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Spectrum of π electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach
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We present an analytical description of π electrons of a finite-size bilayer graphene within a framework of
the tight-binding model. The bilayered structures considered here are characterized by a rectangular geometry
and have a finite size in one or both directions with armchair- and zigzag-shaped edges. We provide an exact
analytical description of the spectrum of πelectrons in the zigzag and armchair bilayer graphene nanoribbons
and nanotubes. We analyze the dispersion relations, the density of states, and the conductance quantization.
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I. INTRODUCTION

Since its isolation in 2004, graphene—a single sheet of
carbon atoms arranged in a honeycomb lattice—has attracted
enormous attention because of its highly unusual electronic
and transport properties, which are strikingly different from
those of conventional semiconductor-based two-dimensional
electronic systems (for a review see Refs. 1–4). The signifi-
cance and potential impact of this new material for electronics
was immediately realized. So far, it has been demonstrated that
graphene has the highest carrier mobility at room temperature
of any known material.5 However, graphene is a semimetal
with no gap and zero density of states at the Fermi energy.
This makes it difficult to utilize it in electronic devices such
as field-effect transistor (FET) requiring a large on/off current
ratio. The energy gap can be opened in a bilayer graphene by
applying a gate voltage between the layers.6 This gate-induced
bandgap was demonstrated by Oostinga et al.,7 and the on/off
current ratio of around 100 at room temperature for a dual-gate
bilayer graphene FET was reported by IBM.8

Another way to introduce the gap is to form graphene into
nanoribbons.9,10 The conductance of graphene nanoribbons
(GNRs) with lithographically etched edges indeed revealed
the gap in the transport measurements.11,12 This gap has
been subsequently understood as the edge-disorder-induced
transport gap13–15 rather than the intrinsic energy gap expected
in ideal GNRs due to the confinement9 or electron interactions
and edge effects.10 In the last few years great progress has
been made in fabrication and patterning of GNRs with ultra-
smooth and/or atomically controlled edges. This includes, e.g.,
controlled formation of edges by Joule heating,16 unzipping
carbon nanotubes to form nanoribbons,17,18 a chemical route to
produce nanoribbons with ultrasmooth edges,19 and atomically
precise bottom-up fabrication of GNRs.20 All these advances
in nanoribbons fabrication will hopefully soon allow electronic
measurements in near-perfect nanoribbons free from edge or
bulk disorder defects.

An important insight into the electronic properties of
graphene and GNRs can be obtained from exact analytical
approaches. Analytic calculations for the electronic structure
of GNRs have been reported in Refs. 21–25. The electronic
structure of bilayer graphene was addressed in Refs. 26–30,
where the analytical results were presented (both exact and

perturbative). We are not, however, aware of any analytical
treatment of bilayer GNRs. (Note that a numerical study of
the magnetoband structure of GNRs was reported in Refs. 31
and 32, and the analytical and numerical treatment of the edge
states in bi- and N-layer graphene and GNRs was presented in
Refs. 30 and 33). The purpose of the present study is to provide
an exact analytical description of the spectrum of π electrons
in zigzag and armchair bilayer nanoribbons and nanotubes,
including the dispersion relations, the density of states, and
the conductance quantization.

The paper is organized as follows: In order to illustrate
our method, in Sec. II we present known analytical results
for a simpler system, monolayer graphene of a finite size.
Subsequently in Sec. III we derive the main analytical
expressions for the energy spectrum of finite-size structures
of bilayer graphene. These expressions are used in Sec. IV
to analyze the energy spectrum of various bilayer graphene
structures near the Fermi energy. Finally, Sec. V summarizes
our findings.

II. SINGLE LAYER GRAPHENE

Analytical expressions for the π electron spectrum in
GNRs and graphene nanotubes (GNTs), based on tight-binding
model, were provided in Ref. 24. In this section we will
rederive the same expressions in an analytically simpler way.
Our method more clearly shows the connection between
solutions for the infinite sheet of graphene and for the
finite-size sheet. In addition, this simpler method will allow
us to derive later on analytical expressions of the π electron
spectrum for more complex systems, bilayer GNRs and GNTs.

A. Electron spectrum in infinite sheet of graphene

First we will consider the π -electron spectrum in an infinite
sheet of graphene. The hexagonal structure of graphene is
shown in Fig. 1(a). The structure of the graphene can be
viewed as a hexagonal lattice with a basis of two atoms
per unit cell. The Cartesian components of the lattice vectors
a1 and a2 are a(3/2,

√
3/2) and a(3/2,−√

3/2), respectively.
Here a ≈ 1.42 Å is the carbon-carbon distance.1 The three
nearest-neighbor vectors are given by δ1 = a(1/2,

√
3/2),
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(a) (b) (c)

FIG. 1. (Color online) (a) Honeycomb lattice structure of graphene, made out of two interpenetrating triangular lattices; a1 and a2 are the
lattice unit vectors, and δi , i = 1,2,3, are the nearest-neighbor vectors. (b) Indication of labels of carbon atoms in the rectangular unit cell.
(c) Brillouin zones for hexagonal unit cell (solid hexagon) and rectangular unit cell (dashed rectangle). The Dirac points are indicated by solid
circles for the hexagonal unit cell and hollow circles for the rectangular unit cell.

δ2 = a(1/2,−√
3/2), and δ1 = a(−1,0). The tight-binding

Hamiltonian for electrons in graphene has the form

Hgr = −t
∑
〈i,j〉

(a†
i bj + b

†
j ai) , (1)

where the operators ai and bi annihilate an electron on
sublattice A at site RA

i and on sublattice B at site RB
i ,

respectively. The parameter t is the nearest-neighbor hopping
energy (t ≈ 2.8 eV). From now on we will write all energies
in the units of the hopping integral t ; therefore, we will set
t = 1. Let us label the elementary cells of the lattice with two
numbers, p and q. Then the atoms in the sublattices A and B are
positioned at RA

p,q = pa1 + qa2 and RB
p,q = δ1 + pa1 + qa2,

respectively.
The π -electron wave function satisfies the Schrödinger

equation,

H� = E� . (2)

We search for the eigenvectors of the Hamiltonian [Eq. (1)] in
the form of plane waves (Bloch states) by taking the probability
amplitudes to find an atom in the sites RA

p,q and RB
p,q of the

sublattices A and B as

ψA
p,q = cAeik·RA

p,q , ψB
p,q = cBeik·RB

p,q . (3)

Thus Eq. (2) yields the following eigenvalue equations for the
coefficients cA and cB :

−EcA = cBφ̃(k), (4)

−EcB = cAφ̃(−k), (5)

where

φ̃(k) ≡ eik·δ1 + eik·δ2 + eik·δ3 . (6)

From Eqs. (4) and (5) we get the eigenenergies and the
corresponding coefficients determining the eigenvectors

E(k) = s1|φ̃(k), cA = − φ̃(k)

E(k)
, cB = 1, (7)

where s1 = ±1. In anticipation of rectangular geometry we
introduce dimensionless Cartesian components of the wave
vector

κ = 3akx, ξ =
√

3aky (8)

instead of the wave vector components kx and ky . Then using
the coordinates of the vectors δj we have

φ̃(k) = e−i κ
3 + 2ei κ

6 cos

(
ξ

2

)
(9)

and the expression for the eigenenergies becomes1

E(k) = s1

√
1 + 4 cos2

(
ξ

2

)
+ 4 cos

(
ξ

2

)
cos
(κ

2

)
. (10)

To satisfy boundary conditions it is useful to adopt a larger
unit cell characterized by the same geometry as the whole sheet
of graphene. Since we are interested in configurations of the
graphene with rectangular geometry, we will use a rectangular
unit cell, as has been done in Ref. 24. Such a unit cell has
four atoms labeled with symbols l, λ, ρ, r , shown in Fig. 1(b).
The atoms with labels l and ρ belong to the sublattice A, and
the atoms with labels λ and r belong to the sublattice B. The
position of the unit cell is indicated with two numbers, n and
m. The first Brillouin zone corresponding to the rectangular
unit cell contains the values of the wave vectors κ and ξ in
the intervals −π � κ < π , −π � ξ < π . We search for the
eigenvectors having the form of plane waves,

ψm,n,α = cαeiξm+iκn, (11)

where α = l,ρ,λ,r . This solution can be obtained from Eq. (3)
using the equalities

cr = cB, cρ = cAe−ik·δ1 , cλ = cBe−ik·a1 , cl = cAe−i2akx .

