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The semilocalized approach to chemical reactivity suggested recently is overviewed with respect
to both theory and applications. The principal attention is paid to formulation of a common selection
rule for organic reactions and to demonstration of its validity to various heterolytic (i. e. nucleophilic
and electrophilic) and pericyclic processes. The total energy of the whole reacting system (E) is
represented in this approach in the form of power series with respect to all interfragmental interactions
(fragments coincide with individual chemical bonds, phenyl rings, etc.). For any reaction, a certain
decisive k-th-order energy correction E(k) may be revealed, the sign of which depends on the actual
way of the process. The allowed and forbidden reactions are then defined as those described by
negative (stabilizing) and positive (destabilizing) corrections E(k), respectively. The condition which
ensures the negative sign of E(k) resolves itself into a universal requirement of coinciding signs of the
principal direct and indirect interactions of basis orbitals localized on separate fragments (e. g. bond
orbitals). This result forms the basis for the above-mentioned selection rule. Allowed (forbidden)
ways of heterolytic reactions are exemplified by the back (frontal) attack of a nucleophile upon a
substituted alkane in the SN2 process, the meta (ortho, para) attacks of electrophile upon the pyridine
molecule, the addition of electrophile to the Cβ (Cα ) atom of a donor-containing derivative of ethene
(D-Cα H=Cβ H2), the trans (cis)-β -elimination processes of substituted alkanes, etc. Application of
the same rule to pericyclic reactions is demonstrated to yield predictions coinciding with those of
other approaches including the famous Woodward-Hoffmann rule.

Key words: One-Electron Density Matrix; Perturbation Theory; Fragmental Orbitals;
Direct and Indirect Interactions; Semilocalized Approach.

1. Introduction

Classification of certain structures and/or processes
usually is based on revealing and emphasizing specific
peculiarities pertinent to each class. In some cases,
however, this popular approach of natural sciences
yields overestimation of differences between closely
related objects. To restore the balance, general theo-
ries are subsequently developed that result in unified
interpretations of these seemingly different objects us-
ing the same set of principal terms.

In the field of organic chemistry, distinction be-
tween heterolytic (i. e. nucleophilic and electrophilic)
and pericyclic reactions [1 – 3] may be mentioned as an
outstanding example of classification. Indeed, the peri-
cyclic processes usually are characterized by absence
of a local reaction centre [1], as well as by the neutral
(or almost neutral) nature of participating compounds
in respect of their electron-donating or -accepting abil-
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ities [3], whereas the heterolytic processes are de-
scribed by opposite to that said above. In this context,
search for a unified interpretation of both types of re-
actions is a natural course of things. Attempts of just
this type are overviewed in the present paper.

The above-mentioned distinctive features of het-
erolytic and pericyclic reactions determine somewhat
different traditions of their theoretical treatment. Thus,
relative reactivities referring to alternative routes of
heterolytic processes usually are assumed to vary con-
tinuously. These are most commonly correlated ei-
ther to total populations of atomic orbitals (AOs)
and/or of atoms [4, 5] or to their partial values re-
ferring to the so-called frontier molecular orbitals
(MOs) [6 – 17] (cf. the charge- and orbital-controlled
processes [4, 7, 12, 13]). Meanwhile, pericyclic reac-
tions are traditionally considered as being governed by
a certain selection rule [1], i. e., these processes are ex-
pected to be either allowed or forbidden. This view-
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point may be traced back to the pioneering contribu-
tions [18 – 20]. Accordingly, the simplest version of
the selection rule for pericyclic processes is commonly
referred to as the Woodward-Hoffmann rule [1]. The
overall symmetry and nodal properties of the highest
occupied MO (HOMO) and/or of the lowest unoccu-
pied one (LUMO) underly this rule.

Recently, the so-called semilocalized approach to
investigate the chemical reactivity has been pro-
posed [21, 22], wherein the principal characteristics
under study (viz. the partial populations transferred be-
tween initially-occupied basis orbitals and the initially-
vacant ones) have been expressed and interpreted in
terms of local direct and indirect interorbital interac-
tions instead of coefficients and/or nodal properties
of the usual delocalized MOs. This alternative ap-
proach has been applied to various types of organic
reactions, including the SN2 process between a substi-
tuted alkane and nucleophile [23], the AdE2 reaction
of substituted ethenes [22], the concerted bimolecu-
lar elimination processes [24], the electrocyclic clo-
sure of polyenes [25, 26]. A subsequent comparative
analysis of these separate studies showed that the con-
cept of the selection rule is equally applicable to both
heterolytic and pericyclic organic reactions. Moreover,
the approach yields a common selection rule for these
processes in terms of signs of direct and indirect in-
terorbital interactions. The present overview addresses
mainly this principal achievement.

We start with discussing fundamentals of the
semilocalized approach in Section 2. Analysis of the
relevant expressions allows us to define the allowed
and the forbidden processes deductively and thereby to
formulate a general selection rule for organic reactions.
The remaining part of the paper is devoted to demon-
stration of the actual validity of the above-mentioned
rule. Studies of heterolytic processes are overviewed
in Section 3. Results of such an a posteriori analysis
are subsequently compared to predictions of our gen-
eral selection rule of Section 2. On this basis, validity
of the rule to heterolytic reactions is concluded.

Finally, we turn to pericyclic processes in Section 4
that are traditionally divided into allowed and forbid-
den ones. Application of our general selection rule to
these processes is followed by comparison of the rel-
evant predictions with those of the other approaches
including the famous Woodward-Hoffmann rule [1],
as well as to experimental facts. As a result, adequacy
of the common selection rule to pericyclic reactions is
also demonstrated.

2. Theory

The semilocalized approach to chemical reactivity
is based on the general expression for the one-electron
density matrix (DM) derived in [27] along with the di-
rect relation between the DM and the relevant total en-
ergy. A perturbative solution of the so-called commu-
tation equation underlies the above-mentioned deriva-
tion. Thus, we start with discussing just this way of
obtaining the DM (Subsection 2.1). Thereupon, we in-
troduce certain additional approximations that allow
to interpret both elements of the DM and total energy
in terms of direct and indirect interorbital interactions
(Subsection 2.2). Finally, we turn to the very chemical
reactivity (Subsection 2.3).

