]| is a photon energy and e,,, is the usual
photon vacuum energy.

The detailed definition of the system Hamiltonian will
be completed in the Sec. III by choosing a particular
form for the host molecular operators Hy,, and p(X)
(X7~ 4,B). As regards the guest molecules, only their
transition dipole moments, the transfer energy, and the
mutual separation distance feature in the theory to be

developed below.

B. Definition of the transfer rate

The initial- and final-state vectors, representing the en-
ergy transfer between 4 and B, are constructed as

|I)=|4%)|B)|0) (2.10)

and

|F)=|4)B*)0), @.11)

where |0) is the ground-state vector of the bath and
|A*) and | 4) (|B) and |B*)) are the initial- and final-
state vectors of the molecule A4 (B). For generality, the
molecular state vectors are considered to implicitly con-
tain both electronic and vibrational contributions which
are normally separable on the basis of the Born-
Oppenheimer principle. The full state vectors, |I) and
|F) are eigenvectors of the zero-order Hamiltonian (2.2),
with

E;=e «tepteg (2.12)

and

Erp=e, tegste,, (2.13)

being the eigenenergies. Here e 4% €8y €4, and e are
the corresponding energies of the initial and final molecu-
lar states and e, is the ground-state energy of the bath.

It is worth pointing out that, although Eqs. (2.10) and
(2.11) resemble the standard initial conditions featuring
in the QED description of energy transfer between an iso-
lated pair of molecules,® 11214716 the state vector |0)
here no longer denotes a photon vacuum. Instead, it
represents the ground state of a coupled system of pho-
tons and host molecules. In other words, the present ini-
tial conditions fully take account of the radiation-matter
coupling in the bath. It may also be remarked that the
initial-state vector |0) of the bath in (2.10) is identical to
that which appears in the final state (2.11). Any possible
changes in the final bath state would correspond to
higher-order bimolecular processes, such as those involv-
ing single-photon?® or multi-photon'®?! absorption and
scattering.

In order to derive the rate equation for intermolecular
energy transfer associated with the given initial and final
system states, we employ the normal methods of time-
dependent perturbation theory with V acting as the per-
turbation on basis states which are eigenstates of HP°.
The transfer rate is then obtained from the application of
the generalized Fermi rule’

W= 2L |CFITID 8(E, — E)) (2.14)

where T is the transition operator, its expansion given by

T=TW+TP4 ... | (2.15)
with
TW=y (2.16)
T =y 1 vV, s—+0, 2.17)
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and higher terms can for our purposes be neglected. The
term “generalized” is used here because (2.16) reduces to
the ordinary Fermi golden rule in the first order of per-
turbation through substituting ¥ for T. Since there is no
direct longitudinal interaction between molecules, the en-
ergy transfer appears in the second order of perturbation,
as represented by the term T2,

=13 % Gl ADICAGI,
o p=1 (1P cK—TI,+is
(2.18)

where

ﬁcK=e —e, Tepe—ep >0 (2.19)
is the transfer energy,

[I(c))=14)]B)|o) (2.20)
and

[I,(a))=|A4*)|B*)| o) (2.21)
are the intermediate states,

#ll,=e,—e, 2.22)

is the bath excitation energy (difference in energies be-
tween the excited and ground bath states), and the index
o refers to the excited bath states accessible through a
single action by the interaction operator ¥V on the
ground-state vector |0). Accordingly, the energy
transfer is now regarded as being mediated by bath exci-
tations (polaritons) rather than by “pure” photons. The
two types of intermediate states correspond to the two
possible sequences of the transitions undergone by the
guest molecules. In the first case, the transition 4* — 4
precedes the transition B—B* [Fig. 1(a)], whereas in the
second case the transition of molecule B takes place first
[Fig. 1(b)]. The latter sequence features an apparently
anomalous situation in which the upward transition of
molecule B is associated with the excitation of the bath
(the creation of the polariton) and the subsequent polari-
ton annihilation is accompanied by the deexcitation of 4.
Nonetheless, both types of diagrams must be accommo-
dated in the theory according to the normal rules of
time-dependent perturbation theory. Inclusion of the
contributions by Fig. 1(b) is of essential importance at
small separations between the guest species, in order to
correctly generate the nonretarded quasielectrostatic in-
termolecular interactions. The precision with which the

A B A B*

A B A* B
(@ (b)

FIG. 1. Time-ordered diagrams for resonant energy transfer
mediated by the intermolecular propagation of a virtual bath
polariton.
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law of energy conservation has to apply for intermediate
{virtual) bath polaritons is determined by the time-energy
uncertainty principle. At large separations, where the
virtual polariton mediating the guest-guest interaction
exists for a time appreciably exceeding the duration of
the optical cycle, the polariton acquires real character.
Consequently, the contributions associated with Fig. 1{b)
diminish to a point where they can be considered negligi-
ble.