(12)

The Brillouin zones corresponding to hexagonal and rect-
angular unit cells are shown in Fig. 1(c). Compared to the
area of the Brillouin zone of the hexagonal unit cell, the area
of the Brillouin zone of the rectangular unit cell is two times
smaller. The smaller Brillouin zone leads to the appearance of
additional dispersion branches. Those dispersion branches can
be taken into account by using two values of the wave vector
κ in Eqs. (10) and (7), one with −π � κ < π and another
obtained by replacing κ by 2π + κ . Using Eqs. (7) and (12)
we obtain the coefficients of the eigenvectors

cr = 1, cρ = −e−i
ξ

2
φ(κ,ξ )

E(κ,ξ )
, (13)
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FIG. 2. (Color online) Left: dispersion branches of graphene
for rectangular unit cell, calculated according to Eq. (16). Right:
dispersion branches for ξ = 0, showing propagating solutions (red
solid) and evanescent solutions (green dashed).

cl = −s3e
−i κ

2
φ(κ,ξ )

E(κ,ξ )
, cλ = s3e

−i 1
2 (κ+ξ ), (14)

where

φ(κ,ξ ) = s3e
−i κ

2 + 2 cos

(
ξ

2

)
, (15)

and s3 = ±1 indicates the dispersion branches that appear due
to the smaller Brillouin zone. The equation for the energy now
becomes

E(κ,ξ ) = s1

√
1 + 4 cos2

(
ξ

2

)
+ s34 cos

(
ξ

2

)
cos
(κ

2

)
.

(16)

This equation has been obtained in Ref. 24. Zero-energy points
of the graphene honeycomb lattice with dispersion relation
given by Eq. (10) are at the points K = (2π,2π/3) and K ′ =
(2π,−2π/3), where coordinates are given in (κ,ξ ) space. K

points correspond to the corners of the first Brillouin zone.
Using the Brillouin zone corresponding to the rectangular unit
cell, the zero-energy points have coordinates (0,± 2π

3 ) and the
number of these points is only two, as shown in Fig. 1(c).

Since we will consider finite-size graphene sheets, evanes-
cent solutions become important. Solutions exponentially
decreasing or increasing in the x direction can be obtained by
taking κ = i|κ| in Eqs. (13), (14), and (16), whereas solutions
exponentially decreasing or increasing in the y direction can
be obtained by taking ξ = i|ξ |. The dependency of the energy
on κ when ξ = 0 is shown in Fig. 2. We see that the branches
with real and imaginary κ do not intersect at |κ| > 0.

B. Electron spectrum in various single-layer
graphene structures

From the boundary conditions we get restrictions on the
possible values of the wave vectors κ,ξ . We will consider
the structures of graphene that have a set of N rectangular
unit cells in the x (armchair) direction and a set of N + 1/2
rectangular unit cells in the y (zigzag) direction, so that there
are N hexagons along the y axis. Note that rectangular unit
cell shown in Fig. 1(b) extends over the whole hexagon in the
y direction, whereas it extends over more that one hexagon in
the x direction.

Using the periodic boundary condition, corresponding to
the graphene torus, we obtain the possible values of the wave
vectors κ,ξ as

ξj = 2π

N j, j = −
⌊N

2

⌋
, −
⌊N

2

⌋
+ 1, . . . ,

⌊N − 1

2

⌋
(17)

κν = 2π

N
ν, ν = −

⌊
N

2

⌋
, −
⌊

N

2

⌋
+ 1, . . . ,

⌊
N − 1

2

⌋
(18)

Here �·	 denotes the integer part of a number. Thus the
spectrum of a graphene torus is given by Eq. (16) replacing κ

and ξ by κν and ξj .
For graphene armchair nanotubes one has the periodic

boundary condition in the x direction and the requirement
ψ0,n,r = ψ0,n,l = ψN+1,n,l = ψN+1,n,r = 0 for the y direction.
Since the energy [Eq. (16)] does not depend on the sign of wave
vector ξ , we will search for the eigenvectors of the Hamiltonian
[Eq. (1)] as a superposition of periodic solutions [Eq. (11)] with
ξ and −ξ ,

ψm,n,α = acα(ξ,κν)eiξm+iκνn + bcα(−ξ,κν)e−iξm+iκνn, (19)

where κν is given by Eq. (18) and ξ needs to be determined.
From the boundary conditions we get a system of two equations
for the coefficients a and b:

acr,l(ξ,κν) + bcr,l(−ξ,κν) = 0, (20)

aeiξ (N+1)cr,l(ξ,κν) + be−iξ (N+1)cr,l(−ξ,κν) = 0. (21)

This system of equations has nonzero solutions only when the
determinant is zero. From Eqs. (13) and (14) it follows that the
coefficients cr,l(ξ,κ) do not depend on the sign of ξ , and we
get the condition sin[ξ (N + 1)] = 0 or

ξ = πj

N + 1
, j = 1, . . . ,N . (22)

Additionally, there are two N -fold degenerate levels corre-
sponding to ξ = π with energies E = ±1. The states of those
levels have zero wave function amplitudes at the l and r sites.

For graphene zigzag nanotubes one has the periodic
boundary condition in the y direction and the condition
ψm,0,r = ψm,N+1,l = 0 for the x direction. Similar to the
armchair nanotubes, the energy [Eq. (16)] does not depend on
the sign of wave vector κ , and we search for the eigenvectors
of the Hamiltonian [Eq. (1)] as a superposition of periodic
solutions [Eq. (11)] with κ and −κ ,

ψm,n,α = acα(ξj ,κ)eiξj m+iκn + bcα(ξj ,−κ)eiξj m−iκn, (23)

where ξj is given by Eq. (17) and κ needs to be determined.
From the boundary conditions we get a system of two equations
for the coefficients a and b:

acr (ξj ,κ) + bcr (ξj ,−κ) = 0, (24)

acl(ξj ,κ)eiκ(N+1) + bcl(ξj ,−κ)e−iκ(N+1) = 0. (25)

Using Eqs. (13) and (14) we find that nonzero solutions are
possible when

sin(κN )

sin
[
κ
(
N + 1

2

)] = −s32 cos

(
ξj

2

)
. (26)
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The possible values of wave vector κ should obey this equation.
The same condition has been obtained in Ref. 24. Equation
(26) allows for the imaginary values of wave vector κ . The
imaginary values appear when ξ c < |ξj | < π and s3 = −1,
where the critical value ξc = 2 arccos[N/(2N + 1)] of the
wave vector ξ is obtained from Eq. (26) by setting κ = 0. In the
limit N → ∞ from the condition [Eq. (26)] with imaginary
κ and Eq. (16), it follows that E = 0: edge states near zigzag
edges in the semi-infinite system have zero energy.

For an N × N sheet of graphene, open boundary conditions
in the y direction are the same as for armchair nanotubes and
in the x direction are the same as for zigzag nanotubes. Since
the resulting conditions for the wave vectors κ and ξ are not
coupled, the eigenvector of the Hamiltonian [Eq. (1)] is a
superposition of four periodic solutions having all possible
combinations of the signs of κ and ξ and the possible values of
the wave vectors are given by Eqs. (22) and (26). In addition
there are two N -fold degenerate levels corresponding to ξ = π

with energies E = ±1.