2.1. The Direct Way of Obtaining the One-Electron
Density Matrix and Total Energy

The one-electron DM of a certain system and its to-
tal energy are usually derived in quantum chemistry
using eigenfunctions (MOs) and eigenvalues (one-
electron energies) of the relevant Hamiltonian or Fock-
ian matrix (see e. g. [28]). This implies passing to the
basis of delocalized MOs is an initial step of the whole
procedure. To avoid this step and thereby to ensure the
feasibility of a local interpretation of electronic struc-
tures and/or chemical reactivity, the DM has been ob-
tained in [27] directly without solving the eigenvalue
equation for the Hamiltonian matrix. To this end, fun-
damental principles of quantum mechanics have been
employed.

Let our system be represented by a certain one-
electron Hamiltonian matrix H, e. g. of the Hückel
type. The relevant total energy E is then expressible
as [29, 30]

E = Spur(PH), (1)

where P is the corresponding representation matrix of
the DM. The latter, in turn, is determined by three ma-
trix equations [30], viz.

[H,P]− = 0, P2 = 2P, Spur P = 2N, (2)

where 2N coincides with the even total number of elec-
trons and the notation [. . . , . . .]− indicates a commu-
tator of matrices. The first relation (the commutation
condition) is the main physical requirement determin-
ing the matrix P and resulting from the Dirac equation
for the time-independent Hamiltonian. The remaining
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relations are additional system-structure-independent
restrictions following from the idempotence require-
ment (ΠΠΠ2 =ΠΠΠ) for the projector ΠΠΠ = 1

2 P and the charge
conservation condition, respectively.

We will dwell here on the perturbative solution of
the system of matrix equations (2) (non-perturbative
solutions also are possible, see e. g. [31]). In this con-
nection, the matrix H will be assumed to contain a
zero-order member H(0) and a first-order term H(1) as
follows:

H = H(0) + H(1). (3)

Let a certain set of orthonormalized orbitals {ϕ} to un-
derly the Hamiltonian matrix H. No need arises for
specifying the nature of these orbitals at the present
stage of our discussion, except for two additional con-
ditions. First, the total basis set {ϕ} is assumed to
consist of two subsets, {ϕ(+)} and {ϕ(−)}, containing
initially-occupied and initially-vacant orbitals, respec-
tively, and, second, the interactions between orbitals of
different subsets are supposed to be weak as compared
to those inside the subsets.

It is evident that each matrix of (3) may be repre-
sented in terms of four submatrices (blocks), referring
to subsets {ϕ(+)} and {ϕ(−)}, and to their interaction.
Moreover, the zero-order member H(0) contains zero
intersubset blocks and changes to a block-diagonal ma-
trix under the above-mentioned condition, viz.

H(0) =
∣∣∣∣ E(+) 0

0 E(−)

∣∣∣∣ , H(1) =
∣∣∣∣ S R

R+ Q

∣∣∣∣ . (4)

The superscript + here and below indicates the
Hermitian-conjugate matrix. As with the nature of or-
bitals {ϕ}, no need arises for specifying either the in-
ternal constitutions of submatrices E(+), E(−), S,R and
Q or their dimensions. (These submatrices play the
role of multi-dimensional parameters. In this respect,
an analogy may be traced between the matrix H and
the Hamiltonian matrix of a certain two-level system
characterized by weak interorbital interaction [32]).

The above-described non-specific nature of the
whole problem is preserved also when solving the ma-
trix equations (2). To this end, the matrix P has been
formally expressed as a sum of corrections P(k) of var-
ious orders k. Each of these corrections, in turn, is rep-
resented in terms of four blocks being sought. As a re-
sult of such a solution, each member P(k) is expressed
in terms of entire blocks of the Hamiltonian matrix

(E(+), E(−), S,R and Q) whatever the internal consti-
tutions of the latter are. The correction P(k) takes the
form [27, 33, 34]

P(k) =
∣∣∣∣ P(k)+ −2G(k)
−2G+

(k) P(k)−

∣∣∣∣ , (5)

where the off-diagonal blocks G(k) meet the matrix
equations

E(+)G(k)−G(k)E(−) + W(k) = 0, (6)

where the matrices W(k) coincide with certain combi-
nations of matrices of lower orders, e. g.

W(1) = R, W(2) = SG(1)−G(1)Q. (7)

Zero- and first-order members of the remaining blocks
of (5) take the simple form

P(0)+ = 2I, P(0)− = 0, P(1)+ = P(1)− = 0 (8)

in accordance with initial occupation numbers of basis
orbitals (I here and below stands for the unit matrix).
For higher values of the order parameter k, the subma-
trices P(k)+ and P(k)− contain sums of products of pairs
of matrices G(k−1), G(k−2), etc. as exemplified below:

P(2)+ = −2G(1)G+
(1), P(2)− = 2G+

(1)G(1),

P(3)+ = −2(G(1)G+
(2) + G(2)G+

(1)), etc.
(9)

It is evident that the final occupation numbers of
basis orbitals are determined by the diagonal el-
ements P(k)+,ii and P(k)−, j j of submatrices P(k)+
and P(k)−. Matrices G(k), in turn, take off-diagonal
positions in the correction P(k) of (5). Hence, an el-
ement G(k)i j represents a certain coupling between an
initially-occupied orbital (ϕ(+)i) and an initially-vacant
one (ϕ(−) j). The expressions like those of (9) then al-
low us to define partial populations q(+)i,(−) j trans-
ferred between orbitals ϕ(+)i and ϕ(−) j, as well as k-
th-order increments of the relevant power series [34].
We then obtain

P(k)+,ii = − ∑
(−)l

q(k)
(+)i,(−)l,

P(k)−, j j = ∑
(+)m

q(k)
(−) j,(+)m,

(10)

where q(k)
(+)r,(−)s coincides with q(k)

(−)s,(+)r for any r

and s. Increments q(k)
(+)i,(−) j, in turn, are expressible as

follows:

q(2)
(+)i,(−) j = 2(G(1)i j)

2, (11)
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q(3)
(+)i,(−) j = 4G(1)i jG(2)i j, (12)

q(4)
(+)i,(−) j = 4G(1)i jG(3)i j + 2(G(2)i j)

2

+ 2G(1)i j(G(1)G
+
(1)G(1))i j,

(13)

q(5)
(+)i,(−) j = 4G(1)i jG(4)i j

+ 2G(1)i j(G(1)G
+
(2)G(1))i j

+ 4G(2)i jG(3)i j

+ 4G(2)i j(G(1)G
+
(1)G(1))i j.

(14)

(Note that members q(k)
(+)i,(−) j up to k = 5 were used

when studying chemical reactions [24]). It is also evi-
dent that the partial populations q(+)i,(−) j take the form

q(+)i,(−) j =
∞

∑
k=2

q(k)
(+)i,(−) j (15)

and describe the final charge redistribution in our sys-
tem.