By making use of Eqs. (2.18), (2.5), and (2.7), together
with (2.10), (2.11), (2.20), and (2.21), one finds the general
expression for the transition matrix element:

3
<F| T(Z)iI > = Ijz——l uBlelj#Aj ’ (2.23)
with
___1“7 (Old}(r3)|0‘>(0|d}(1‘,4)|0>
O #ie2 § cK —TI,+is
(Oldj7(l',4 )lU)(Uld‘}“(fB)l())
— K 1L —is , (2.24)

where p, and pp are the transition dipole moments of
the guest species,

4= Alu()]4a*),

2.25)
(2.26)

and 0j; is the electromagnetic tensor for retarded dipole-
dipole coupling between the sites 4 and B. Unlike the
vacuum electromagnetic tensors featuring in the standard
QED theories of energy transfer,''>*! here 6; is obvi-
ously influenced by the material medium, as the bath
states and energies (rather than those of the free radiation
field) enter Eq. (2.24).

III. POLARITON REPRESENTATION
OF THE BATH

A. Second-quantized Hamiltonian

Let us suppose for convenience that the host species
are all identical and constitute a simple cubic lattice; the
possible significance of this assumption with regard to the
generality of the theory will be discussed in Sec. V.
Representing the host molecules in terms of a set of
Bose-type oscillators, the Hamiltonian (2.4) takes the
form

3
t
E 2 ﬁcoanrYernr?"j ’

Hhost = (3.1)
n,y j=1
where the vector
3
n= 3 nje; (3.2)
j=1

labels the host molecules in the lattice (i.e., the index X
takes the values n), with e; being the unit vector along
the Cartesmn axis j and n taking integer values. The

above Bn}, j and Bg . ; are the Bose operators for



creation and annihilation of the excitation {(exciton) at
molecule n. When acting on a ground molecular state,

the creation operator Bn ,y,j broduces an excited state
characterized by the indexes ¥ and j, fio,, being the exci-
tation energy. The index j explicitly 1nd1cates that the
molecular levels ¢ are triply degenerate, the correspond-
ing transition dipole moments uye; (j=1,2,3) being mu-
tually perpendicular. By properly choosmg the phases of
molecular wave functions, it is possible to make the
values of the transition dipole moments real. The dipole
operator of molecule n is then expressible as

3
ll,(n)= 2 2 (‘B;rl,‘}',j_*-Bn,Y:j)#’)’ej .
v j=1

(3.3)

At this juncture a couple of remarks should be made con-
cerning the above representation of the material medium.
First, the molecular creation and annihilation operators
B,’:m ;and B, . . should strictly speaking obey Pauli (not
universally Bose) commutation relations, under which the
Bose commutation rules apply only for operators belong-
ing to different lattice sites, with Fermi rules applying for
operators at the same sites. The latter of course pre-
cludes the possibility of any double excitation of individu-
al molecular levels, in accordance with the Pauli ex-
clusion principle. The replacement of the Pauli by Bose
commutation rules is nonetheless 2 common approxima-
tion which normally produces good results for three-
dimensional molecular systems such as the one con-
sidered here. The most significant manifestations of any
kinematic interactions, originating from the employment
of nonexact Bose commutation rules, appear in low-
dimensional structures. For instance, the electronic exci-
tations in one-dimensional molecular systems are better
represented by Fermi than by Bose operators.3273*
Second, unlike more common lossless polariton models,
the present approach accommodates an arbitrary number
molecular excitation frequencies w,. To this extent our
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polariton model resembles that used by Philpott® to in-
corporate vibronic structure in polariton theory by treat-
ing the vibronic progressions of the molecular electronic
states in terms of well-separated molecular sublevels.
However, we are more interested in another case where
the molecular excitation spectrum is sufficiently dense
that it can be treated as a quasicontinuum in the energy
region of interest, as in a condensed phase normally re-
sults from homogeneous and inhomogeneous line
broadening.3® In this case the bath molecules act as a
dissipative subsystem effectively causing the decay of po-
laritons, which can be visualized as photons “dressed” by
the molecular excitations of the absorbing medium. The
complex dielectric constant will appear in the Sec. IV, as
a resuit.