III. BILAYER GRAPHENE

Now we will consider the spectrum of π electrons in
bilayer graphene. The tight-binding Hamiltonian for electrons
in bilayer graphene has the form

Hbi = V
∑

j

(a†
j,2aj,2 + b

†
j,2bj,2 − a

†
j,1aj,1 − b

†
j,1bj,1)

− t
∑

〈i,j〉,p
(a†

i,pbj,p + b
†
j,pai,p)

− t⊥
∑

j

(a†
j,1aj,2 + a

†
j,2aj,1), (27)

where the operators ai,p and bi,p annihilate an electron on

sublattice Ap at site RAp

i and on sublattice Bp at site RBp

i ,
respectively. The index p = 1,2 numbers the layers in the
bilayer system. In the Hamiltonian [Eq. (27)] we neglected the
terms corresponding to the hopping between atom B1 and atom
B2 with the hopping energy γ3, and the terms corresponding to
the hopping between atom A1 (A2) and and atom B2(B1) with
the hopping energy γ4. Neglecting those hopping terms leads
to the minimal model of bilayer graphene.29 The parameter t⊥
(t⊥ ≈ 0.4 eV) is the hopping energy between atom A1 and
atom A2, while V is half the shift in the electrochemical
potential between the two layers. As with the monolayer
graphene, we will express all the energies in the units
of t .

A. Electron spectrum in infinite sheet of bilayer graphene

We will proceed as in the foregoing and will analyze an
infinite system at first. The atoms in the sublattices A1 and A2

are positioned at RA1,2
p,q = pa1 + qa2; in sublattice B1 the atoms

are positioned at RB1
p,q = δ1 + pa1 + qa2; and in sublattice

B2 the atoms are positioned at RB2
p,q = −δ1 + pa1 + qa2. We

search for the eigenvectors of the Hamiltonian [Eq. (27)] in
the form of plane waves. The probability amplitudes to find

an atom in sites RA1,2
p,q and RB1,2

p,q of sublattices Aj and Bj

are

ψA1,2
p,q = cA1,2eik·RA1,2

p,q , ψB1,2
p,q = cB1,2eik·RB1,2

p,q . (28)

The coefficients cAp and cBp obey the eigenvalue equations

−EcA1 = V cA1 + cB1 φ̃(k) + γ cA2 , (29)

−EcB1 = V cB1 + cA1 φ̃(−k), (30)

−EcA2 = −V cA2 + cB2 φ̃(−k) + γ cA1 , (31)

−EcB2 = −V cB2 + cA2 φ̃(k). (32)

Here energy E, potential V , and interaction between layers
γ ≡ t⊥/t are in the units of the hopping integral t . Using the
nearest-neighbor hopping energy t ≈ 2.8 eV and the hopping
energy between two layers t⊥ ≈ 0.4 eV one gets γ ≈ 0.14.
When V = 0, the π -electron spectrum is determined by the
equation

E(k) = s1

(
s2

γ

2
+
√

γ 2

4
+ |φ̃(k)|2

)
, (33)

where s1,s2 = ±1. The coefficients of the eigenvector are

cA1 = − E(k)

φ̃(−k)
, cB1 = 1,

cA2 = s1s2
E(k)

φ̃(−k)
, cB2 = −s1s2

φ̃(k)

φ̃(−k)
. (34)

When V 
= 0 the spectrum is

E(k)

= s1

√
γ 2

2
+ V 2 + |φ̃(k)|2 + s2

√
γ 4

4
+ |φ̃(k)|2(4V 2+γ 2)

(35)

and the coefficients of the eigenvector are

cA1 = −E(k) + V

φ̃(−k)
, cB1 = 1,

(36)

cA2 = E(k) − V

φ̃(−k)
f (k), cB2 = − φ̃(k)

φ̃(−k)
f (k),

where the function

f (k) = [E(k) + V ]2 − |φ̃(k)|2
γ [E(k) − V ]

(37)

describes the contribution of the second sheet of graphene to
the eigenvector.

Finite-size bilayer graphene sheets can be in AB-α or
AB-β stacking, as is shown in Figs. 3(a) and 3(b). As we
did for the graphene monolayer, we will use rectangular unit
cells, one shifted with respect to the other, in each layer of
bilayer graphene. However, the positions of rectangular cells
are different for different stacking types. Rectangular unit cells
have eight atoms, with labels l1, λ1, ρ1, r1 and l2, λ2, ρ2,
r2, as shown in Figs. 3(c) and 3(d). For the AB-α stacking,
the atoms with labels l1 and ρ1 belong to sublattice A1, atoms
λ1 and r1 to sublattice B1, atoms l2 and ρ2 to sublattice A2,
and atoms λ2 and r2 to sublattice B2. For the AB-β stacking
the atoms with labels l1 and ρ1 belong to sublattice B1, atoms
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(a) (b)

(d)(c)

FIG. 3. (Color online) Upper part:
sublatices A1, A2, B1, and B2 on bilayer
graphene in AB-α stacking (a) and AB-
β stacking (b). Lower part: indication
of labels of carbon atoms used in the
description of the π -electron spectrum for
bilayer graphene with AB-α stacking (c)
and AB-β stacking (d).

λ1 and r1 to sublattice A1, atoms l2 and ρ2 to sublattice B2,
and atoms λ2 and r2 to sublattice A2.

We search for the solutions of the form

ψm,n,αp
= cαp

eiξm+iκn, (38)

where α = l,ρ,λ,r is the label of atoms and p = 1,2 is the
number of the layer. For the AB-α stacking, this solution can
be obtained from Eq. (28) using the equalities

cr1 = cB1 , cρ1 = cA1e−ik·δ1 ,
(39)

cλ1 = cB1e−ik·a1 , cl1 = cA1e−i2akx ,

cr2 = cB2e−iakx , cρ2 = cA2e−ik·δ1 ,
(40)

cλ2 = cB2eik·δ2 , cl2 = cA2eiakx ,

whereas for the AB-β stacking the coefficients are

cr1 = (cA1 )∗, cρ1 = (cB1 )∗e−ik·δ1 ,
(41)

cλ1 = (cA1 )∗e−ik·a1 , cl1 = (cB1 )∗e−i2akx ,

cr2 = (cA2 )∗e−ik·a2 , cρ2 = (cB2 )∗e−iakx ,
(42)

cλ2 = (cA2 )∗, cl2 = (cB2 )∗eik·δ1 .

As was the case for monolayer graphene, to take into
account the smaller Brillouin zone we need two dispersion
branches: one with κ and one with 2π + κ . Using Eq. (34) or
Eq. (36) we obtain the coefficients of the eigenvectors. The
expressions for the coefficients are presented in Appendix A.
The expression for the energy becomes

E(κ,ξ ) = s1

√
γ 2

2
+ V 2 + |φ(κ,ξ )|2 + s2

√
γ 4

4
+ |φ(κ,ξ )|2(4V 2 + γ 2), (43)

which reduces to

E(κ,ξ ) = s1

(
s2

γ

2
+
√

γ 2

4
+ |φ(κ,ξ )|2

)
(44)

for V = 0. Here

|φ(κ,ξ )|2 = 1 + 4 cos2

(
ξ

2

)
+ s34 cos

(
ξ

2

)
cos
(κ

2

)
, (45)

and s3 = ±1 indicates the dispersion branches that appear due
to the smaller Brillouin zone.

