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We consider the interaction of two weak probe fields of light with an atomic ensemble coherently driven

by two pairs of standing wave laser fields in a tripod-type linkage scheme. The system is shown to exhibit

a Dirac-like spectrum for light-matter quasiparticles with multiple dark states, termed spinor slow-light

polaritons. They posses an ‘‘effective speed of light‘‘ given by the group velocity of slow light, and can be

made massive by inducing a small two-photon detuning. Control of the two-photon detuning can be used

to locally vary the mass including a sign flip. Particularly, this allows the implementation of the random-

mass Dirac model for which localized zero-energy (midgap) states exist with unusual long-range

correlations.
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Recently there has been growing interest in interacting
systems with effective single-particle Dirac dynamics. A
prime example is graphene [1], which shows unusual low-
energy properties, described by Dirac quasiparticles. The
effective ‘‘speed of light’’ of these quasiparticles is given
by the electron Fermi velocity, which is about 300 times
smaller than the vacuum speed of light. We here show that
an effective Dirac-like dynamics also emerges for two-
component, i.e., spinorlike, slow-light polaritons [2] in
one dimension. They possess a controllable effective
speed, corresponding to the much smaller group velocity
of light [3] in media exhibiting electromagnetically in-
duced transparency (EIT) [2]. This may allow experimen-
tal studies of relativistic dynamics at low energies and
small velocities. Additionally, the effective mass, deter-
mined by laser detuning, is locally and dynamically ad-
justable including the sign, which provides access to
interesting phenomena such as the unusual localization in
a Dirac model where the mass is a random function of
space [4,5]. The latter is inaccessible for truly massive
particles such as cold atoms.

Slow-light polaritons are formed in the Raman interac-
tion of aweak probe fieldwith a coherently driven ensemble
of atoms with a �-type linkage pattern [Fig. 1(a)]. They
build the basis of ultra slow-light [3], light storage [6,7]
and, upon using two counter-propagating control fields
[Fig. 1(b) and 1(c)], stationary light [8–10]. They exhibit
extraordinary long lifetimes ranging from several hundreds
of microseconds [6] up to hundreds of millisecond [11,12]
and offer a wide range of tuning parameters.

In the following we argue that by adding additional
states to the above linkage pattern [Fig. 1(d)], we can
create a spinorlike object consisting of two adiabatic ei-
gensolutions immune to spontaneous decay. The suggested
tripod linkage interaction between atoms and light fields is

a minimal realization of spinor slow-light polaritons (SSP).
They obey an effective 1D Dirac equation with an effective
speed of light c� given by the slow-light group velocity,
and possess a massm� that is determined by a variable two-
photon detuning. The possibility of a locally adjustable
mass, which is absent for any truly massive particle, allows
us to study a number of interesting phenomena: For ex-
ample, if the mass of the Dirac particle is a randomly
varying function of space with a vanishing mean value,
there exists a midgap (zero-energy) state with unusual
correlations. Random-mass Dirac Hamiltonians describe
a number of effects in condensed-matter systems, ranging
from disordered half-filled metals [13], random antiferro-
magnetic spin-1=2 chains [4,14,15], random transverse-
Ising spin-1=2 chains [16,17], spin Peierls, and spin-ladder
systems [5,18,19]. Many aspects of random-mass Dirac

FIG. 1 (color online). (a) Three-level �-type linkage pattern
for the creation of slow-light polaritons. The strong control field
� produces EIT for the weak probe field E. (b) Linkage pattern
with two counterpropagating control fields �� to create a sta-
tionary pattern of counterpropagating probe light E�. (c) Typical
experimental setup for the creation of single-component
stationary light by use of two counterpropagating, mutually
orthogonal control fields ��. (d) Tripod-type linkage pattern
for the creation of spinor slow-light polaritons.
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systems are not understood, e.g., the effect of local impu-
rities or boundaries [20] or when interactions are added.
Spinor polaritons may offer new experimental access to
these issues.

We here consider light coupled to an ensemble of atoms
with a linkage pattern as seen in Fig. 1(d), consisting of
three (meta-)stable states jgi, jsi, jhi and one excited state
jei with a decay rate �. There are two pairs of counter-
propagating control fields with Rabi frequencies�s�e�iksz

and �h�e�ikhz on the transitions jsi � jei and jhi � jei,
respectively, as indicated in Fig. 1(d). These create EIT for

a pair of counterpropagating probe fields Ê�, coupling the
transition jgi � jei [2]. The use of pairs of counterpropa-
gating control beams is essential to produce two-
component slow light or stationary light, a feature missing
in the ordinary tripod-type linkage pattern [21–23]. This
scheme effectively creates two parallel tripod-type linkage
patterns sharing common ground states. We introduce

amplitudes Ê�ðz; tÞ of the probe fields that vary slowly

in space and time by Ê� ¼
ffiffiffiffiffiffiffiffi
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j�ijjh�j being the flip operator for the jth atom and the

sum being taken over �N atoms in a volume �VðzÞ.
The full dynamics of the system is governed by the