Let us return now to the total energy E defined
by (1). Use of (3) along with the power series for the
DM P yields an analogous series for the energy E . The
k-th-order member of this series (E(k)), in turn, consists

of two components, E(α)
(k) and E(β )

(k) , viz.

E(α)
(k) = Spur(P(k)H(0)),

E(β )
(k) = Spur(P(k−1)H(1)).

(16)

Moreover, these components proved to be interrelated
as follows [34]:

(k−1)E(β )
(k) = −kE(α)

(k) (17)

for any k = 2,3,4, . . . [members E(0) and E(1) are ex-
hibited below in (19)]. Derivation of (17) is based on
application of (5) and (6). The principal relation (17)
implies that the total correction E(k) is alternatively
representable as

E(k) = − 1
k−1

E(α)
(k) , E(k) =

1
k

E(β )
(k) . (18)

Moreover, compact formulae have been derived [34]
for separate corrections E(k), e. g.

E(0) = 2SpurE(+), E(1) = 2Spur S,

E(2) = −2Spur(G(1)R+),

E(3) = −2Spur(G(2)R+), etc.

(19)

These expressions offered a generalization [35] of the
well-known Dewar formula [36 – 38] for total energies
to the case of zero-order interactions inside subspaces
of initially-occupied and initially-vacant basis orbitals.
This fact demonstrates non-trivial consequences of the
allowance for a non-diagonal zero-order Hamiltonian
in (4). Other applications of the above-outlined general
formalism may be found in [39, 40].

2.2. The Case of First-Order Interorbital Interactions.
Choice of Basis Orbitals

Solution of matrix equations (6) is the main origin
of difficulties in practical applications of the above out-
lined theory. The integral form of the solution has been
analyzed in [41, 42]. It is essential to note in our con-
text that this formal solution offers no local relations
between elements of the principal matrices G(k) and
those of the Hamiltonian matrix and thereby between
elements of the DM and the interorbital interactions.
To achieve the latter end, submatrices E(+) and E(−)
are assumed to take diagonal forms [27], i. e.

E(+)im = ε(+)iδim, E(−) jl = ε(−) jδ jl , (20)

where ε(+)i and ε(−) j represent one-electron energies
of the orbitals ϕ(+)i and ϕ(−) j. This assumption evi-
dently implies a first-order magnitude of all interorbital
interactions.

Two important implications follow immediately af-
ter accepting condition (20): First, the component E(α)

(k)
of the energy correction E(k) shown in (16) depends
only on corrections to populations of basis functions,
i. e. on P(k)+,ii and P(k)−, j j defined by (10) – (15). As
a result, this component becomes interpretable as the
charge transfer energy. Moreover, expressibility of the
total correction E(k) via E(α)

(k) as shown in the first rela-
tion of (18) yields the principal formula [34]

E(k) =
1

k−1 ∑
(+)i

∑
(−) j

q(k)
(+)i,(−) j(ε(+)i−ε(−) j), (21)

for k = 2,3,4, . . . . It is seen that the energy correc-
tion E(k) depends on k-th-order increments to partial
populations transferred between orbitals of opposite
initial occupation and on the relevant energy intervals.
Meanwhile, the sum E(0)+E(1) coincides with the total
energy of isolated initially-occupied basis functions.

The second consequence of (20) consists in the pos-
sibility of an algebraic solution of (6). As a result, ex-
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pressions for separate elements G(k)i j have been ob-
tained [27] along with their illustrative interpretation.

Let us introduce the following notations for Hamil-
tonian matrix elements:

Sim = 〈ϕ(+)i | Ĥ | ϕ(+)m〉,
Ri j = 〈ϕ(+)i | Ĥ | ϕ(−) j〉,
Q jr = 〈ϕ(−) j | Ĥ | ϕ(−)r〉,

(22)

where the respective basis orbitals are indicated in-
side the bra- and ket-vectors. Then the first-order el-
ement G(1)i j takes the form [27]

G(1)i j = − Ri j

ε(+)i − ε(−) j
(23)

and describes the direct interaction between or-
bitals ϕ(+)i and ϕ(−) j. Using the same system of des-
ignations, the second-order element G(2)i j may be ex-
pressed as [27]

G(2)i j =
1

ε(+)i − ε(−) j

{
∑

(+)m

SimRm j

ε(+)m − ε(−) j

− ∑
(−)r

RirQr j

ε(+)i − ε(−)r

}
.

(24)

This element represents the indirect interaction be-
tween the same orbitals (ϕ(+)i and ϕ(−) j) by means
of a single mediator. Both an initially-occupied or-
bital (ϕ(+)m) and an initially-vacant one (ϕ(−)r) are
able to play this role. To be an efficient mediator,
however, the orbital concerned should interact di-
rectly with both ϕ(+)i and ϕ(−) j. Similarly, G(3)i j de-
scribes the indirect interaction between orbitals ϕ(+)i
and ϕ(−) j by means of two mediators, G(4)i j represents
an analogous interaction by means of three mediators,
etc. It is noteworthy that the higher is the order pa-
rameter k, the more cumbersome is the relevant ex-
pression. In this connection, expressions for G(k)i j of
higher orders are not given here (these may be found
in [22, 33]). It should be also added that the remaining
increments of (13) and (14), i. e. (G(1)G

+
(1)G(1))i j and

(G(1)G
+
(2)G(1))i j , also may be interpreted as certain in-

direct interactions of the same orbitals ϕ(+)i and ϕ(−) j.
On the basis of (10) – (15), (23) and (24) we may

then conclude that both separate increments q(k)
(+)i,(−) j

of partially transferred populations q(+)i,(−) j and the
resulting contributions to occupation numbers of basis
orbitals P(k)+,ii and P(k)−, j j can be expressed in terms

of direct and indirect interorbital interactions. Condi-
tions underlying this representation of electronic struc-
tures are easily seen from (23) and (24), viz. energy in-
tervals between orbitals of opposite initial occupation
(ε(+)i − ε(−) j) should exceed considerably the interor-
bital interactions of all types.

