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We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can
give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser
interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal
states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-
called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss
special examples. In particular we show that using orthogonal laser beams with orbital angular momentum
an effective magnetic field can be generated that has a monopole component.
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Gauge fields are a central building block of the theory of
fundamental interactions. As dynamical variables they are
responsible for the forces between elementary particles.
On the other hand, also nondynamical, i.e., prescribed
gauge fields, are of interest in a variety of single- and
many-body quantum systems. For example, an external
magnetic field applied to a gas of noninteracting electrons
can lead to the integer quantum Hall effect [1]. In the
presence of a lattice potential, the eigenenergies of the
lowest Bloch band form a fractal structure depending on
the magnetic flux that passes through the unit cell [2]. If, in
addition, there are strong interactions between the particles
as, e.g., in a two-dimensional electron gas subject to a
magnetic field, fractional quantum Hall structures [3] and
Laughlin liquids [4] can emerge.

In recent years ultracold atomic gases [5] have become
an ideal playground to experimentally investigate many-
body physics. This is due to their enormous versatility and
the advanced experimental techniques available in atomic
and optical physics. One of the most fascinating subjects in
this context is the study of the effects of artificial magnetic
fields [6]. To create an artificial magnetic field for neutral
atoms one can, e.g., rotate the trapping potential confining
the atoms. This feasible but challenging approach is cur-
rently pursued in several laboratories [7]. An alternative is
based on the adiabatic motion of A-type 3-level atoms in
laser fields that create a nondegenerate dark state. If the
dark state of the atom is space dependent, the motion of
atoms adiabatically following it is associated with a topo-
logical or Berry phase [8,9]. A proper description of such a
motion naturally leads to gauge potentials [9-11]. As
shown in [12,13] an effective magnetic field can arise,
e.g., if A-type atoms interact with pairs of laser fields
that possess a relative orbital angular momentum. The
advantage of this scheme as compared to rotating traps is
that it is not limited to rotationally symmetric configura-
tions. Furthermore, in the rotating traps only a constant
effective magnetic field is created [7], whereas using opti-
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cal means the effective magnetic field can be controlled
and shaped [13]. The description of the adiabatic motion of
atoms in terms of gauge potentials has been generalized to
j + 1 — j transitions in [14]. The effects of gauge poten-
tials on strongly interacting, bosonic atoms in one-
dimensional optical lattices have been analyzed in [15],
where it was shown that they lead to interesting modifica-
tions of the Bose-Hubbard model. An alternative way to
create artificial magnetic fields in lattice gases was recently
suggested employing laser assisted, state-dependent tun-
neling [16,17] or oscillating potentials with spatial modu-
lations [18]. In all of these systems the gauge fields have,
however, U(1) symmetry; i.e., they are Abelian.

As shown by Wilczek and Zee, non-Abelian gauge fields
can arise in the adiabatic dynamics of quantum systems
with multiple degenerate eigenstates [19]. One of the
interesting properties of non-Abelian gauge potentials is
the possibility of magnetic monopoles. The presence of
effective magnetic monopole fields in simple quantum
systems was first pointed out by Moody, Shapere, and
Wilczek discussing the adiabatic nuclear rotation in a
diatomic molecule [20]. In this Letter we propose an
experimentally realizable scheme that allows one to study
the motion and the interaction of neutral quantum gases in
non-Abelian gauge fields. We show, in particular, that the
coupling of multilevel atoms to spatially varying laser
fields can give rise to such potentials for the atomic
center-of-mass motion. A necessary condition for this is
that the atom-laser interaction has degenerate dark eigen-
states with a nonvanishing nonadiabatic coupling.

Gauge structures in atomic systems with multiple de-
generate dark states have first been discussed by Visser and
Nienhuis [14] considering atoms witha j +1— j (j > 1)
transition driven by circularly polarized laser light, as
shown in Fig. 1(a). Since in such a scheme the dark states
are exactly decoupled, the associated gauge potentials
again have, however, U(1) symmetry. The simplest system
with a nonvanishing adiabatic coupling between degener-
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FIG. 1. (a)j =2 — j =1 transition with two degenerate dark

states in the manifolds {|1), |3), |5)} and {|2), |4)} which are not
coupled by nonadiabatic transitions. (b) Tripod-coupling scheme
forming two degenerate dark states with nonadiabatic coupling.

ate dark states is the so-called tripod scheme shown in
Fig. 1(b) [21]. For this scheme the possibility of non-
Abelian topological phases in the interaction of an atom
with appropriately pulsed laser fields has been predicted in
[22]. Furthermore, applications to geometric quantum
computation have been put forward and investigated in
[23,24].