Maxwell-Bloch equations (MBE) in one dimension. In
the weak-field limit the ground state is only slightly de-
pleted allowing us to assume �̂gg � 1 and �̂�� � 0 in

lowest order of perturbation. We further expand the rele-

vant coherence �ge ¼ �ðþÞ
ge eikz þ �ð�Þ

ge e�ikz, and neglect

all higher spatial k-components as well as couplings to
other coherences with higher Fourier k-modes. This secu-
lar approximation [8,24] is well justified in hot atomic
gases [9,25]. We can thus write the linearized Maxwell-
Bloch equation (MBE) in the form of a 6� 6 matrix
consisting of 2� 2 sub-blocks
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coupling constant of Ê� to the transition jgi � jei with
dipole matrix element }, and n is the atomic number
density. Furthermore, � ¼ diagf�s; �hg, � ¼ diagf�geþ �
i�þ; �ge� � i��g,

� ¼ �sþ �hþ
�s� �h�

� �

:

Finally, F̂P are the Langevin-noise forces necessary for
preserving commutation relations. For an exponential
decay these operators are �-correlated in time, i.e.,

hF̂AðtÞF̂Bðt0Þi ¼ DAB�ðt� t0Þ, where the coefficients DAB

are proportional to the population of the excited states and
can be calculated by means of the dissipation-fluctuation
theorem [26]. With the help of a generalized Morris-Shore
transformation [27], one can show that in linear response
this system has two adiabatic eigensolutions that are de-
coupled from the excited states. If we choose the control

fields such that � ¼ �0

2 ð1þ i�xÞ, where �x is a Pauli

matrix, the dark-state polaritons (DSP), are

�̂þ ¼ cos�Êþ � 1
ffiffiffi

2
p sin�ð�̂gs � i�̂ghÞ; (2)

�̂� ¼ cos�Ê� þ 1
ffiffiffi

2
p sin�ði�̂gs � �̂ghÞ; (3)

where tan2� ¼ g2n=�2
0 is the mixing angle between light

and matter excitation. In contrast to ordinary stationary
light where only one independent dark polariton exists [27]
we here have two independent dark eigensolutions. We
now introduce a small two-photon detuning of opposite
sign � ¼ �s ¼ ��h for the transitions jgi � jsi and jgi �
jhi, respectively, with j�j � �2

0=�. Assuming one-photon

resonance, i.e., �� ¼ 0, setting �ge� ¼ �, transforming

Eq. (1) to the polariton basis, and adiabatically eliminating
all variables except for the DSPs, we arrive at
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Equation (4) represents a Dirac equation for a spinor

�̂ ¼ ð�̂þ; �̂�ÞT with effective ’’speed of light’’ and mass

c� ¼ vg ¼ ccos2�; m� ¼ @�sin2�=v2
g: (5)

The imaginary quadratic term in (4) results from nonadia-

batic couplings to decaying states; F̂� is the corresponding
Langevin-noise operator. Labs ¼ c�=g2n is the resonant
absorption length in the absence of EIT, �z and �y denote

Pauli matrices. From Eq. (4) we expect a Dirac cone
structure of the dispersion relation as seen in Fig. 2. The
interaction of the control fields with the atoms results in
two Autler-Townes states represented by the horizontal
black dash-dotted lines. The dispersion of the free probe
fields is given by the almost vertical black dash-dotted
lines. Switching on the interaction, the red dotted branches
are formed. These correspond to the two components of the
slow-light spinor and are in a very good approximation
described by the expected Dirac dispersion with c� ¼ vg

around k ¼ 0 (orange dashed line). Finally, inducing a
small two-photon detuning � results in a finite mass m�,
as can be seen by the finite splitting of the blue (solid) line.
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To confirm the effective model, we numerically inte-
grated the full set of MBE for the scheme of Fig. 1(d) in
time for the case of m� ¼ 0. The results showed very good
agreement with the analytic prediction.

We now exploit the property of a locally adjustable mass
of the SSP. If at a certain point along the z axis the mass
changes its sign, i.e., m0 ! �m0, there exists a localized
midgap (i.e., zero energy) solution as squaring the
Dirac Hamiltonian leads to a pair of supersymmetric
Hamiltonians corresponding to two independent
Schrödinger particles with a Dirac-� potential. The bound
state is exponentially localized with a localization length
proportional to the effective Compton length ��

C ¼
@=ðm�c�Þ, as is indicated in Fig. 3.