In addition to the propagating waves, for finite-size bilayer
graphene sheets evanescent solutions become important. Solu-
tions exponentially decreasing or increasing in the x direction
can be obtained by taking κ = i|κ|. Solutions exponentially
decreasing or increasing in the y direction can be obtained by
taking ξ = i|ξ |. In addition to the purely imaginary ξ there are
solutions, corresponding to s3 = −1, having complex values
of ξ . The dependency of the energy on the wave vector κ when
the wave vector ξ is constant and on the wave vector ξ when
the wave vector κ is constant is shown in Fig. 4. We see that
now, in contrast to the graphene monolayer, the branches with
real and imaginary κ can have the same energy.
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FIG. 4. (Color online) Dispersion branches of bilayer graphene:
dependency of the energy on the wave vector κ when the wave
vector ξ is constant (ξ = 0) (left) and on the wave vector ξ when the
wave vector κ is constant (κ = 1.0) (right). Propagating solutions are
shown with red solid line, evanescent solutions with green dashed
line, and evanescent oscillating solutions with complex value of
the wave vector ξ are shown with blue dotted line. In order to show
the structure of the dispersion branches more clearly, the value of the
parameter γ is set sufficiently large, γ = 0.5.

B. Electron spectrum in various bilayer graphene structures

We will consider the structures of bilayer graphene that have
a set of N rectangular unit cells in the x (armchair) direction
and a set of N + 1/2 rectangular unit cells in the y (zigzag)
direction, so that there are N hexagons along the y axis. Note
that the rectangular unit cells shown in Figs. 3(c) and 3(d)
extend over the whole hexagon in the y direction, whereas
they extend over more that one hexagon in the x direction.
In principle, in the case of bilayer graphene nanotubes the
numbers N orN for the inner and outer cylinders are different.
However, for simplicity we will consider them to be the same,
which is a good approximation for sufficiently large tubes
when N → ∞ or N → ∞.

As we found for the graphene monolayer, from the
boundary conditions we get restrictions on the possible values
of the wave vectors κ and ξ . Using a periodic boundary
condition corresponding to the bilayer graphene torus, we find
that the possible values of the wave vectors κ and ξ are given
by Eqs. (17) and (18).

For bilayer graphene armchair nanotubes one has the
periodic boundary condition for the x direction and the
condition

ψ0,n,rp
= ψ0,n,lp = ψN+1,n,lp = ψN+1,n,rp

= 0 (46)

for the y direction. Here p = 1,2 is the number of the
layer. This condition is the same for both the AB-α and
AB-β stackings. For bilayer graphene with AB-α stacking
the coefficients crp,lp (ξ,κ) do not depend on the sign of ξ and
we get the same conditions [Eqs. (18) and (22)] for the wave
vectors κ and ξ as we got for the monolayer graphene armchair
tubes.

For bilayer graphene with AB-β stacking the coefficients
crp,lp (ξ,κ) depend on the sign of ξ , and condition for the
possible values of the wave vector ξ is much more complicated.
There are eight boundary conditions in the y direction. In
bilayer graphene there are four eigenstates with different wave
vectors along the y direction, ξ (1), ξ (2), ξ (3), and ξ (4), having the
same energy: E(κ,ξ (1)) = E(κ,ξ (2)) = E(κ,ξ (3)) = E(κ,ξ (4)),
as is evident from Fig. 4. Two or four of the wave vectors ξ (1),
ξ (2), ξ (3), and ξ (4) can be imaginary or complex numbers. Since
the energy does not depend on the sign of ξ , we can form a wave

function from superposition of eight waves. From the boundary
conditions [Eq. (46)], the resulting set of linear equations
can have nonzero solutions only if the 8 × 8 determinant is
zero. The analytical form of this condition is too large and too
complicated to be useful.

For bilayer graphene zigzag nanotubes one has the periodic
boundary condition for the y direction and the condition

ψm,0,r1 = ψm,N+1,l1 = ψm,0,l2 = ψm,N+1,r2 = 0 (47)

for the x direction. Here p = 1,2 is the number of the layer.
This condition is the same for both the AB-α and AB-β
stackings. In the bilayer graphene there are two eigenstates
with wave vectors along the x direction, κ (1) and κ (2), having
different absolute values but corresponding to the same energy:
E(κ (1),ξ ) = E(κ (2),ξ ). One or both of the wave vectors κ (1)

and κ (2) can be imaginary. The energy can be equal only if the
signs s1, s2 obey the condition

s
(2)
1 s

(2)
2 = −s

(1)
1 s

(1)
2 (48)

When the bias potential is zero, V = 0, from the equality of
the energy we can express κ (2) as

s
(2)
3 cos

(
κ (2)

2

)
= s

(1)
3 cos

(
κ (1)

2

)

+ s
(1)
1 s

(1)
2

γ

2 cos
(

ξ

2

)E(κ (1),ξ ). (49)

When V 
= 0,

s
(2)
3 cos

(
κ (2)

2

)
= s

(1)
3 cos

(
κ (1)

2

)

± γ

2 cos
(

ξ

2

)√4E2V 2 + γ 2(E2 − V 2).

(50)

There are four boundary conditions in the x direction. Since the
energy does not depend on the sign of κ , we can form a wave
function from superposition of four waves. From the boundary
conditions [Eq. (47)] the resulting set of linear equations can
have nonzero solutions only if the 4 × 4 determinant is zero.
The possible values of the wave vector ξ are given by Eq. (17),
and the conditions for the possible values of the wave vector
κ are given in Appendix B.

For an N × N sheet of bilayer graphene, open boundary
conditions in the y direction are the same as for armchair
nanotubes, Eq. (46), and in the x direction are the same as for
zigzag nanotubes, Eq. (47). For AB-α stacking, the conditions
for the possible values of the wave vectors κ and ξ are a
combination of the conditions for zigzag and armchair bilayer
graphene tubes. Specifically, when V = 0, the conditions are
given by Eqs. (22) and (B1) or (B2). When V 
= 0, the
conditions are given by Eqs. (22) and (B3). For AB-β stacking
it is impossible to separate conditions for the wave vector
ξ from the conditions for the wave vector κ . The resulting
expressions are very large and complicated.

C. Summary of the possible values of wave vectors

For structures of bilayer graphene, the energy spectrum is
completely determined by Eqs. (44) or (43) with appropriate
expressions for wave vectors κ and ξ .
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Equations presented in Appendix B make one quantum
number dependent on the other. This dependence appears
because of zigzag-shaped edges. For structures where zigzag
edges do not exist or their effect can be disregarded, the wave
vector κν can be replaced by a continuous variable.

Thus, the possible values of wave vectors for various
structures are as follows:

1. For the armchair bilayer graphene ribbon of infinite
length with AB-α stacking, the wave vectors are determined
by

0 � κ � π, ξj = πj

N + 1
, j = 1, . . . , N . (51)

2. For the armchair bilayer graphene ribbon of infinite
length with AB-β staking we have 0 � κ � π and the equation
for the possible values of ξ is complicated.

3. For the zigzag bilayer graphene ribbon of infinite length
we have 0 � ξ � π , and the conditions for the possible values
of κ , given in Appendix B, are different for AB-α and AB-β
stackings.

4. For the zigzag bilayer carbon tube of infinite length with
AB-α or AB-β stacking, the wave vectors are determined by

0 � κ � π, ξj = 2π

N j,

(52)

j = −
⌊N

2

⌋
, −
⌊N

2

⌋
+ 1, . . . ,

⌊N − 1

2

⌋
.

5. For the armchair bilayer carbon tube of infinite length
with AB-αor AB-β stacking,

κν = 2π

N
ν, ν = −

⌊
N

2

⌋
,

(53)

−
⌊

N

2

⌋
+ 1, . . . ,

⌊
N − 1

2

⌋
, 0 � ξ � π .