Evaluations [27, 32, 33, 43 – 46] showed that or-
bitals localized on separate elementary fragments of
the system under study usually meet the above re-
quirement. Let these orbitals be referred to as frag-
mental orbitals (FOs). The initially-occupied FOs
and the initially-vacant ones will be accordingly ab-
breviated by IOFOs and IVFOs. Individual chemi-
cal bonds both of saturated [27, 32, 43] and conju-
gated molecules [44], lone electron pairs [46], as
well as aromatic (e. g. phenyl) rings along with sub-
stituents [33, 45] are able to play the role of fragments.
Moreover, FOs may be regarded as orthonormalized
orbitals, at least in qualitative studies [47]. In the most
common case of two-centre chemical bonds, the bond-
ing bond orbitals (BBOs) and the antibonding ones
(ABOs) are usually used as IOFOs and IVFOs, respec-
tively. Large energy intervals (ε(+)i − ε(−) j) vs. the in-
terorbital interactions Ri j follow in this case from sig-
nificant intrabond resonance parameters as compared
to the interbond ones in the basis of hybrid AOs un-
derlying the definition of bond orbitals [48 – 54]. El-
ements G(1)i j and G(k)i j (k = 2,3,4. . . .) then accord-
ingly represent the through-space and through-bond
interactions. This concept has been originally sug-
gested in [55 – 58] for the interpretation of photoelec-
tron spectra of specific molecules. Analogous terms
were invoked later when discussing the structures of
non-canonical (localized) MOs [59 – 61]. The direct
and indirect interactions represented by (23) and (24)
refer to any type of mediating FOs and thereby may be
considered as a certain generalization of through-space
and through-bond interactions, respectively.

The same requirement (namely significant intrafrag-
mental interactions vs. the interfragmental ones) serves
also as a criterion for choosing the most appropriate
fragments and thereby the basis orbitals (FOs) for a
certain specific system. In this context, an essential fact
is that related molecules usually consist of the same
fragments joined in a uniform manner (cf. alkanes con-
taining C-C and C-H bonds). This, in turn, implies that
FOs of similar structure represent these compounds.
As a result, a common Hamiltonian matrix H of (3)
and (4) usually refers to the whole class of related
compounds, where individual molecules are character-
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ized by specific structures and dimensions of the multi-
dimensional parameters E(+), E(−), S,R and Q. Given
that this is the case, the single matrix problem (2) rep-
resents the whole class. In this connection, the present
theory proved to be applicable for the investigation of
common peculiarities of electronic structures of related
compounds. For instance, alkanes [32, 43, 48, 49], their
heteroatom-containing derivatives [62], and disubsti-
tuted benzenes [33] may be mentioned.

Let us return again to expressions (23) and (24)
and assume that certain fragmental orbitals play the
role of the basis functions {ϕ} in the above outlined
formalism. Let us define neighbouring fragments as
those described by the non-zero interorbital interac-
tions shown in (22) and thereby by the non-zero matrix
elements G(1)i j of (23). Accordingly, elements G(2)i j
take non-zero values for fragments possessing a com-
mon neighbour (the so-called second neighbours),
whilst G(3)i j �= 0 refer to third neighbours, etc. On the
whole, the higher is the order parameter k, the more re-
mote fragments are embraced by the relevant indirect
interaction G(k)i j. Meanwhile, the absolute value of the
latter generally becomes lower when the parameter k
increases in accordance with the usual requirements of
converging perturbative expansions.

Similar trends are observed also in the case of in-
crements q(k)

(+)i,(−) j under growing values of the pa-

rameter k. [Note that q(k)
(+)i,(−) j consists of sums of

products of elements G(k−1)i j,G(k−2)i j, etc. as (11) –
(14) indicate.] As a result, any partial transferred pop-
ulation q(+)i,(−) j depends predominantly on the near-
est environment of orbitals ϕ(+)i and ϕ(−) j and ex-
hibits an extinction when the distance between the
two fragments concerned grows. An analogous depen-
dence mostly on the nearest neighbourhood easily fol-
lows also for total alterations in occupation numbers
of separate orbitals defined by (10). On the whole,
these principal conclusions imply a semilocalized de-
scription of electronic structures to follow from the
above outlined theory under assumption (20). Applica-
tions of this approach to various problems of ground
states of molecules may be found in [32, 33, 43 –
45, 48, 49, 53, 62 – 64].

2.3. The Semilocalized Approach to Chemical
Reactivity. Definition of Allowed and Forbidden
Reactions

A formal application of the above summarized ex-
pressions to the case of two interacting molecules A

and B was undertaken in [21]. Orbitals localized on
fragments of both participants of the process were in-
cluded into the basis set {ϕ}. The first-order Hamilto-
nian matrix H(1) of (3) contained both intra- and inter-
molecular interactions. Electron density redistributions
both inside and between molecules A and B were the
principal characteristics under study. To discuss these
redistributions, the following definitions have been in-
troduced: First, two principal fragments have been re-
vealed in molecules A and B that interact one with an-
other directly. These fragments have been called the
reaction centres and denoted by RC(A) and RC(B).
Second, the fragments, the orbitals of which interact
directly only with those of reaction centres of their
own molecules (but not with orbitals of the oppo-
site compound), have been referred to as the nearest-
neighbouring fragments and denoted by NN(A) and
NN(B). Finally, the next-nearest-neighbouring frag-
ments have been defined and so on.

Any correction P(k) of the total DM of two interact-
ing molecules P was shown to be representable as [21]

P(k) = P(A)
(k) ⊕P(B)

(k) + δP(k), (25)

where P(A)
(k) and P(B)

(k) are the relevant corrections for
the isolated molecules A and B, respectively. The sym-
bol ⊕ indicates a direct sum of matrices. The last
term δP(k) is an additional component that may be
entirely traced back to the intermolecular interaction.
Analysis of the general expression for δP(k) [21] sup-
ports our previous expectation that the higher is the or-
der parameter k, the more distant fragments are em-
braced by the resulting charge redistribution. In par-
ticular, the second- and third-order increments δP(2)
and δP(3) were shown to describe charge redistribu-
tions inside and between the reaction centres RC(A)
and RC(B). This result has been considered as the
quantum-mechanical analogue of the supposed direct
participation of the RC(A) and RC(B) fragments in a
certain process. The fourth-order increments δP(4), in
turn, were shown to contain additive components of
an indirect participation of a certain NN(A) or NN(B)
fragment in the same reaction. In the case of a more
remote fragment, terms of even higher orders are re-
quired to describe the relevant effects. Thus, extinction
of an indirect influence has been predicted when the
distance between the given fragment and the respective
reaction centre grows. These results formed the basis
for choice of local models of chemical processes con-
taining orbitals of the supposed reaction centres and
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those of some neighbouring fragments of particular
interest. Models of this type along with the principal
expressions (10) – (15), (21), (23) and (24) make the
essence of the semilocalized approach to chemical re-
activity. This approach has been successfully applied
to investigate various aspects of organic reactions, both
heterolytic and pericyclic. Several examples may be
mentioned here: The origin of the enhanced reactiv-
ity of α-halocarbonyl compounds as compared to alkyl
halogenides has been revealed [65]. Different relative
reactivities of carbon atoms of butadiene towards elec-
trophiles and/or nucleophiles have been related to dis-
similar indirect influences of the H2C=CH-substituent
upon the reacting H2C=CH-fragment for alternative
directions of the attack of the reagent [66]. Internal
changes have been revealed in the reacting allyl ions
that result in the so-called deconjugation effect [67].
Finally, the role of the overlap topology of AOs at early
stages of pericyclic reactions has been explored [26].