After a general discussion of non-Abelian gauge poten-
tials in the adiabatic motion of atoms in laser fields, we
introduce the tripod-coupling scheme as the simplest sys-
tem leading to non-Abelian gauge fields. We then discuss
specific examples. In particular, we show that, using or-
thogonal laser beams with orbital angular momentum, an
effective magnetic field can be generated that has a mono-
pole component. It should be noted that nonlinear inter-
actions in multicomponent spinor Bose-Einstein
condensates can allow for excitations which themselves
have a nontrivial topological structure like Skyrmions [25]
or monopoles [26—-28]. We consider here, however, the
motion and interaction of atoms in external non-Abelian
gauge fields.

We start by extending the discussion of Wilczek and Zee
[19] and Moody, Shapere, and Wilczek [20] to the adia-
batic motion of atoms in stationary laser fields. For this we
consider atoms with multiple internal states. For fixed
position r the internal Hamiltonian H,(r) including the
laser interaction can be diagonalized to give a set of, say,
N dressed states | y,,(r)) with eigenvalues ¢, (r), where n =
1,2,..., N. The full quantum state of the atom describing
both internal and motional degrees of freedom can then be
expanded in terms of the dressed states according to |®) =

N_ W,(r)| x,(r)). The N-dimensional column vector of

wave functions W = (¥, W, ...,¥y)T obeys the
Schrodinger equation
0 1
ih—W =| —(—iiV — A)? + V |, (1)
ot 2m

m being the mass of the atoms, and V being an external
potential that confines the motion of atoms to a finite
region in space. Here V and A are N X N matrices, the
latter appearing due to the position dependence of the
atomic dressed states:

Vn,m = Sn(r)Sn,m + <Xn(r)|V(r)|Xm(r)>’ (2)

A = 1, (0)|V x,,(r)). 3)

The off-diagonal elements of the matrices V and A are
typically much smaller than the difference of the dressed
atomic energies. In this case an adiabatic approximation
can be applied, which amounts to neglecting the off-
diagonal contributions. This leads to a separation of the
dynamics: Atoms in any one of the dressed states evolve
according to a separate Hamiltonian with a U(1), i.e.,
Abelian gauge potential.

The adiabatic approximation fails, however, if there are
degenerate (or nearly degenerate) dressed states. This is the
case we are interested in. Off-diagonal (nonadiabatic) cou-
plings between the degenerate dressed states can then no
longer be ignored. Suppose the first g atomic dressed states
are degenerate, and these levels are well separated from the
remaining N — g. Neglecting transitions to the latter, i.e.,
projecting the full Hamiltonian to this subspace leads to the
Schrédinger equation for the reduced column vector P =
Py, ..., ‘I’q)T

in L — [i(—mv — A2+ V+ (I)}\if, 4)
at 2m

where A and V are the truncated g X g matrices with
elements defined by Egs. (2) and (3). In addition, a scalar
potential arises from this projection, which is againa g X ¢
matrix,

CI)=1

N
n,m Z An,l ' Al,m
2m ,

=q+1
h? q
= 3 () + Y V000l ) 5

with n,m € (1,..., q). The reduced ¢ X ¢ matrix A is
called the Berry connection.

Since the adiabatic states |x;), ..., |x,) are degenerate,
any basis generated by a local unitary transformation U(r)
within the subspace is equivalent. The corresponding local
basis change

¥ — Ur)¥ (6)

leads to a transformation of the potentials according to
A — U(m)AU'(r) — ik(VU(r))UT (r), (7
® — Ur)dUT(r). ®)

These transformation rules show the gauge character of the
potentials A and ®.
The Berry connection or vector potential A is related to
a curvature (an effective “‘magnetic” field) B as
1

B, =-€uFu
i ) ikt ki

Note that the term 1 &;,[A;, A]] = (A X A); does not van-

i
Fiy= 0A;p — 0,A; — ﬁ[Ak’ Al 9
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ish in general, since the vector components of A do not
necessarily commute. In fact, this term reflects the non-
Abelian character of the gauge potentials.

The generalized magnetic field transforms under local
rotations of the degenerate dressed basis (6) as B —
U(r)BU*(r). Thus, as expected, B is a true gauge field.

We now construct a scheme of laser-atom interactions
that leads to a U(2) gauge potential. The first requirement is
the presence of degenerate (or nearly degenerate) dressed
states. Such a condition is fulfilled, e.g., for the two sys-
tems shown in Fig. 1. Each of them has two degenerate
dark states [29], i.e., dressed eigenstates with no compo-
nent of the excited, radiatively decaying level. Thus, the
gauge potentials are 2 X 2 matrices. A truly non-Abelian
situation emerges if the matrices {A,, A, A, ®} do not
commute. For this it is necessary that the off-diagonal
element i/i{ y; (r)|V x,(r)) is nonzero. One can easily check
that this expression always vanishes for the system dis-
cussed in [14] and shown in Fig. 1(a). It is nonvanishing,
however, for the so-called tripod scheme shown in Fig. 1(b)
[21].