Taking into account the ranges of the possible values of the
wave vectors, zero-energy points for various structures with
bias potential V = 0 are as follows:

6. For zigzag bilayer carbon tube, zero-energy points are
(0, 2π

3 ), (0,− 2π
3 ).

7. For armchair bilayer carbon tube, zero-energy point is
(0, 2π

3 ).
8. The dispersion of armchair bilayer graphene ribbon has

only one zero-energy point (0, 2π
3 ).

9. For zigzag bilayer graphene ribbon dispersion, this point
cannot be shown in the real plane.

IV. BAND STRUCTURE NEAR THE FERMI ENERGY

In this Section we focus on only the part of the spectrum
with the smallest absolute value of energy. This part corre-
sponds to s2 = −1, s3 = −1. In order to obtain an approximate
expression for the energy spectrum near the Fermi energy we
expand Eq. (45) in a power series near the zero point κ = 0,

ξ = 2π/3, yielding

|φ(κ,ξ )|2 ≈ 3

4

[
κ2

3

(
1 −

√
3

2
q

)
+ q2

(
1 + q

2
√

3

)]

≈ 3

4

[
κ2

3
+
(

q − κ2

4
√

3

)2
]

. (54)

Here q ≡ ξ − 2π/3 and |κ| � 1, |q| � 1. Substituting
Eq. (54) into Eq. (44) or Eq. (43) one obtains the approximate
expression for the energy spectrum. Thus, when the bias
potential is zero, V = 0, the approximate expression for the
energy is

E(κ,ξ ) = s1

⎧⎨
⎩−γ

2
+
√√√√γ 2

4
+ 3

4

[
κ2

3
+
(

q − κ2

4
√

3

)2
]⎫⎬
⎭
(55)

Furthermore, assuming that |φ(κ,ξ )|2 � γ , the branch of
Eq. (44) with s2 = −1, s3 = −1 takes the form

E(κ,ξ ) ≈ s1
|φ(κ,ξ )|2

γ
. (56)

When V 
= 0 and V � γ , then Eq. (43) becomes

E(κ,ξ ) ≈ s1V − s1
2V

γ 2
|φ(κ,ξ )|2 + s1

|φ(κ,ξ )|4
2V γ 2

. (57)

The bilayer graphene has a gap at |φ(κ,ξ )|2 = 2V 2. However,
since the parameter γ is small, γ � 1, the approximate
expressions of Eqs. (56) and (57) are suitable only for very
small values of |κ| and |q|.

The spectrum of various structures of bilayer graphene can
be obtained from the approximate expressions for |φ(κ,ξ )|2
near zero points. In contrast to Eqs. (56) and (57), the energy
of monolayer graphene is E(κ,ξ ) = s1

√
|φ(κ,ξ )|2. Thus, the

analysis of the square root of |φ(κ,ξ )|2 essentially was done
in Ref. 24. Going back to the original wave vectors kx and ky,

the band structure of bilayer graphene tubes and ribbons when
V = 0 as in Ref. 24 can be summarized by the equation

Eν(k‖) ≈ s1

(
−γ

2
+
√

γ 2

4
+ 9

4
a2[(k‖ − k̄σ

‖ )2 + kσ2
⊥ν]

)
,

(58)

where k‖ and k⊥ν denote the longitudinal (continuous) and
the transverse (quantized) components of the wave vector,
respectively. Index σ specifies the structure. Further in this
Section we will consider only the case when V = 0.

A. Quantum conductance

Within the framework of the Landauer approach,34–37 the
zero-temperature conductance of an ideal wire is equal to

G(E) = 2e2

h

∑
ν

gνTν(E), (59)

where 2e2/h is conductance quantum, gν is the band degen-
eracy, and transmission coefficient Tν is 0 or 1 depending on
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TABLE I. Degeneracy gσ
ν of the νth band energy |Eσ

ν (k‖ = 0)|

σ gσ
ν

Armchair bilayer carbon tube 1(ν = 0), 2(ν 
= 0)
Zigzag bilayer carbon tube 2
Armchair bilayer graphene ribbon 1
Zigzag bilayer graphene ribbon 1

whether the νth band is open or closed for charge carriers with
energy E.

When bias potential is zero, V = 0, the transmission
coefficient is Tν(E) = �(E − Eσ

ν ) for conduction bands and
Tν(E) = �(|E − Eσ

ν |) for valence bands. Here Eσ
ν are the

subband threshold energies and �(x) is the Heaviside step
function. When the approximation Eq. (58) is valid, the
subband threshold energies are

Eσ
ν = s1

(
−γ

2
+
√

γ 2

4
+ 9

4
a2kσ2

⊥ν

)
. (60)

The degeneracies are shown in Table I. The values of gν

for armchair bilayer carbon tube and zigzag bilayer graphene
ribbon with ν > 1, represented in Table I, should be doubled,
because electron or hole states with ±k‖ 
= 0 are degenerate.

The electron or hole conductance of armchair and zigzag
bilayer carbon tubes and their parent graphene ribbons has thus
the form of a ladder, symmetrically ascending with the increase
in energy for electrons, and with the decrease of energy for
holes. For the charge carrier energy that falls between the nth
and (n + 1)th bands, the wire conductance equals

G(E) = 2e2

h

⎧⎪⎨
⎪⎩

n armchair bilayer ribbon,

2n + 2 zigzag bilayer ribbon,

2n zigzag bilayer carbon tube,
2(2n + 1) armchair bilayer carbon tube.

(61)

The conductance for bilayer graphene ribbons has been
numerically calculated in Ref. 31. Equation (61) for the
conductance coincides with that of Ref. 31.

B. Density of states

The density of states (DOS) of a quantum wire, including
a factor 2 for the spin degeneracy, reads

ρ(E) = 2

π

∑
ν

[
dEν(k‖,k⊥ν)

dk‖

]−1

. (62)

The summation includes all transverse modes with energy
Eν � E. Using Eq. (58) we obtain the DOS of bilayer
graphene,

ρ(E) = 2

3πa

∑
ν

gν

(2|E| + γ )√(|E| − ∣∣Eσ
ν

∣∣)(|E| + ∣∣Eσ
ν

∣∣+ γ
)

×�
(|E| − ∣∣Eσ

ν

∣∣). (63)

The index ν is ν = 0,±1,±2, . . . for bilayer graphene tubes
and armchair bilayer graphene ribbons, and ν = 0,1,2, . . . for
zigzag bilayer graphene ribbons. The electron density at zero
temperature is obtained by the integration of the DOS from

the charge neutrality point μ0 = 0 to the Fermi energy,

n =
∫ EF

0
ρ(E)dE. (64)

Using Eq. (63) we get

nσ (EF ) = 4

3πa

∑
ν

gν

√(|EF | − ∣∣Eσ
ν

∣∣)(|EF | + ∣∣Eσ
ν

∣∣+ γ )

×�(|EF | − |Eν |). (65)

C. Armchair bilayer carbon tube

For the armchair bilayer carbon tube we have that κ in
Eq. (54) has discrete values κν = 2πν/N , ν = 0,±1, . . . , and
q is continuous. Thus the energy spectrum has the form

Eν(ky)

= s1

{
−γ

2
+
√

γ 2

4
+ 9

4
a2

[
(ky − k̄y,ν)2 + 4π2ν2

9a2N2

]}
,

(66)

with

k̄y,ν = 2π

3
√

3a
+ π2ν2

3aN2
. (67)

Conduction (valence) band bottoms (tops) are equal to

Eν = s1

(
−γ

2
+
√

γ 2

4
+ π2ν2

N2

)
. (68)

The distance between the minima of the dispersion branches
with the indices s2 = −1 and s2 = +1 is γ . The number ν

of subbands with the index s2 = −1 and energy smaller than
the energies of the subbands with index s2 = +1 is greater
than 1 only when the number of rectangular unit cells in the x

direction, N , is sufficiently large. Using the equation Eν,max =
γ and estimating the subband threshold energy [Eq. (68)] as
Eν ≈ π2ν2/(γN2), one obtains that the requirement ν � 1
leads to N � π/γ . In calculations we used N = 100.