Returning to the exciton operators, the standard trans-
formation to the momentum space reads

—ik-r

Bk:'yrj:N_l/Z 2 Bn,y,j e " b4 (3-4)
n

By =X [€¥(k)€;1By,y,; » (3.5)
J

with r,~an being a lattice vector, a the lattice spacing,
and N the number of molecules in a quantization volume
Vo=Na®. The latter ¥, is chosen to coincide with the
quantization volume of the radiation field. In other
words, the same boundary conditions are imposed on the
excitons and on the quantized radiation field. Conse-
quently, the same set of wave vectors applies to both the
excitons and the first Brillouin-zone photons. That is a
common polariton assumption which is justified unless
one is interested in surface effects.»?"2%35 The operators
By ., describe the longitudinal [A'=3, e®(k)=k/|k|]
and transverse (A'=1,2) excitons: the polarization vec-
tors of the latter coincide with that of the first Brillouin-
zone photons in Eq. (2.8). Using Egs. (3.1)—(3.5) and
(2.6)—(2.8), one finds

3
Hhost 2 2 ﬁa)‘yB k,v, k’Bk [ S (3.6)
ky M=1
- P @
coup 2 E 2 ﬁ[ C(k, v.A Nk, G,M(B —k,7,A +Bk,y,l’ Ja' ' (k+G)
Gky A'=1 A=1
+Ck 6,11k,6,1)9 Mk +G)(B T—k,’y,k’ +By,,2)], (3.7
172
Cupanx,en =1 [cll;_:-ﬁ(_}_l .u,,[e(m(k)-em(k-i'G)] , (3.8)
|
with By, for a=(k,y,\"),
- A4,=1 w o (3.10)
p=N/V, (3.9) a'(k+G) for a=(k,G,A) .
being the mean number density of the host material. By adopting the tilde convention
Equations (3.6) and (3.7) together with (2.9) define the o~ ,
bath Hamiltonian (2.3) in terms of molecular and radia- (k,7,A)=(—k,y,A"), 3.11)
tive sets of Bose operators. It is more convenient, howev- ‘ (f{:?;“"{ )=(—k,—G,A), (3.12)

er, to introduce a single set of annihilation (creation)
operators A, (A ) where a covers both radiative and

molecular indexes.

the second-quantized bath Hamiltonian then takes the
form
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Hpn =% [QupA b Ag+®opd, Ag+ A Al 1+e,,. .

B
(3.13)
with the matrixes { and ® having the block structure
o C
=lic* ol (3.14)
0 C
o= AR (3.15)

where @’ and o are the diagonal matrices of molecular
and radiative frequencies (co,, and c|k+ G/, respectively),
C is the radiation-matter coupling matrix defined by Eq.
(3.8), and the superscripts * and ¢ refer to the complex-
conjugated and transposed matrices, respectively. By
making use of the Bose commutation relations

[A4,,45]=0, (3.16)
[Aa’AE]::Ba,B b (3.17)

and bearing in mind that ‘Q%=Q,;=Q., and
@, E=¢'aﬁ’ the Hamiltonian (3.13) acquires the sym-
metric form

#i
Hbath=7 %[QaﬁALAB_’_Q;BAaAE
a,

+XopAg ApgtxigAlal], (3.18)

where
—oro= |2 € 3.19
X_’¢+ _ tC 0 > ( . )

and the molecular shift in the zero-point energies,
(3N /2) h 'ﬁcuy, has been omitted in Eq. (3.18), since it
has no physical significance for the processes under. con-
sideration.

B. Matrix Hamiltonian

In the next two subsections, a matrix representation of
the polariton problem, first suggested by Orrit and
Kotitis,?” will be reformulated in a modified form more
suitable for the present purposes. To begin, it may be ob-
served that the expansion (3.18) of Hy,, has been ar-
ranged in such a way that tildes stand on the annihilation
(creation) operators if and only if they are on the left
(right) of the creation (annihilation) operators. Hence
H,,., can be rewritten in a compact manner involving the
matrix product

Hbath=g(AT:X|hIAy Zf) . (320)

Here |4, A7) and (AT, 4| are row and column matrix
vectors whose elements are the creation and annihilation
operators

|4, AN =(4, 4,,...;4},4%,..), (3.21)

A:‘,1
AZZ
At A=, |,
a;

A

o,

(3.22)

and A is the matrix Hamiltonian, its block structure being
given by

h =

Q x*
x of

By making use of Egs. (3.14) and (3.19), the matrix h
reads more explicitly as

o C 0 C*
'IC* o 'C* 0
0 C o C*
'C 0 'C w

(3.23),

h = (3.24)

In passing, we note that the original matrix formulation®’
did not involve any tildes over the radiative and molecu-
lar indexes. That was a consequence of operating in the
site representation of the material medium. Here the in-
troduction of the tilde designation facilitates the treat-
ment, as the momentum representation of the medium is
considered. Returning to the matrix vectors, for present
purposes it is more convenient to deal with their expan-
sions in terms of orthogonal sets of unit matrix vectors
la,i) and (e, i, i=1,2:

Ty
(4, A= e, N4, +la,2)4}], (3.25)
a
(4%, A1= 3[4l 1]+ 4,(a,2]], (3.26)
o
where, for example,
le,, 1)=(0,1,0, ...;0,0,...), (3.27)
las,2)=(0,0, ...;0,0,1,...). (3.28)
Summation over a accommodates all a, (£ =1,2,3,...).