The Hamiltonian of the tripod system reads in interac-
tion representation as

A o= —h(Q,10)1] + Q,10%2] + Q3]0)3]) + He.  (10)

Parametrizing the Rabi frequencies (), with angle and
phase variables according to {}; = ) sinf cosge™, ), =

Qsinfsinge™,  Q; = Qcosfe’s,  where Q=
VIO > + 1Q,]2 + [Q;]?, the adiabatic dark states read

|D,) = singe'Ss1|1) — cospe2|2), (11)

|D,) = cosf cosgpe’S31|1) + cosf singpe’S2|2) — sind|3),
(12)

with §;; = §; — §;. It is now straightforward to calculate
the vector and scalar gauge potentials. This yields

®, = %sinzﬁ(‘—i sin?(2¢)(VS,)* + (V(f))z)’
2

D, = - sinﬁ(l sin2p)VS,, — iV(;’))(l sin(26)
2m 2 2

X (cos2 VS, s + sin?pVSys) — Na), (13)

2

d,, = 2hm<i sin?(20)(cos’>p VS 5 + sinpV S,3)?

4 (va)2>.

and

Ay = h(cos?pV Sy, + sin®pVS,3),
Ay, = ficosO[}sin(2¢)VS,, — iVe],
Ay, = licos?f(cos>pV S 5 + sin?pVSy;),  (14)

Since the level scheme considered in Fig. 1 corresponds to
that of alkali atoms where |1),|2), and |3) are Zeeman
components of hyperfine levels, it is natural to assume
that the external trapping potential is diagonal in these
states and has the form V = V,(r)|1)X1| + V,(r)[2){2| +
V3(r)|3)(3|. This still takes into account the fact that mag-
netic, magneto-optical, or optical dipole forces can be
different in different Zeeman states. According to
Eq. (2), the external potential in the adiabatic basis is
then given by a 2 X2 matrix with elements Vj =
(D;|V|Dy). Using the expressions for the dark states (11)
and (12), we arrive at

Vi1 = Viocos?p + Visin? g,
Vi, = 3(Vy = V,) cosf sin(2), (15)
Vy = (Vicos?¢ + V,sin?¢p)cos?6 + Vssin?6.

At this point it is instructive to consider some specific
examples. Let us first assume that the laser field coupling
levels |1) and |2) are copropagating, and have the same
frequency and the same orbital angular momentum (if
any). In this case their relative phase is fixed and can be
set S;, = 0. This leads to S5 = Sp3 = S, and the expres-
sions for the vector potential simplify to

A — ﬁ( Vs —icosBng)

icosdVep  cos’6VS (16)

The components of the 2 X 2 matrix of the effective mag-
netic field can easily be evaluated and read

B, =0
B, = ihisinfe SV X V¢ — hcosfe S
X VSV (1 + cos?6),
B,, = —2k cosfsindVO X VS. 17)

One recognizes that a large magnetic field requires large
gradients of the relative intensities of the fields, parame-
trized by the angles ¢ and 6 and a large gradient of the
relative phase S. Gradients of ¢ and 6 on the order of the
wave number k can be achieved by using standing-wave
fields. Large gradients of S can be obtained from a running
wave ()3 orthogonal to the other two or by a vortex beam
with large orbital angular momentum. In this case mag-
netic fluxes as large as one (in normalized units) can be
reached.

We now construct a specific field configuration that
leads to a magnetic monopole. For this, let us consider
two copropagating and circularly polarized fields €}, , with
opposite orbital angular momenta */ along the propaga-
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tion axis z. The field )5 propagates in the x direction and is
linearly polarized along the y axis:
le = QOBei(kZIQD)’ Q:}, = Qoieik/x. (18)
’ R R
Here p is the distance from the z axis and ¢ the azimuthal
angle around this axis. It should be noted that these fields
have a vanishing divergence and obey the Helmholtz equa-
tion. This is in contrast to the fields that have been sug-
gested in [30] to create an Abelian magnetic monopole in a
A system. The total intensity of the laser fields (18) van-
ishes at an origin, which is a singular point.
The vector potential associated with the fields can be
calculated from Eq. (14). It reads

9 01\ &
&% ( >+§(kéz—k’éx)

——¢
rsind ¢

10

x[(1+cos2ﬁ)<(l) (1))+(1—cos213)((1) —Olﬂ (19)

The first term proportional to o, corresponds to a magnetic
monopole of strength one at the origin. This is easily seen
by calculating the magnetic field

Ch /0 1
B—per<l 0>+

(20)
The dots indicate nonmonopole field contributions propor-
tional to o, o, and the unity matrix.