The band structure, calculated with exact Eqs. (44) and
(45) and approximated according to Eq. (66), is represented in
Fig. 5. One sees that Eq. (66) provides a good approximation
of the exact results. Also shown is the DOS, calculated
with Eqs. (63) and (68), and the conductance G(E) =
(2e2/h)2(2n + 1).
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FIG. 5. (Color online) Band structure of armchair bilayer carbon
tubes (left), DOS (center), and conductance (right). The number of
rectangular unit cells in the x direction N = 100. Solid red lines
are calculated according to Eqs. (44) and (45); dashed green lines
represent the approximation of Eq. (66). Bands with s2 = +1 are not
shown. DOS is given in units of a−1 and is calculated according to
Eqs. (63) and (68). The conductance is given in units of 2e2/h and is
calculated using Eq. (61).
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D. Zigzag bilayer carbon tube

Distinct from armchair bilayer carbon tubes, which are
always metallic when V = 0, zigzag bilayer carbon tube has
a gapless spectrum if j ∗ ≡ N /3 is an integer, Ej=j∗ (κ =
0) = 0. Otherwise, the zigzag bilayer carbon tube spectrum
has a gap. If N /3 is not an integer, the band index of
the lowest conduction (highest valence) band can be equal
either to j ∗ ≡ (N − 1)/3 or to j ∗ ≡ (N + 1)/3. As a result
of expansion near zero-energy points in powers of κ and
2π (j − j ∗)/N , we arrive at

|φ(κ,ξ )|2 ≈ 3

4

(
q2

ν + κ2

3

)
, (69)

where

qν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π

N

∣∣∣∣ν − 1

3

∣∣∣∣� 1 , semiconducting,

2π |ν|
N

(
1 + πν

2
√

3N

)
� 1, metallic,

with ν = 0,±1, . . . . The wave vector component κ is contin-
uous. The energy spectrum has the form

Eν(kx) = s1

[
−γ

2
+
√

γ 2

4
+ 9

4
a2

(
k2
x + q2

ν

3a2

)]
. (70)

Conduction (valence) band bottoms (tops) are equal to

Eν = s1

(
−γ

2
+
√

γ 2

4
+ 3

4
q2

ν

)
. (71)

The number ν of subbands with the index s2 = −1 and energy
smaller than the energies of the subbands with index s2 = +1
is greater than 1 only when the number of hexagons in the y

direction N is sufficiently large. Approximating Eq. (71) as
3π2ν2/(γN 2) we get N � √

3π/γ . In calculations we used
N = 102 for metallic tubes and N = 100 for semiconducting
tubes.

The band structure, calculated using exact Eqs. (44) and
(45) and approximated according to Eq. (70) for metallic and
for semiconducting tubes is shown in Fig. 6. One sees that
Eq. (70) provides a good approximation of the exact results.
Also shown is the DOS, calculated with Eqs. (63) and (71),
and the conductance G(E) = (2e2/h)2n.

E. Armchair bilayer graphene ribbon

For the armchair bilayer graphene ribbon with AB-α
stacking, the condition for the wave-vector component ξ

has a simple expression. When V = 0 and j ∗ ≡ 2(N + 1)/3
is an integer, then the armchair bilayer graphene ribbon
is metallic. Then index ν = j − j ∗ = 0 corresponds to the
zero-energy band. If 2(N + 1)/3 is not an integer, the armchair
bilayer graphene ribbon spectrum has a gap, and the band
closest to zero is either j ∗ ≡ (2N + 1)/3 or j ∗ ≡ (2N + 3)/3,
depending on which of these two numbers is an integer. For
κ,ν/N � 1 we get Eq. (69) with

qν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

N + 1

∣∣∣∣ν − 1

3

∣∣∣∣� 1 , semiconducting,

π |ν|
N + 1

(
1 + πν

4
√

3(N + 1)

)
� 1 , metallic,

(72)
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FIG. 6. (Color online) Upper part: band structure of metallic
zigzag bilayer carbon tubes (left), DOS (center) and conductance
(right). The number of hexagons in the y direction N = 102. Lower
part: band structure of semiconducting zigzag bilayer carbon tubes
(left), DOS (center) and conductance (right). The number of hexagons
in the y direction N = 100. Solid red lines are calculated according
Eqs. (44), (45); dashed green lines represent approximation (70).
Bands with s2 = +1 are not shown. DOS is given in units of a−1 and
is calculated according to Eqs. (63), (71). The conductance is given
in units of 2e2/h and is calculated using Eq. (61).

with ν = 0,±1, . . . . The wave vector component κ is con-
tinuous. The difference between the boundary conditions for
armchair bilayer graphene ribbons and zigzag bilayer graphene
tubes results in about two-times smaller band spacing in the
armchair ribbon spectrum than was found for the zigzag tube
spectrum.

The energy spectrum has the form

Eν(kx) = s1

[
−γ

2
+
√

γ 2

4
+ 9

4
a2

(
k2
x + q2

ν

3a2

)]
. (73)

Conduction (valence) band bottoms (tops) are equal to

Eν = s1

(
−γ

2
+
√

γ 2

4
+ 3

4
q2

ν

)
. (74)

The number ν of subbands with the index s2 = −1 and energy
smaller than the energies of the subbands with index s2 = +1
is greater than 1 only when the number of hexagons in the y

direction N is sufficiently large. Approximating Eq. (74) as
3π2ν2/4γ (N + 1)2 we get N � √

3π/(2γ ). In calculations
we used N = 101 for metallic ribbons and N = 100 for
semiconducting ribbons.

The band structure, calculated with the use of exact
Eqs. (44) and (45) and approximated according to Eq. (73)
for metallic and semiconducting ribbons is shown in Fig. 7.
One sees that Eq. (73) provides a good approximation of the
exact results. Also shown is the DOS, calculated with Eqs. (63)
and (74), and the conductance G(E) = (2e2/h)n.

For the armchair bilayer graphene ribbon with AB-β
stacking there are no explicit expressions for the possible
values of q.

F. Zigzag bilayer graphene ribbon

In zigzag bilayer graphene ribbons the wave vector com-
ponent q is continuous while the possible values of κ are
given by the solutions of Eqs. (49) and (B1), plus Eq. (B2) for
AB-α stacking or Eq. (B5) for AB-β stacking, presented in
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FIG. 7. (Color online) Upper part: band structure of metallic
armchair bilayer graphene ribbon with AB-α stacking (left), DOS
(center), and conductance (right). The number of hexagons in the y

direction N = 101. Lower part: band structure of semiconducting
armchair bilayer graphene ribbon with AB-α stacking (left), DOS
(center), and conductance (right). The number of hexagons in the
y direction N = 100. Solid red lines are calculated according to
Eqs. (44) and (45); dashed green lines represent the approximation
calculated with Eq. (73). Bands with s2 = +1 are not shown. DOS
is given in units of a−1 and is calculated according to Eqs. (63) and
(74). The conductance is given in units of 2e2/h and is calculated
using Eq. (61).

Appendix B. Since equations for κ depend on the value of the
wave vector ξ , in zigzag bilayer graphene ribbons longitudinal
and transverse motions are not separable. When the energy
of the subband with the index s2 = −1 is smaller than the
energies of the subbands with index s2 = +1, only one of
the wave vectors κ (1) and κ (2) has a real value. Therefore, the
energy subbands can be labeled by the value of κ (1) ≡ κν only.