Let us turn now to the deductive definition of al-
lowed and forbidden reactions. To this end, let us con-
sider separate members E(k) of the power series for
the total energy E of a certain reacting system shown
in (21), where q(k)

(+)i,(−) j are defined by (11) – (14).
The principal contribution E(2) to the energy alter-

ation of our system depends on squares of direct in-
terorbital interactions as (11) and (21) indicate. Posi-
tive signs of the increments q(2)

(+)i,(−) j of (11) and neg-
ative signs of energy intervals (ε(+)i − ε(−) j) deter-
mine the stabilizing nature of the second-order energy
correction E(2) whatever the actual signs of the di-
rect interactions G(k)i j are. Meanwhile, the signs of
the remaining terms of the power series for the en-
ergy E , i. e. of E(3),E(4), etc., can not be established
a priori. As already mentioned, the direct interac-
tions G(1)i j take non-zero values if the orbitals con-
cerned, i. e. ϕ(+)i and ϕ(−) j, belong to neighbouring
fragments. The same evidently refers to second-order
partial transferred populations q(2)

(+)i,(−) j. Alternative
routes of chemical reactions, however, are most com-
monly characterized by different spatial arrangements
of non-neighbouring fragments; for example, the α-
and β -attacks of electrophile upon a substituted ethene
Z-CαH=Cβ H2 are described by different positions of
the reagent relatively to the substituent Z. Hence, the
predominant way of a certain reaction may be expected
to be determined by signs of energy corrections E(k) of
higher orders k. In this context, chemical reactions may
be conveniently classified on the basis of the order pa-

rameter k, the decisive energy correction is described
by. For example, reactions governed by the sign of the
third-order energy E(3) may be referred to as third-
order processes, etc. It is also evident that the higher-
order increments E(k), k > 2, contribute to an addi-
tional stabilization of the whole system if the respec-
tive partial transferred populations q(k)

(+)i,(−) j have pos-
itive signs. As is seen from (12) – (14), positive partial
transferred populations q(3)

(+)i,(−) j, q(4)
(+)i,(−) j, etc. follow

if the interorbital interactions contained within their
definitions, i. e. G(1)i j,G(2)i j, G(3)i j, (G(1)G

+
(1)G(1))i j,

etc., are of coinciding signs for separate pairs of FOs.
Thus, it is the signs of direct and indirect interorbital
interactions that may be expected to determine the pre-
dominant ways of chemical reactions.

From (21) it follows also that the k-th-order en-
ergy E(k) consists of contributions of all pairs of FOs of
opposite initial occupation (the subscripts i and j em-
brace all IOFOs and all IVFOs, respectively). In this
context, correlations between signs of interorbital in-
teractions referring to different pairs of FOs become
essential. Three cases may be distinguished here. The
first one embraces reactions described by all (or almost
all) positive increments q(k)

(+)i,(−) j to the decisive k-th-
order energy correction E(k), so that the negative sign
of the latter is unambiguosly ensured. These processes
will be referred to as allowed k-th-order reactions. The
second case embraces processes represented by all (or
almost all) negative increments q(k)

(+)i,(−) j and thereby
by a positive k-th-order correction E(k). The term “the
forbidden k-th-order reactions” will be employed in
this case. An intermediate case also is possible here
when the principal pairs of FOs of opposite initial oc-
cupation yield contributions of different signs to the
above specified corrections. Due to the strong corre-
lation of signs of interorbital interactions for different
pairs of FOs peculiar to specific reactions (Section 3),
the actual processes prove to belong to either allowed
or forbidden ones.

Let an additional remark to be made before finishing
this subsection. Let us assume that a certain interorbital
interaction G(k)i j consists of two components, G(a)

(k)i j

and G(b)
(k)i j, i. e.

G(k)i j = G(a)
(k)i j + G(b)

(k)i j (26)

(the components may refer, for example, to increments
of different mediators). These components also may
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be considered as separate interorbital interactions. Ac-
cordingly, coinciding signs of G(a)

(k)i j and G(b)
(k)i j ensure

the largest absolute value of the square of the total in-
teraction G(k)i j, i. e. of (G(k)i j)2, and thereby the largest
negative value of the relevant energy increment. In
particular, two components of the first-order interac-
tion G(1)i j of the same sign yield the largest negative
value of the stabilization energy E(2). Similarly, coin-

ciding signs of G(a)
(1)i j, G(b)

(1)i j and G(2)i j yield a negative
third-order energy E(3), etc.

The deductive definitions of this section will be il-
lustrated by particular reactions in Sections 3 and 4.

3. Comparative Analysis of Heterolytic Reactions

In this section, the heterolytic processes are classi-
fied on the basis of the order parameter k, by which the
decisive energy correction is described.

3.1. The Third-Order Processes

Let us start with the SN2 process between a sub-
stituted alkane Z-CαH2-Cβ H2-. . . and nucleophile
Nu [23], where Z stands for a heteroatom (nucleofuge).
A back attack of the reagent and not a frontal one is
commonly assumed to give rise to a subsequent sub-
stitution process [2 – 4, 7, 38, 68]. Thus, comparison of
these two alternatives with respect to allowance of the
relevant reaction is of particular interest.