In this Letter we have shown that the adiabatic motion of
multilevel atoms interacting with spatially varying laser
fields in the tripod-coupling configuration can lead to U(2)
non-Abelian gauge potentials. The system can easily be
generalized to effective U(n), n > 2, gauge structures us-
ing atomic configurations with more than three laser fields
coupling to a common excited state. The strength of the
effective magnetic fields can be large if standing-wave
configurations or light beams with large orbital angular
momentum are used. As a specific example, we have
identified a configuration of laser fields that leads to a
magnetic monopole.

Our approach is complementary to the recent proposal
of Osterloh et al. [31], who suggested the generation of
effective non-Abelian fields in lattice gases. For this, they
employed a state-dependent manipulation of tunneling
amplitudes by lasers. These proposals make the study of
interacting degenerate Bose or Fermi gases in non-Abelian
gauge fields experimentally feasible.

M.F thanks R. G. Unanyan for discussions. This work
was supported by the Alexander-von-Humboldt
Foundation. J.R. was supported by the EU through the
Marie-Curie Trainingssite at the TU Kaiserslautern. P. O.
acknowledges the Royal Society of Edinburg for support.

(1]
(2]
(31

(4]
(3]

(6]
[71

010404-4

K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.
45, 494 (1980); Zyun. F. Ezawa, in Quantum Hall Effects
(World Scientific, Singapore, 2000).

D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).

R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

See, e.g., L. Pitaevskii and S. Stringari, Bose-Einstein
Condensation (Clarendon Press, Oxford, 2003).

N. Regnault and Th. Jolicoeur, Phys. Rev. Lett. 91, 030402
(2003); Phys. Rev. B 70, 241307(R) (2004).

P. Rosenbusch, D. S. Petrov, S. Sinha, F. Chevy, V. Bretin,
Y. Castin, G. Shlyapnikov, and J. Dalibard, Phys. Rev.
Lett. 88, 250403 (2002); V. Schweikhard, I. Coddington,
P. Engels, V.P. Mogendorff, and E. A. Cornell, Phys. Rev.
Lett. 92, 040404 (2004); V. Bretin, S. Stock, Y. Seurin, and
J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004).

M. V. Berry, Proc. R. Soc. A 392, 45 (1984).

Geometric Phases in Physics, edited by A. Shapere and F.
Wilczek (World Scientific, Singapore, 1989).

R. Jackiw, Comments At. Mol. Phys. 21, 71 (1988).

R. Dum and M. Olshanii, Phys. Rev. Lett. 76, 1788 (1996).
G. Juzeliunas and P. Ohberg, Phys. Rev. Lett. 93, 033602
(2004).

G. Juzeliunas, P. Ohberg, J. Ruseckas, and A. Klein, Phys.
Rev. A 71, 053614 (2005).

P.M. Visser and G. Nienhuis, Phys. Rev. A 57, 4581
(1998).

K. V. Krutitsky and R. Graham, Phys. Rev. Lett. 91,
240406 (2003).

D. Jaksch and P. Zoller, New J. Phys. §, 56 (2003).

E. Mueller, Phys. Rev. A 70, 041603(R) (2004).

A.S. Sgrensen, E. Demler, and M. D. Lukin, Phys. Rev.
Lett. 94, 086803 (2005).

F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
J. Moody, A. Shapere, and F. Wilczek, Phys. Rev. Lett. 56,
893 (1986).

R.G. Unanyan, M. Fleischhauer, B.E. Shore, and K.
Bergmann, Opt. Commun. 155, 144 (1998).

R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev.
A 59, 2910 (1999).

L.-M. Duan, J.1. Cirac, and P. Zoller, Science 292, 1695
(2001).

R.G. Unanyan and M. Fleischhauer, Phys. Rev. A 69,
050302(R) (2004).

U. Al Khawaja and H. T. C. Stoof, Nature (London) 411,
918 (2001).

T. Busch and J. R. Anglin, Phys. Rev. A 60, R2669 (1999).
J.J. Garcia-Ripoll, J.I. Cirac, J.R. Anglin, V.M. Perez-
Garcia, and P. Zoller, Phys. Rev. A 61, 053609 (2000).
H.T.C. Stoof, E. Vliegen, and U. Al Khawaja, Phys. Rev.
Lett. 87, 120407 (2001).

See E. Arimondo, Prog. Opt. 35, 257 (1996).

P. Zhang, Y. Li, and C.P. Sun, Phys. Rev. A 69, 052313
(2004).

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M.
Lewenstein, preceding Letter, Phys. Rev. Lett. 95,
010403 (2005).