The presence of an extra index i=1,2 reflects the fact that
the current matrix representation entails a double basis
set of the original molecular excitation and radiation
modes denoted by «. On a similar basis, the expanded
matrix Hamiltonian reads

2
h= 3 3 la,ila,ilklBi')B.i'|, (3.29)

ii'=1 a,B

with (a,i|k|B,i’) being the matrix elements of A. By us-
ing the explicit form (3.24) for the matrix 4, the expan-
sion (3.29) may be represented as

Ch=hth, R th, .,

with

(3.30
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2 2
=333 3 |k G,\iklk+G|(k,G,A,i] ,
k G

=1
3 2
2 2 |k,‘}’,7&',i)wy(k,7’>7¥',i| ’

3 2
hem==3 33 3 I I IkGA1D—IkG,A2)ICH, iwon kAl ,
kK G 7 Py

—

1i=

3 2 2
hn—r=2 22 2 T 3 Ik7A0Ch, 0060k G A, 1 —(K,G,A,2]] .
k G vy 3

The above matrix Hamiltonian resembles in its form the
quantum-mechanical Hamiltonian of a system compris-
ing 2L levels, L being the number of original modes a.
This analogy will facilitate the derivation of the Green’s
functions corresponding to the matrix Hamiltonian in
Sec. IV. The matrix vectors entering Egs. (3.30)-(3.34)
should not, however, be confused with the wusual
quantum-mechanical bra and ket state vectors, such as
|I) and { F|, which have already appeared in Sec. II.

C. Diagonal representation

Diagonalization of the second-quantized polariton
Hamiltonian implies linear transform to a new set of Bose
operators PZ and P,. The linear relation between the old
and new operators can compactly be expressed in the fol-
lowing way:

|p,PT)=5]4,4%),
(PT,Pl=(4", 4|'s* ;

(3.35)
(3.36)

where S is the transformation matrix. In analogy to Egs.
(3.25) and (3.26), the transformed matrix vectors may be
cast in terms of the orthonormal basis as

|P,P")= S [lo,1)P, +]0,2)PL ], (3.37)

(PT,P|=3 [Pl(0,1|4+P,(0,2]] . (3.38)

Expansion of (3.35) produces a more familiar form of the
polariton transform which reads

P,= 3 [(0,1|Sla,1) 4, +(0,118]a,2) 411, (3.39)
a

Pl=31[(0,2ISlo,1)4,+(0,2ISl2,2) 41 ] . (3.40)
a

The transformation obviously correlates the creation and
annihilation operators associated with opposite momenta,
as the tildes imply momentum reversal. The following
conditions are imposed on the transformation matrix.
First, by virtue of translational symmetry and spatial

isotropy, one has
(7,iSla, ))=(0,ilS|a,j) (i,j=1,2). (3.41)

Second, by taking the Hermitian conjugate of Eq. (3.39)
and comparing the result to Eq. (3.40), it follows that

(0,1|8%|e,1)=(0,2|S]e,2) , (3.42)
(0,118*l0,2)=(0,2|Sla,1) . (3.43)

(3.31)

(3.32)

(3.33)

(3.34)

i

Last, requiring Bose commutation relations to be satisfied
by the transformed operators leads to an extra condition
(see Appendix A):

SQ'S*=Q (3.44)
and, thus,
STl=0'5*Q , (3.45)
with Q having the block structure
1 0
=lo —1|- (3.46)

In terms of the new operators, the second-quantized
Hamiltonian takes the form

H= g S n,plp,+p Pl), (3.47)
a

which can be expressed using the matrix representation
as ' '

H=%(PT,FIA|P,P y, (3.48)
with
_|mo

being a diagonal matrix Hamiltonian involving the bath
excitation frequencies II, that have already entered Eqgs.
(2.18) and (2.24). By making use of Egs. (3.20), (3.35),
(3.36), and (3.48), one finds the following relation between
the original and transformed matrix Hamiltonians:

B =IS*AS . (3.50)

The above equation, together with Eq. (3.44), defines the
diagonalization. Nonetheless, no explicit diagonalization
will be involved in the present study, as the physical ob-
servables of interest will be directly calculated in terms of
the Green’s function.