Three principal basis orbitals were shown to be
sufficient when studying the SN2 process, viz. the
electron-donating orbital of nucleophile (ϕ(+)d), the
electron-accepting (antibonding) orbital of the Cα -Z
bond (ϕ(−)a) and a single mediating IOFO denoted pre-
viously [23] by ϕ(+)2 and belonging either to Cα -Cβ or
to Cα -H bonds. Regard for the latter orbital allowed us
to distinguish between the two possible ways of the re-
action even if the interactions (resonance parameters)
between orbitals ϕ(+)d and ϕ(−)a are of coinciding ab-
solute values for both types of the attack. (Similar val-
ues of these parameters are expected on the basis of
the relevant estimations.) Confinement to the single or-
bital ϕ(+)2 instead of three BBOs of the Cα -Cβ (Cα -H)
bonds is based on their uniform contributions to trans-
ferred populations q(3)

(+)d,(−)a. Increments of respective
ABOs were shown to take zero values. That is why
these orbitals are not included into the local model of
the reaction.

The second-order energy E(2) of the whole re-
acting system was shown to be determined by two

partial transferred populations in this case, namely
by q(2)

(+)d,(−)a and q(2)
(+)2,(−)a. Owing to an additional as-

sumption about coinciding absolute values of direct in-
termolecular interactions G(1)da for the frontal and the
back attacks of nucleophile, no differences in stabi-
lization energies E(2) arise for the two possible routes
of the reaction. Distinction between these alternatives
is then based on consideration of the respective third-
order increments q(3)

(+)d,(−)a and q(3)
(+)2,(−)a. Analysis of

the relevant results of the study [23] shows that the
principal interorbital interactions determining these in-
crements are of the following signs:

G(b)
(1)da < 0, G(f)

(1)da > 0, G(2)da < 0,

G(1)2a > 0, G(b)
(2)2a > 0, G(f)

(2)2a < 0,
(27)

where G(2)da and G(2)2a were mediated by or-
bitals ϕ(+)2 and ϕ(+)d, respectively, and the super-
scripts (b) and (f) correspondingly refer to the back
and frontal positions of the nucleophile. The interac-
tions G(2)da and G(1)2a of (27) do not depend on the
direction of the attack. It is seen that the back attack
is represented by first- and second-order interorbital
interactions of the same sign and thereby by positive
third-order partial transferred populations q(3)

(+)d,(−)a

and q(3)
(+)2,(−)a. Meanwhile, the frontal attack of the

reagent is described by analogous interactions of oppo-
site signs and, consequently, by negative partial trans-
ferred populations. These results evidently are in line
with our definitions of allowed and forbidden third-
order reactions. Thus, the back attack of nucleophile
may be concluded to be followed by an allowed sub-
stitution process. Again, a forbidden reaction refers to
the frontal attack.

The bimolecular electrophilic substitution (SE2)
reaction of pyridine [69] serves as another exam-
ple of third-order processes. Exclusively the meta-
substituted pyridines are known to result from these
reactions [38, 70, 71]. The usual (canonical) MOs of
benzene play the role of FOs in this case [69] along
with a single IVFO of electrophile (ϕ(−)E). As a re-
sult, direct intramolecular interactions emerge even
in an isolated pyridine, but these do not depend
on the position of the electrophile. The direct in-
termolecular interactions, in turn, are not influenced
by the intramolecular perturbation due to introduc-
tion of the nitrogen atom. Consequently, the second-
order populations acquired by the electrophile prove
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to be of coinciding values for various directions of the
attack.

The relevant third-order populations are primar-
ily determined by the partial increment q(3)

(+)2,(−)E,
where ϕ(+)2 is the HOMO of benzene of the ap-
propriate symmetry (viz. symmetric relatively to the
plane embracing the first and the fourth carbon atoms,
the former corresponding to the site of substitution).
The above-mentioned increment, in turn, contains
two components ascribed to mediating effects of the
HOMO ϕ(+)2 itself (the so-called self-mediating ef-
fect) and of the LUMO of benzene of the same symme-
try (ϕ(−)5). Moreover, the sign of the first component
does not depend on the direction of the attack. Hence,
it is the increment related to the LUMO ϕ(−)5 that
plays the decisive role in distinguishing the electron-
donating abilities of various positions of pyridine to-
wards an approaching electrophile. The signs of the di-
rect and indirect interactions contained within the defi-
nition of the above specified decisive third-order mem-
ber may be easily established using the results of con-
tribution [69]. In particular, the direct interorbital inter-
actions G(1)2E are conditioned by the structure of the
orbital ϕ(+)2 and acquire the following signs for ortho
(o), meta (m) and para (p) attacks, respectively:

G(o)
(1)2E < 0, G(m)

(1)2E > 0, G(p)
(1)2E > 0. (28)

The indirect interactions G(2)2E between orbitals ϕ(+)2
and ϕ(−)E by means of the LUMO ϕ(−)5 are deter-
mined by the structure of the latter. We then obtain

G(o)
(2)2E > 0, G(m)

(2)2E > 0, G(p)
(2)2E < 0. (29)

Comparison of (28) and (29) indicates that the con-
cerned interorbital interactions are of coinciding signs
just for the meta attack. It is not surprising in this con-
text that the decisive increment to the third-order pop-
ulation acquired by the meta-attacking electrophile is
a positive quantity. In the case of remaining (ortho or
para) positions of the reagent, the relevant interorbital
interactions acquire opposite signs and yield positive
third-order contributions E(3).

To make our comparison more complete, let us con-
sider also the intramolecular charge transfer inside
the pyridine ring due to the influence of the elec-
trophile. The second-order partial transferred popula-
tion q(2)

(+)2,(−)5 does not depend on the relative position
of the electrophile. The electrophile-mediated com-
ponent of the relevant third-order increment is deter-
mined by the product of the direct interaction G(1)25

and of the indirect interaction G(2)25, the former having
a negative sign for all directions of the attack. The signs
of the second-order element G(2)25 are as follows:

G(o)
(2)25 > 0, G(m)

(2)25 < 0, G(p)
(2)25 > 0. (30)

It is seen that both G(m)
(1)25 and G(m)

(2)25 are negative quan-
tities for the meta attack. Hence, it is the meta-directed
substitution that meets our definition of allowed third-
order processes. Meanwhile, the ortho and para attacks
of an electrophile upon pyridine are expected to be fol-
lowed by forbidden reactions.

3.2. The Fourth-Order Reactions

Let us turn now to the AdE2 processes of substi-
tuted ethenes H2Cβ =Cα HZ and start with the case of
an electron-donating substituent Z = D. In accordance
with the well-known Markovnikov rule [1 – 4, 68], the
Cβ atom is of considerably greater relative reactivity as
compared to the Cα atom in this case. Thus, let us turn
to comparison of these two alternatives with respect to
allowance of the respective reactions. To this end, let
us invoke the local model of the reaction used [22].
This model contains four principal orbitals, viz. the
electron-donating orbital of the substituent D (ϕ(+)d),
the electron-accepting orbital of electrophile (ϕ(−)E),
as well as two bond orbitals (BOs) of the ethene frag-
ment denoted by ϕ(+)e and ϕ(−)e.