Depending on the value of |ξ |, wave vectors κν with
ν = 0,1 can become imaginary. There are two critical values
ξ c(1), ξ c(2) (ξ c(1) < ξc(2)) of the wave vector ξ , obtained
by solving Eqs. (49) and (B1), (B2), or (B5) with κ (1) =
0. When ξ c(1) < |ξ | < ξc(2) then one solution κ0 becomes
imaginary, whereas in the case ξc(2) < |ξ | two solutions, κ0

and κ1, become imaginary. Both critical values ξc(1,2) obey
the inequality ξc(1,2) > 2π/3 and tend to the limit 2π/3 as
the number N grows. A tighter lower bound of critical values
is ξc(1,2) > 2 arccos[N/(2N + 1)]. The imaginary solutions κν

represent edge states in zigzag bilayer graphene ribbons.
The energy bands of bilayer graphene are asymmetric near

the point q = 0. The subbands (except those corresponding to
edge states) can be approximated by taking κν ≈ πν/N and
the minimum of of the subband located at ξc(2):

Eν(ky)

= s1

{
−γ

2
+
√

γ 2

4
+ 9

4
a2

[
(ky − k̄y)2 + π2ν2

9a2N2

]}
,

(75)

with

k̄y = ξ c(2)

√
3a

. (76)

The critical value ξc(2) of the wave vector tends to the limit
2π/3 as the number N grows. Conduction (valence) band
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FIG. 8. (Color online) Band structure of zigzag bilayer graphene
ribbon with AB-α stacking (left), DOS (center), and conductance
(right). The number of rectangular unit cells in the x direction N =
60. Solid red lines are calculated according to Eqs. (44) and (45), with
the allowed values of the wave vector κ obtained by solving Eqs. (B1),
(B2), and (49); dashed green lines represent the approximation of
Eq. (75). Bands with s2 = +1 are not shown. DOS is given in units
of a−1. The conductance is given in units of 2e2/h and is calculated
using Eq. (61).

bottoms (tops) are equal to

Eν = s1

(
−γ

2
+
√

γ 2

4
+ π2ν2

4N2

)
. (77)

The number ν of of subbands with the index s2 = −1
and energy smaller than the energies of the subbands with
index s2 = +1 is greater than 1 only when the number of
rectangular unit cells in the x direction, N , is sufficiently large.
Approximating Eq. (77) as π2ν2/(4γN2) we get N � π/(2γ ).
In calculations we used N = 60.

The band structure for zigzag bilayer graphene ribbons
with AB-α stacking, calculated using exact Eqs. (44) and (45)
with the allowed values of the wave vector κ obtained by
solving Eqs. (B1), (B2), and (49), as well as the approximation
of Eq. (75), are represented in Fig. 8. Also shown is the
DOS and the conductance G(E) = (2e2/h)(2n + 2). The DOS
is calculated from the exact band structure and also using
Eqs. (63) and (74), taking the threshold energies for ν = 0,1 to
be Eν=0,1 = 0. The band structure of zigzag bilayer graphene
ribbons with AB-β stacking is very similar to the band
structure of ribbons with AB-α stacking, only the critical
values ξ c(1), ξ c(2) are slightly different.

Taking the limit N → ∞ in the zigzag bilayer graphene
ribbon with AB-β stacking one can obtain the edge states
of Ref. 30. However, care should be taken not to lose any
solutions. For large N we can write the absolute value of the
imaginary wave vector i|κ| as |κ| = κ (0) + δ, where κ (0) is the
solution of the equation

e− κ(0)

2 = 2 cos(ξ/2), (78)

and δ is a small correction. From Eq. (44) it follows that such
a value of κ (0) ensures the equality E(iκ (0),ξ ) = 0. Expanding
Eq. (44) in powers of δ we get the approximate expression for
the energy

E ≈ s1δ

γ

[
2 cos2

(
ξ

2

)
− 1

2

]
. (79)

There are two eigenstates with wave vectors κ (1) and κ (2)

having different absolute values but corresponding to the same
energy. From Eqs. (79) and (48) it follows that the corrections
to the wave vector obey the condition

δ(2) = −δ(1). (80)
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In Eq. (B5), taking into account only the first-order terms with
respect to δ, one obtains the value of the correction

δ = ±2e−2κ (0)N (1 − e−κ (0)
) . (81)

This expression for the correction is the same as for the single
sheet of graphene. The correction δ decreases exponentially
with increasing number N .

For large N it is sufficient to form the wave function obeying
the boundary conditions of Eq. (47) as a superposition of two
exponentially decreasing terms with the wave vectors i|κ (1)|
and i|κ (2)|,

ψm,n,αp
= a(1)cαp

(ξj ,i|κ (1)|)eiξj m−|κ (1)|n

+a(2)cαp
(ξj ,i|κ (2)|)eiξj m−|κ (2)|n. (82)

Substituting this expression for the wave function in the
boundary conditions, using Eqs. (A9)–(A12) and taking the
limit N → ∞, we obtain two solutions for the coefficients
a(1), a(2): a(2) = 0 and a(2) = −a(1). The wave function
corresponding to the solution a(2) = 0 is localized on the
first layer, with the nonzero coefficients cl1 and cρ1 . The wave
function corresponding to the solution a(2) = −a(1) contains
the difference e−|κ (1)|n − e−|κ (2)|n. Expanding to the first order
of δ we get

e−|κ (1)|n − e−|κ (2)|n = e−(κ (0)−δ)n − e−(κ (0)+δ)n ≈ 2δne−κ (0)n.

(83)

Taking the limit N → ∞ and dropping the coefficients of
the wave function that are of the order of δ we obtain that
nonzero coefficients are ψm,n,l1 , ψm,n,ρ1 in the first layer and
ψm,n,r2 , ψm,n,λ2 in the second layer. The coefficients ψm,n,r2 ,
ψm,n,λ2 are proportional to e−κ (0)n while the coefficients ψm,n,l1 ,
ψm,n,ρ1 have ne−κ (0)n behavior, as in Ref. 30.

V. CONCLUSIONS

An exact analytical description of π electron spectrum
based on the tight-binding model of bilayer graphene has
been presented. The bilayer graphene structures considered
in this article have rectangular geometry and finite size in one
or both directions with armchair- and zigzag-shaped edges.
This includes bilayer graphene nanoribbons and nanotubes.
The exact solution of the Schrödinger problem, the spectrum
and wave functions, has been obtained and used to analyze
the density of states and the conductance quantization. Our
method illustrates a connection between π -electron spectra in
infinite and finite-sized bilayer graphene.
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APPENDIX A: EIGENVECTORS OF BILAYER GRAPHENE
USING RECTANGULAR UNIT CELLS

The expressions for the coefficients of the eigenvectors are:
For AB-α stacking, V = 0,

cr1 = 1, cρ1 = −e−i
ξ

2
E(κ,ξ )

φ(−κ,ξ )
, (A1)

cl1 = −s3e
−i κ

2
E(κ,ξ )

φ(−κ,ξ )
, cλ1 = s3e

−i 1
2 (κ+ξ ), (A2)

cr2 = −s1s2
φ(κ,ξ )

φ(−κ,ξ )
, cρ2 = s1s2e

−i
ξ

2
E(κ,ξ )

φ(−κ,ξ )
, (A3)

cl2 = s1s2s3e
i κ

2
E(κ,ξ )

φ(−κ,ξ )
,

(A4)

cλ2 = −s1s2s3e
i 1

2 (κ−ξ ) φ(κ,ξ )

φ(−κ,ξ )
.