Thus one can ask how the state will look like when the
number of mass jumps and their size is increased? This
leads to the 1D random-mass Dirac model: Given a spa-
tially random mass mðzÞ, with (@ ¼ c ¼ 1)

mðzÞmðyÞ ¼ 2��ðz� yÞ; mðzÞ ¼ 0; (6)

where � parameterizes the strength of the disorder, it was
shown [4,5] that the density of states at zero energy is
diverging, corresponding to a localized state. The corre-
sponding wave function �ðzÞ exposes, however, unusual
density correlations. Contrary to expectations there is not

an exponential localization as in the case of Fig. 3, but one
finds for �z 	 1:

jIðzÞIð0Þj 

�

1

�z

�

3=2
; (7)

where IðzÞ ¼ j�ðzÞj2. A spatially varying mass (detuning
�) can be achieved by using fluctuating magnetic fields or
by applying speckle patterns as done for the demonstration
of Anderson localization [28].
In experiments one has a finite correlation length � of

the disorder which we use as a discretization length for the
simulations. We assume that the two-photon detuning has a

Gaussian distribution with �� ¼ 0 and �2 ¼ �2 for all
points in space.
In Fig. 4 numerical results of the density correlation (7)

are shown obtained from the full MBE. For large times the
correlation (red solid line) approaches the predicted power-
law behavior, shown by the black dash-dotted line.
The finite two-photon detuning also leads to some small

losses, seen in the inset of Fig. 4. Two regimes are appar-
ent: The first rapid loss is due to imperfect matching of the
initial wave function to the zero-energy eigenstate. The
smaller losses for large times can be attributed to non-
adiabatic couplings resulting in an effective loss rate
�eff ¼ 	2Labsvg=L

2�, L� being some characteristic length

scale of the localized state. These losses are negligible as
long as �effT � 1, where T ¼ L=vg is the typical time

scale of the experiment. Furthermore, (7) requires �L 	 1,
in order to observe the power-law decay. This translates
to L 	 v2

gnkinks=�
2sin4� � Lcorr, where nkinks is the

number density of mass jumps. Both equations finally

lead to L=Labs � OD 	 maxf�2
0

��

ffiffiffiffiffiffiffiffiffiffiffiffi

Nkinks

p
; ð	L=L�Þ2g.
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FIG. 2 (color online). Dispersion relation of the double-tripod
pattern [Fig. 1(d)] (ignoring decay) showing the energy branches
of the SSP (red dotted line: � ¼ 0, blue solid line: � ¼
0:075�0).

FIG. 3 (color online). Zero-energy bound state at a mass jump
mðzÞ ¼ m sgnðzÞ. a ¼ �c ¼ @=ðm�c�Þ is the effective Compton
length.
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FIG. 4 (color online). Correlation function jIðzÞIð0Þj2 with
disorder width � ¼ 0:01� averaged over 50 realizations. For
large times, the numerical results show very good agreement
with the theoretical expected power-law (black dashed-dotted
line), with the only fit-parameter being the ordinate intersection.

The inlet shows the intensity IðtÞ spatially integrated over a
region �3Lp. The curve is normalized to the initial intensity

Iðt0; z ¼ 0Þ. The fitted curve (blue crosses) corresponds to the
theoretically predicted effective decay rate with L� �

ffiffiffi

2
p

Lp.
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Here Nkinks ¼ nkinksL is the number of kinks in the length
L and OD denotes the optical depth of the medium. For
white noise the density of kinks nkinks can be approximated
by the inverse disorder correlation length nkinks � ��1.
Taking � � 0:3 �m, L � 4 mm [28], and estimating
Nkinks ¼ L=� � 104 yields a required optical depth of
OD � 100. This high optical depth is however achievable
in systems such as atoms trapped in a hollow core photonic
band gap fiber [29] or cold atoms trapped in the evanescent
fields of an ultrathin optical fiber [30].

An estimate of the minimal buildup time of the cor-
relations, defined as Tcorr ¼ Lcorr=vg yields Tcorr �
2:5–25 �s. Here we used � � 0:1� ¼ ð2	Þ0:6 MHz (for
87Rb), vg � 10–100 m=s [3] and the correlation length

� � 0:3 �m from above. This time is far shorter than the
achievable lifetime of the dark-state polaritons, typically
on the order of 100 �s [6] to several ms [11,12].

A possible experimental protocol to observe the pro-
posed effect is to store an initial wave packet in the atomic
coherences with existing techniques for slow-light polar-
itons [6] or by coherent rf transitions [31]. Subsequently,
one applies the disorder, e.g., by a laser-speckle induced
ac-Stark shifts and reads out the polaritons by applying all
four control fields. The polariton states then evolve accord-
ing to the above model. After a certain time the disorder is
removed and the final state is read out by means of usual
slow light. Looking at the time profile of the intensity of the
probe fields at the detector one can reconstruct the intensity
profile of the localized state.

In summary, we have shown that the coupling of two
counterpropagating light fields to an optical thick ensemble
of atoms driven by multiple drive fields in a tripodlike
linkage pattern leads to the formation of spinorlike eigen-
solutions which are immune to spontaneous emission
losses. These SSP obey a 1D Dirac equation with effective
speed of light c� given by the group velocity of slow light
in EIT media and with an effective massm� determined by
a small two-photon detuning. This allows us to experimen-
tally study a number of interesting phenomena of relativ-
istic quantum dynamics. For example, the possibility to
tune the effective mass can be used to observe the unusual
localization transition predicted for the random-mass
Dirac model, which appears in the context of several
condensed-matter systems with disorder. Furthermore,
adding interactions, e.g., by means of resonantly enhanced
Kerr nonlinearities [32], important relativistic many-body
models such as the bosonic counterpart of the Thirring
model [33] should be experimentally accessible.
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