As with the above discussed SN2 process, coincid-
ing values of intermolecular resonance parameters are
assumed for both directions of the attack. As a result,
the second-order partial transferred populations do not
contribute to differences in the stabilization energies
of the whole reacting system referring to the α- and
β -attacks. The third-order increments to the same dif-
ferences also vanish in the case of the AdE2 reaction
in contrast to the SN2 process. The reason for this con-
sists in the absence of direct interaction between or-
bitals ϕ(+)d and ϕ(−)E in the present model. Just this
fact determined the decisive role of the fourth-order
partial transferred populations q(4)

(+)i,(−) j in the forma-
tion of different reactivities of the Cα and Cβ atoms.
Thus, let us turn to the definition of these populations
shown in (13).

Let us start with the notation that increments of the
last term of the right-hand side of (13) do not con-
tribute to differences under our interest [22]. For di-
rectly interacting pairs of FOs namely for ϕ(+)d, ϕ(−)e
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and ϕ(+)e, ϕ(−)E, the principal contributions to fourth-
order partial populations originate from the first term
of the same definition. The signs of the direct interor-
bital interactions contained there are

G(1)de > 0, G(1)eE < 0 (31)

and do not depend on the direction of the attack. Mean-
while, the signs of the respective indirect interactions
are electrophile-position-dependent, viz.

G(α)
(3)de < 0, G(β )

(3)de > 0,

G(α)
(3)eE > 0, G(β )

(3)eE < 0,
(32)

where the superscripts (α) and (β ) refer to the α-
and β -attacks, respectively. The interactions G(3)de
and G(3)eE are mediated here by pairs of the or-
bitals ϕ(+)e, ϕ(−)a and ϕ(+)d, ϕ(−)e, respectively. Com-
parison of (31) and (32) indicates that the β -attack
is represented by first- and third-order interactions
of the same sign and thereby by positive incre-
ments q(4,β )

(+)d,(−)e and q(4,β )
(+)e,(−)E. Negative signs of the

increments q(4,α)
(+)d,(−)e and q(4,α)

(+)e,(−)E easily follow for
the α-attack.

The remaining two pairs of basis orbitals (inter-
acting only indirectly) also deserve to be considered,
viz. ϕ(+)d, ϕ(−)E and ϕ(+)e, ϕ(−)e. The relevant fourth-
order partial transferred populations are determined
by the second terms of (13) and thereby no doubts
arise about their positive signs. So far as their absolute
values are concerned, these prove to be considerably
greater for the β -attack as compared to the α-position
of the electrophile. The main reason for that consists
in coinciding signs of the two components of indirect
interactions G(2)dE and G(2)ee for the β -attack and op-
posite signs of the same components for the α-attack.
The components describe here the contributions of the
mediating IOFO and IVFO to the above specified inter-
actions. This result supplements the above conclusion
about the β -attack being characterized by the princi-
pal interorbital interactions of the same sign. There-
fore, just the β -attack meets the definition of the al-
lowed fourth-order process. Meanwhile, the α-attack
of an electrophile upon the molecule H2Cβ =Cα HD is
predicted to be accompanied by a forbidden reaction.

Let us turn now to substituted ethenes contain-
ing an electron-accepting substituent A (Z = A). The
Cα atoms are known to be more reactive as compared
to the Cβ atoms in this case [1 – 3]. The relevant model

contains an electron-accepting orbital ϕ(−)a instead of
the electron-donating basis function ϕ(+)d of the pre-
vious one. Two pairs of directly interacting orbitals
of opposite initial occupation reveal themselves here,
namely ϕ(+)e, ϕ(−)E and ϕ(+)e, ϕ(−)a. The direct inter-
actions inside these pairs take negative signs whatever
the direction of the attack is, viz.

G(1)ea < 0, G(1)eE < 0. (33)

The relevant third-order interactions, in turn, are of the
following signs:

G(α)
(3)ea < 0, G(β )

(3)ea > 0,

G(α)
(3)eE < 0, G(β )

(3)eE > 0.
(34)

It is seen that coinciding signs of first- and third-order
interactions follow for the α-attack. This position of
the electrophile was also characterized by a larger ab-
solute value of the second-order interaction G(2)ee ow-
ing to coinciding signs of the two components of this
matrix element referring to mediating effects of or-
bitals ϕ(−)a and ϕ(−)E. Hence, it is the α-attack of the
electrophile that results in an allowed reaction in the
case of the acceptor-containing ethene.

Let an essential notation to be made before finish-
ing this subsection. The above analysis of addition pro-
cesses of substituted ethenes was based on the results
of the study [22]. The latter, in turn, were shown to
be easily extendable to the case of an electrophilic
attack upon any substituted conjugated hydrocarbon,
including substituted benzenes. An analogous exten-
sion then refers also to the above drawn conclusion
about allowed and forbidden ways of reactions. In par-
ticular, the formation of ortho- and para-disubstituted
benzenes as a result of an electrophilic substitution
process of donor-containing mono-derivatives may be
concluded to result from an allowed fourth-order reac-
tion. Meanwhile, the relevant meta attack will corre-
spond to a forbidden process. Coincidence of the ini-
tial steps of both AdE2 and SN2 processes with the ad-
dition of the reagent to the π-electron system of the
reactant [1 – 3] is also taken into consideration here.

3.3. An Example of Fifth-Order Processes

The above anticipated example concerns the
stereoselective concerted bimolecular β -elimination
reactions of substituted alkanes Z-CαH2-Cβ H2-
Cγ H2− [24]. As opposed to SN2 processes, it is the
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H-Cβ bond that is assumed to be under attack of an
external base in this case. As a result, the E2 reaction
embraces more bonds of the reactant as compared to
the SN2 process. Consequently, a considerably more
extended model is used in the relevant study that
contains the electron-donating orbital of the external
base (ϕ(+)d), two orbitals of the H-Cβ bond (ϕ(+)1,
ϕ(−)2), two BOs of the Cβ -Cα bond (ϕ(+)3, ϕ(−)4),
and the electron-accepting orbital of the Z-Cα bond
(ϕ(−)a). Accordingly, distinction between trans- and
cis-elimination processes is based on different signs
of fifth-order partial transferred populations defined
by (14). In particular, the signs of the increments

q(5,1)
(+)1,(−)a = 4G(1)1aG(4)1a,

q(5,2)
(+)1,(−)a = 4G(2)1aG(3)1a,

q(5)
(+)d,(−)a = 4G(2)daG(3)da

(35)

are shown to play the decisive role in the forma-
tion of the well-known predominance of the trans β -
elimination over the relevant cis-process [1 – 3, 72]. To
compare these alternatives, the terms of (35) are evalu-
ated under assumptions of cis- and trans-arrangements
of the Z-Cα and Cβ -H bonds in the substituted alka-
nes. The resulting signs of interorbital interactions con-
tained within (35) are