For AB-α stacking, V 
= 0,

cr1 = 1, cρ1 = −e−i
ξ

2
E + V

φ(−κ,ξ )
, (A5)

cl1 = −s3e
−i κ

2
E + V

φ(−κ,ξ )
, cλ1 = s3e

−i 1
2 (κ+ξ ), (A6)

cr2 = − φ(κ,ξ )

φ(−κ,ξ )
f (κ,ξ ),

(A7)

cρ2 = s1s2e
−i

ξ

2
E − V

φ(−κ,ξ )
f (κ,ξ ),

cl2 = s1e
i κ

2
E − V

φ(−κ,ξ )
f (κ,ξ ),

(A8)

cλ2 = −s3e
i 1

2 (κ−ξ ) φ(κ,ξ )

φ(−κ,ξ )
f (κ,ξ ).

For AB-β stacking, V = 0,

cr1 = 1, cρ1 = −e−i
ξ

2
φ(κ,ξ )

E(κ,ξ )
, (A9)

cl1 = −s3e
−i κ

2
φ(κ,ξ )

E(κ,ξ )
, cλ1 = s3e

−i 1
2 (κ+ξ ), (A10)

cr2 = −s1s2s3e
i 1

2 (ξ−κ), cρ2 = s1s2s3e
−i κ

2
φ(−κ,ξ )

E(κ,ξ )
, (A11)

cl2 = s1s2e
i

ξ

2
φ(−κ,ξ )

E(κ,ξ )
, cλ2 = −s1s2. (A12)

For AB-β stacking, V 
= 0,

cr1 = 1, cρ1 = −e−i
ξ

2
φ(κ,ξ )

E + V
, (A13)

cl1 = −s3e
−i κ

2
φ(κ,ξ )

E + V
, cλ1 = s3e

−i 1
2 (κ+ξ ), (A14)
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cr2 = −s3e
i 1

2 (ξ−κ)f (κ,ξ ),
(A15)

cρ2 = s3e
−i κ

2
φ(−κ,ξ )

E − V
f (κ,ξ ),

cl2 = s1s2e
i

ξ

2
φ(−κ,ξ )

E − V
f (κ,ξ ), cλ2 = −f (κ,ξ ). (A16)

APPENDIX B: WAVE VECTORS OF ZIGZAG BILAYER
CARBON TUBES

For AB-α stacking and V = 0, the possible values of κ
(1)
j,νj

are solutions of one of the equations

1 + cos

(
ξ

2

){
s

(1)
3

cos
[

1
2κ (1)(N + 1)

]
cos
[

1
2κ (1)N

] + s
(2)
3

sin
[

1
2κ (2)(N + 1)

]
sin
[

1
2κ (2)N

]
}

= 0 (B1)

or

1 + cos

(
ξ

2

){
s

(1)
3

sin
[

1
2κ (1)(N + 1)

]
sin
[

1
2κ (1)N

] + s
(2)
3

cos
[

1
2κ (2)(N + 1)

]
cos
[

1
2κ (2)N

]
}

= 0. (B2)

When V 
= 0, then the equation for κ reads

1

4
[f (κ (1)) − f (κ (2))]2

{
1 + 2s

(1)
3 cos

(
ξ

2

)
sin
[
κ (1)
(
N + 1

2

)]
sin[κ (1)N ]

}{
1 + 2s

(2)
3 cos

(
ξ

2

)
sin
[
κ (2)
(
N + 1

2

)]
sin[κ (2)N ]

}

− f (κ (1))f (κ (2)) cos2

(
ξ

2

){
s

(1)
3

cos
[

1
2κ (1)(N + 1)

]
cos
[

1
2κ (1)N

] − s
(2)
3

cos
[

1
2κ (2)(N + 1)

]
cos
[

1
2κ (2)N

]
}

×
{

s
(1)
3

sin
[

1
2κ (1)(N + 1)

]
sin
[

1
2κ (1)N

] − s
(2)
3

sin
[

1
2κ (2)(N + 1)

]
sin
[

1
2κ (2)N

]
}

= 0. (B3)

Here the function

f (κ,ξ ) = (E + V )2 − |φ(κ,ξ )|2
γ (E − V )

(B4)

describes the contribution of the second sheet of graphene to
the eigenvector.

For AB-β stacking and V = 0, the possible values of κ are
solutions of the equation

{
1 + 2s

(1)
3 cos

(
ξ

2

)
sin
[
κ (1)
(
N + 1

2

)]
sin[κ (1)N ]

}{
1 + 2s

(2)
3 cos

(
ξ

2

)
sin
[
κ (2)
(
N + 1

2

)]
sin[κ (2)N ]

}

+1

2
s

(1)
3 s

(2)
3

{
cos

[
κ (1)

2

]
cos

[
κ (2)

2

]
+ 1 − cos[κ (1)N ] cos[κ (2)N ]

sin[κ (1)N ] sin[κ (2)N ]
sin

[
κ (1)

2

]
sin

[
κ (2)

2

]}
− 1

2
= 0. (B5)

When V 
= 0, then the equation for κ is

1

4
[f (κ (1)) − f (κ (2))]2

{
1 + 2s

(1)
3 cos

(
ξ

2

)
sin
[
κ (1)
(
N + 1

2

)]
sin[κ (1)N ]

}{
1 + 2s

(2)
3 cos

(
ξ

2

)
sin
[
κ (2)
(
N + 1

2

)]
sin[κ (2)N ]

}

+1

2
f [κ (1)]f [κ (2)]

{
1 − s

(1)
3 s

(2)
3

[
cos

(
κ (1)

2

)
cos

(
κ (2)

2

)
+1 − cos(κ (1)N ) cos(κ (2)N )

sin(κ (1)N ) sin(κ (2)N )
sin

(
κ (1)

2

)
sin

(
κ (2)

2

)]}
= 0 (B6)
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37M. Büttiker, Phys. Rev. B 38, 9375 (1988).

035403-13

http://dx.doi.org/10.1038/nmat2082
http://dx.doi.org/10.1021/nl9039636
http://dx.doi.org/10.1021/nl9039636
http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevB.78.161409
http://dx.doi.org/10.1103/PhysRevB.78.161409
http://dx.doi.org/10.1103/PhysRevB.78.161407
http://dx.doi.org/10.1103/PhysRevB.78.161407
http://dx.doi.org/10.1103/PhysRevB.79.075407
http://dx.doi.org/10.1103/PhysRevB.79.075407
http://dx.doi.org/10.1103/PhysRevB.80.201407
http://dx.doi.org/10.1103/PhysRevB.80.201407
http://dx.doi.org/10.1126/science.1166862
http://dx.doi.org/10.1038/nature07872
http://dx.doi.org/10.1038/nature07872
http://dx.doi.org/10.1038/nature07919
http://dx.doi.org/10.1038/nature07919
http://dx.doi.org/10.1126/science.1150878
http://dx.doi.org/10.1126/science.1150878
http://dx.doi.org/10.1038/nature09211
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.75.165414
http://dx.doi.org/10.1103/PhysRevB.75.165414
http://dx.doi.org/10.1103/PhysRevLett.100.186806
http://dx.doi.org/10.1103/PhysRevB.78.245412
http://dx.doi.org/10.1103/PhysRevB.80.155454
http://dx.doi.org/10.1103/PhysRevB.80.155454
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1103/PhysRevB.74.075404
http://dx.doi.org/10.1103/PhysRevB.74.075404
http://dx.doi.org/10.1103/PhysRevB.75.085424
http://dx.doi.org/10.1103/PhysRevB.78.045405
http://dx.doi.org/10.1103/PhysRevB.78.045405
http://dx.doi.org/10.1103/PhysRevLett.100.026802
http://dx.doi.org/10.1103/PhysRevB.80.045308
http://dx.doi.org/10.1103/PhysRevB.80.045308
http://dx.doi.org/10.1103/PhysRevB.82.115311
http://dx.doi.org/10.1103/PhysRevB.82.115311
http://dx.doi.org/10.1209/0295-5075/84/17001
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.323.0306
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevB.38.9375