IV. DERIVATION OF THE TRANSFER RATE

A. Green’s-function development
of the electromagnetic dipole-dipole coupling

In Sec. II the transition matrix element for energy
transfer has been expressed by Eq. (2.23) via the elec-
tromagnetic tensor 6; representing dipole-dipole cou-
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pling between sites 4 and B and fully accommodating the effects of the guest medium. The first step toward explicit
calculation of this tensor is to cast the electric-field displacement operator d' of Eq. (2.24) in terms of polariton creation
and annihilation operators. Applying the inverse transform '~ 1. the expansion of the Bose radiation operators reads

aM(k+G)= 3 [(k,G,A,1|S Yo, VP, +(k,G,A, 1S 7Y, 2)PL 1,
'™ (—k—G)= 3 [(k,G,A,2|S "o, )P, +(k,G,1,2|S "!o,2)PL 1,

which, together with the Egs. (3.41)—(3.43) and (3.45), gives

(4.1

@2)

aMk+G)—a"™(—k—G)= 3 {[(k,G,A, 1| —(k,G,A,2[1S "o, 1P,
B . [+8

—(0,110SQ[]—k, —G, A, 1)—|—k, —G,A,2)]P} } .

4.3)

Substituting the above equation into Eq. (2.8) for d' and making an assumption that the guest species occupy the lattice

sites [exp(iG -1y )=1; X = 4,B], one finds

diry)=ifieN ™12 [e™F (k,rad|S !, 1)P,—e " (o, 1]QSQIk,rad) P11, (4.4)
k.o
where the k-dependent radiation row and column matrices lk,rad) ; and j(k,rad] have been defined as
2 172

krad), = 3 [1kGA D= kGA,2)eMk+G) | LES, | @.5)

G i=1 2eti
k+G] 12

Jkrad=3 3 eMk+G) [T | (kG 1 —(K,G,A,2]] (4.6)

G A=1 2€qfi

The matrix elements of S entering Eq. (4.4) satisfy the re-
lations

j(k,rad]S—’]a,1)=—'(o,2lQSQ|k,rad)j 4.7)
and
(0,1|1QSQIk,rad);=— ;(k,rad|S ~|c,2) . (4.8)

Thus, as (o’|P}|0)=(0|P,|o") =38, 4 the electromag-
netic tensor (2.24) takes the following matrix form, free
from any second-quantized state vectors and operators:

e,ﬁ%% ge“"'ﬂ,(k,rad[c‘ﬂk',rad)je"“‘""’ , 4.9)
with »
65713 | R e, |25
.10
=S "[(cK +is)Q —A]7'QSQ . (4.11)

Here, for convenience, the sign of the infinitesimal
s —-+0 has been reversed in the nonresonant term of Eq.
(4.10). By making use of Egs. (3.44) and (3.50), one has

G=[(cK +is)Q —h]"" . 4.12)

The above G can be identified as the Green’s matrix cor-
responding to the matrix Hamiltonian A, the umlaut ser-
vicing to differentiate it from the inverse lattice vector G.
Unlike the standard Green’s operators featured in solid-
state problems, the present G contains the matrix @

I
(Q+#1, Q*=1) multiplying the argument. That is be-
cause the formalism involves a nonunitary transforma-
tion S satisfying the condition (3.45). Nonetheless, the
Green’s matrix can be treated in terms of techniques
analogous to the normal solid-state approach®” involving
projection operator and local perturbation methods, in an
only slightly modified manner. Finally, noting that those
matrix elements of G nondiagonal with respect to the in-
dex k are zero, the tensor (4.9) acquires the form

#
9 P
N
with
Gy;(k)=,(k,rad|G|k,rad);

ik(rp—r

6, (4.13)
4.14)
being the Green’s function.

B. Determination
of the electromagnetic coupling tensor

Let us initially define the following idempotent ma-
trices projecting onto radiative and molecular subspaces:

2 2
=33 3 I kG,ANKG,Al,
k G A=1 §==1]

4.15)

3 2
I,=33 3 3 |ky.ADk,y, Al . (4.16)

k y AM=1i=1

Since the sum of I, and I,, constitutes the unit matrix 1,
any matrix D may be decomposed as

D=I1DI +I,DI, +IDI, +1I, DI,

=D, +D,+D,_,+D

4.17)
(4.18)

m—r °
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The decomposition of the matrix Hamiltonian 4 has al-
ready been given by Eq. (3.30). At this stage it is con-
venient to represent the radiation-matter coupling terms
of A in the form

3
hr—-m =IE 2 lk,rad)jj(k,mattl , 4.19)
k j=1
3
hp—p==13 3, |k,matt); (k,rad| , 4.20)
k j=1
where
3 2 ’
|k, matt); = 3 AEl 21 Ik, 7, Def* (k) “.21)
¥y AN=1i=

j{k,matt| is the corresponding column matrix, and the ra-
diative matrix vectors j(k,rad| and |k,rad) ; are as defined
by Egs. (4.5) and (4.6). Note that umklapp processes
k—k-+G are completely incorporated in the above cou-
pling terms (4.19) and (4.20) to correctly represent the lo-
cal field effects. The significance of the umklapp process-
es has been extensively discussed in the literature both for
the minimum coupling and the multipolar QED formula-
tion, 135:38,39

It is obvious that only the radiative component G, of
the full Green’s matrix G contributes to the Green’s func-
tion é,j(k) of Eq. (4.14). As a result, the radiative sub-
system of the bath plays a privileged role in the present
calculations. To derive a closed equation for G, and con-
sequently that for ('}",j(k), we make use of the Dyson
equation

G=G%+G %G , (4.22)
where
G O°=[(cK +is)Q —h°] (4.23)

is the zero-order Green’s matrix, #° and v playing role of
the zero-order matrix Hamiltonian and the interaction
matrix:

h°=h,+h,, ,
v=h,_,+h,_, .

(4.24)
(4.25)

Recursive substitution of the left-hand side of the Dyson
equation for G into the right-hand side, with subsequent
projection onto the radiative subspace, produces the fol-
lowing Dyson-type equation for G,:

G,=G%+G %G, , (4.26)
where the matrix

describes the effective (K-dependent) interaction, induced
by the host material, between the radiation modes. Ex-
plicitly v is given by

3
vf5=—ﬁa2 z |k,rad)jj(k,rad| ’
k j=1

(4.28)

where
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Ky 1y
co,l,—cK—is w7+cK +is

a=qa(cK)= L > (4.29)
%5

is the isotropic molecular polarizability at the transfer
frequency cK =(ej—e, )% The matrix v'® has the
features of a local perturbation, > since for each value of
k only three different row vectors |k,rad) ; (7=1,2,3) ap-
pear [together with the corresponding column vectors
j(k,;rad|})] in Eq. (4.28). As a result, the following 3X3
system of equations for the Green’s function Gy;(k) is ob-
tained, using Eqgs. (4.14), (4.26), and (4.28):

G(k)=G §(k)—#a[ G "K)G (k)] ,

where the abbreviated G (k) is a 3 X3 matrix. The formal
solution of Eq. (4.30) reads

Gy(k)=(#ia) " {8, —[1+%aG °(k)]; '} ,

{4.30)

(4.31)

which is an exact result.

In what follows, we assume that the 4-B separation
distance greatly exceeds the lattice comstant (R >>a).
Under this condition, only radiation modes (k,G) with
k <<21/a contribute significantly to the electromagnetic
tensor 9,]-.40 As shown in Appendix B, for k <<2#/a the
Green’s function G (k) is given by Eq. (B8). Conse-
quently, Eq. (4.13) for 6,; becomes

0y =€, '[(e,+2)/312607(nK) , (4.32)

where
e ap/eo - FE se=a - . z-
€, =1+ v 4.33)
n=n'+in"=¢e’? (n">0), (4.34)
3_iyR R
vac/ v — Y _€ - 5 | S S
i) 4me, [(811 3ﬁ1R1) y3R3  p2R?
1
(a,j—ﬁ1ﬁ1>y—R , (4.35)

R=R/R being a unit vector. Thus, as one might antici-
pate for separations R >>a, the medium effects are de-
scribed entirely in terms of the frequency-dependent mac-
roscopic relative permittivity, €,(cK)=¢,=¢€/¢,, satisfy-
ing the Clausius-Mossotti relation. The coupling tensor
(4.32) accommodates the screening contribution €, ! and
the local field factor (e,-+2)/3, as well as the tensor
6;7°(y). The latter has the structure of the vacuum elec-
tromagnetic tensor, its argument y =#K being scaled by
the complex refractive index n.

C. Transfer rate

Since the transition matrix element (F|T?|I) is ex-
pressible in terms of 6, through the tensor product
(2.23), one finds, from Eq. (4.32),

- 22
Halp Ae —2n"KR

3n?

242

KFIT®|1)|?= 3

4.36)

where
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2 2
3 1 inK nK?
- R - 4.37
| 4rre, MR R? Mg (4.37)
3 P K K4
= | 4ne, RS +2773n"-E-+ [milnl2—29ms(n’ —n"2)]——+2nm3n"|nlz——+nl|n|4R2 , (4.38)

with 7, being the orientational factors defined in terms of
the units vectors through

np=ﬁA-ﬁB—p(ﬁA-R)(ﬁB-R) {(p=13). (4.39)
The transfer rate is then determined by the above equa-
tions for |{ F|T™|I }|? together with Eq. (2.14), subject to
the standard averaging over the initial and summation
over the final substates of the guest molecules.'*?3 The
latter averaging and summation smoothes the contribu-
tion by the § function, as finite spectral widths for the
guest molecules are 1mp11c1tly assumed. The near- and
far-zone limits read*!

242 2
{F|T®|I)|*= 1 n’+2 Halp 77_%
2 3 47T60 R6 ’
[n|[KR <1, (4.40)
4 2 -4
(FIT®|i ) |2= n?+2 |\ Habp | MK ke
3 dre, | R? ’
nlKR>>1. (4.41)

Finally, the corresponding orientationally averaged re-
sults are obtained by replacing the function 4 in Eq.
(4.36) by its mean value, giving

A=2(4rey) % |3/Ré+6n"K /R5+(n'*+5n")K?/R*

+2n"|n|2K3/R3*+ |n|*K*/R? (4.42)
For a unit refractive index (n=1), the above reduces to
the familiar function 4(K,R) for the transfer of energy
between molecules in a vacuum. 2

V. DISCUSSION

It follows from Eq. (4.36) that, besides the screening
and local field contributions, medium effects are manifest
in the appearance of the exponential decay factor and in
the refractivity dependence of the energy transfer func-
tion 4. The exponential factor arises only in the case of
an absorbing medium (n'">0) and takes account of the
associated energy losses. That solves the problem of po-
tentially infinite ensemble rates, as discussed previously. 1*
However, in contrast to our earlier study, the appearance
of this factor is an intrinsic feature of the present ap-
proach based on microscopic many-body QED.
Specifically, the factor is associated with the quenching of
bath polaritons mediating the energy transfer, the role of
the dissipative subsystem being played by molecules of
the medium having a dense excitation spectrum. Each
photon mode is coupled with a quasicontinuum of molec-
ular states, so that decay ensures when resonance ap-

[
plies.*? In this way, the bath plays a role of both energy
mediator and quencher.

It can readily be shown that the exponential factor of
Eq. (4.36) reduces to that obtained previously on a phe-
nomenological basis, exp( —o ), given that the density
of the medium is low enough to ensure linear dependence
of the complex refractive index on the number density p.
Specifically, we have

2n"K =KpIma/€y=0p.4p » (5.1)
with
. Opos=(TK /€)) 3, p28(#icK —#iw,,) (5.2)
. 14

being the isotropic absorption cross section per host mol-
ecule.

It is interesting to consider in detail the nature of the
modifications of the energy transfer function 4 by the
medium, since these are features which previous theories
have been unable to accommodate. It is evident from Eq.
(4.38) that such modifications are due to both the real and
imaginary parts of the complex refractive index n. For
n"'0, the transfer function (4.38) contains not only the
usual even powers of R, but odd ones (R ~% and R ~°) as
well. However, since normally n'’ <<n’', the terms with
the odd powers of R contribute to a much lesser extent
than the even ones, each of the latter becommg
51gn1ﬁcant over a different rate of distances R. The R~
term is dominant in the near zone, |n|KR <<1, the R 2
term prevails in the far zone, |n|KR >>1, and the R ~*
term features in the critical retardation region where
R ~(|n|K)~1. The near- and far-zone results are given
explicitly by Eqs. (4.40) and (4.41). For real values of n,
the refractivity effect of the medium reduces in the near
zone to that which is familiar from the theory of radia-
tionless energy transfer.?> The far-zone equation (4.41)
represents the classical R ~2 result for two-stage {(emis-
sion and reaborption) radiative energy transfer, the ex-
ponential factor expressing the probability for the photon
not to be absorbed between the sites 4 and B. Here the
refractivity preexponential factor may, in a sense, be con-
strued as originating from the combined effect of the
n[(n%-+2)/3)? dependence of the emission rate of 4 and
the n ~'[(n2+2)/3]? dependence of the absorption by B.

The present theory exploits the polariton concept for
the bath representation. Although that may seem to be
rather specific because of the embodiment of lattice sym-
metry, the rate of guest-guest energy transfer which is at
issue is not sensitive to the possible lack of this symmetry
in most important situations. That includes in particular
the case where the spectral widths of the host electronic
lines, #Awy,y, exceed the characteristic energy ¥y, of
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the resonant coupling between the neighboring host mol-
ecules. In this situation the electronic excitations of the
medium are incoherent,?* which implies nonsensitivity to
the possible introduction of some orientational or ener-
getic disorder in the bath molecules. Specifically, our as-
sumption that these host molecules are characterized by
isotropic molecular polarizabilities  can approximately
represent a situation where nonisotropic molecules are
randomly oriented in their sites. Translational symmetry
may have essential importance for the opposite (coherent
exciton) case, which arises when Vi, >#Awp, and
which thus generally requires low temperatures. The
coherent excitons are well represented in terms of spatial-
ly delocalized waves of excitation, and any destruction of
the translational order results in the scattering of such
waves (i.e., losses of the exciton coherence). However, if
the energy transferred between the guests species is far
removed from any exciton resonances of the medium, the
coherence does not play a significant role and the transfer
rate is once again insensitive to the lack of translational
regularity. To summarize, the employment of the polari-
ton concept is not central to the theory; rather, it is a
matter of convenience, offering calculational advantages
by imposing lattice symmetry.

It is to be noted that the theory is based on the widely
accepted description of energy transfer in terms of rates.
In other words, the overall multistep migration process
occurs through uncorrelated acts of incoherent energy
transfer between the molecules of the system. Hence the
coherent transfer manifest at R <R, (R, being the
characteristic coherence distance) is out of the scope of
the present study.*>* Typically R, ~20 A, and so the
restriction R > R, is also consistent w1th the adoption of
the electric dipole approximation: The latter is appropri-
ate for separations R exceeding characteristic molecular
dimensions d ~10 A. However, in contrast to the stan-
dard theory of radiationless energy transfer,>?* in which
the same short-range constraints are normally imposed,
the present approach has no restrictions at large (far-
zone) intermolecular separations.

To conclude, a comprehensive many-body formulation
of microscopic QED has been developed to take sys-
tematic account of the influence of the medium in
dipole-dipole resonance energy transfer. The theory is
applicable to a wide range of both ordered and disordered
materials, describing the transfer of electronic energy be-
tween chromophoric entities in organic, inorganic, and
biological system. The results correctly reflect the local
field effects and intrinsically embody an exponential de-
cay factor modifying the transfer rate, including the
divergent R ~2 term. Accordingly, the problem associat-
ed with potentially infinite ensemble rates has been solved
from first principles. Finally, our theory establishes the
precise details of the interplay in condensed matter be-
tween what have traditionally been regarded as radiation-
less and radiative energy transfer.
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APPENDIX A: CONDITION
ON THE TRANSFORM MATRIX
Consider the 2L X 2L matrix defined by
o4, AN=|4,A 4", |- 4T, A)4, 4", AD

the matrix vectors | 4T, 4 ) and (4, A T| being defined in
obvious analogy to IA A% and (AT, 4| of Egs. 3.21)
and (3.22). By explomng the Bose commutatlon relations
(3.16) and (3.17), it is clear that ¢( 4, 4 T) takes the diago-
nal form

_ 0 |
o4, AN=|, =0, (A2)

the off-diagonal terms vamshlng through commutation of
the corresponding |47, 4) and (4, A T] terms in (A1).
The same condition apphes after transformation to the

new set of operators; from (3.35) and (3.36), we have
Sp(A4,AT)is*=g(P,BT)=0 . (A3)

In this way one obtains the required relation (3.44).

APPENDIX B: CALCULATION
OF THE GREEN’S FUNCTION G;(k)

To begin, the zero-order Green’s function present in
Eq. (4.31) is given by

G %(k)= ;{k,1ad|G °|k,rad ),
|k+G|?8,; — (k+G);(k+G);
(K +is')*—|k+G|?
(s'—>+0), (B

=L
'ﬁEo G

which can be rewritten as

G°(k)=l:2 p k"8 —kik; S
d # 1, #0 Ney € (K +is'—k"
Xe-—ik-rn , (B2)

where the summation over k’ is now not restricted to the
first Brillouin zone; that is, we have k'= kl—l-G k, being
a first Brillouin-zone vector. The term in the square
brackets of Eq. (B2) can readily be identified as the re-
tarded vacuum dipole interaction tensor, and the r,=0
term is therefore omitted to exclude contributions associ-
ated with self-interactions.

In what follows, consideration will be restricted to the
case of small k=|k| <<27/a. That is sufficient to ac-
count for energy transfer over distances R, which sub-
stantially exceed the lattice constant a. Replacing the
summations over 1, and k' in Eq. (B2) by integrations
and excluding the 8-function contribution at the origin
r=0, one obtains, from the resulting double Fourier in-
tegral,

[2(K +z’s’)2+k2]6,j—-3k1kj

Go_k= P . R . ,A.., PP
5k 3tiey (K +is')?—k?

(k<<2mw/a). (B3)
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Denoting

ap 2K +is')*+k?

36y (K +is')—k?
2

b=9_£_____k__.__ e e e = . (B5)

a=1+ y - e - - (B4)

€ (K+is'?—k?’

and thus

[1+ﬁaé°(k)],71=%

b

one has Substituting Egs. (B4) and (B5) into (B7) and the result
- into Eq. (4.31), one finds after performing some algebraic
[1+#aG °(k)];=ady; —bk)k g (B6)  rearrangements the required Green’s function
| . — -
: 2
. 1 | e1+2 [2€,(K +is’)2+k2]8,j—3k1kj 2ap
Gylk)=—L—— %85, | (k<<2m/a), (B8)
VT 3t €, [ 3 { e (K +is' 2 —k? 3 Y i

where the relative dielectric permittivity €, is given by Eq. (4.33) of the main text.

Finally, substituting the above Green’s function into Eq. (4.13) and replacing the sum over k by an integral over a
continuous variable, one ultimately arrives at Eq. (4.32), the result for the dielectric tensor 8;;. Note that retention of
the infinitesimal is’ of Eq. (B8), in order to displace the poles of the integrand from the real k axis, is only entirely neces-

sary for a medium which is lossless (Ime, =0).
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