G(trans)
(1)1a < 0, G(trans)

(2)1a < 0, G(trans)
(3)1a < 0,

G(trans)
(4)1a < 0, G(trans)

(2)da > 0, G(trans)
(3)da > 0

(36)

for the trans-arranged bonds, and

G(cis)
(1)1a > 0, G(cis)

(2)1a < 0, G(cis)
(3)1a > 0,

G(cis)
(4)1a < 0, G(cis)

(2)da < 0, G(cis)
(3)da > 0

(37)

for the cis-arranged ones. It is seen that pairs of in-
terorbital interactions of the same sign make up the
fifth-order increments of (35) for the trans-arranged
bonds and thereby positive signs of these increments
are ensured. Meanwhile, pairs of interactions of oppo-
site signs arise in (35) referring to cis-arranged bonds
and negative fifth-order increments follow.

Therefore, the trans-β -elimination may be consid-
ered as an allowed fifth-order process, whereas the re-
spective cis-elimination becomes a forbidden one.

On the whole, the results of this section demonstrate
the validity of our selection rule to heterolytic reac-
tions.

4. Studies of Pericyclic Reactions

As it was mentioned already in Section 1, pericyclic
reactions are usually interpreted in terms of delocal-
ized (canonical) MOs. This refers not only to the rel-
evant pioneering contributions [18 – 20], but also to
more sophisticated approaches suggested later [73 –
76]. Applicability of the semilocalized approach to the
same processes has been verified recently [25, 26]. In
this section, we are about to apply the common se-
lection rule of Section 2 to the thermal electrocyclic
closure of polyenes and to some cycloaddition pro-
cesses of aliphatic hydrocarbons. These reactions serve
as typical examples of mono- and bimolecular peri-
cyclic processes [1]. An additional remark deserves to
be made here: As opposed to heterolytic processes, no
essential charge redistribution is expected to take place
during the pericyclic reactions owing to the neutral (or
almost neutral) nature of participating compounds in
respect of their electron-donating (or -accepting) abili-
ties [1 – 3]. The partial transferred populations studied
below then describe a virtual population exchange be-
tween interacting fragments.

4.1. The Model of the Thermal Electrocyclic Closure.
The Simplest Case of Butadiene

Let us start with the thermal electrocyclic closure
of polyenes. Our initial system coincides with an open
polyene chain (C2NH2N+2) containing N C=C bonds.
As in the related studies [25, 26, 44] BOs of initially-
double (C=C) bonds will play the role of FOs, whilst
the interactions between BOs of the neighbouring pairs
of these bonds will be considered as a perturbation.
The chain will be assumed to be placed on the xy-plane
so that the carbon atoms are characterized by their 2pz
AOs {χ}. The numbers 1,2, . . . ,2N are ascribed to
both AOs and atoms of the chain, where 1 and 2N re-
fer to the terminal positions. The AOs χ1,χ2, . . . ,χ2N
are supposed to be characterized by uniform Coulomb
parameters α . Similarly, the initially-double (C=C)
bonds will be represented by uniform resonance pa-
rameters β . Let the equalities α = 0 and β = 1 to be
accepted for convenience, the latter implying a choice
of a negative energy unit. The resonance parameters
between pairs of AOs referring to initially-single (C-
C) bonds will be denoted by δ , where 0 < δ < 1 in our
energy units.

The closure process of our chain will be modelled
by emergence of an additional resonance parameter γ
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Scheme 1. Model of the electrocyclic closure of butadiene.

2
+

ϕ(+)1

+
1

δ + ϕ(+)2 + δ∥∥∥∥∥∥∥∥∥∥∥

− 3

ϕ(−)1

+

+ ϕ(−)2 − 4 +

ϕ(−)3

−

∥∥∥∥∥∥∥∥∥∥∥
γ

5
+

ϕ(+)3

+
6

Scheme 2. Model of the electrocyclic closure of hexatriene.
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Scheme 3. Model of the electrocyclic closure of octatriene.

between the terminal AOs χ1 and χ2N . As discussed
previuosly [25, 26], the lobes of the AOs of the same
sign (e. g. the negative lower lobes) overlap one with
another most significantly during a disrotatory reac-
tion. Consequently, a disrotatory process is accompa-
nied by formation of a positive overlap integral be-
tween AOs χ1 and χ2N and thereby of a positive pa-
rameter γ in our negative energy units. Again, a con-
rotatory way of reaction gives rise to the primary over-
lap of lobes of AOs χ1 and χ2N of opposite signs and
thereby to a negative value of the same parameter. We
may then conclude that

γdis > 0, γcon < 0. (38)

Let us assume in addition that parameters δ and γ are
of comparable absolute values so that these may be
treated on the unified basis in our perturbation theory.

Let the BBOs and the ABOs of the initially-double
(C=C) bonds be defined correspondingly as normal-
ized sums and differences of the relevant pairs of 2pz
AOs. The positive coefficients of ABOs refer to odd-
numbered AOs, whilst the negative ones are attached to
even-numbered basis functions. For example, the bond
orbitals of the first and of the last C=C bond take the
form

ϕ(+)1(ϕ(−)1) =
1√
2
(χ1 ± χ2),

ϕ(+)N(ϕ(−)N) =
1√
2
(χ2N−1 ± χ2N), (39)

where the upper and lower signs of the right-hand
sides correspond to BBOs and ABOs, respectively. For
specific polyenes, the structures of BOs are shown in
Schemes 1 – 3. The signs of BBOs (ϕ(+)i) and of ABOs
(ϕ(−) j) are indicated near the initially-double (C=C)
bonds, whilst resonance parameters (δ , γ , etc.) are at-
tached to initially-single (C-C) bonds. It is evident that
non-zero direct interactions G(1)i j correspond to pairs
of BBOs and ABOs of the neighbouring C=C bonds
including the pair of the terminal bonds. (Note that in-
trabond interactions G(1)ii take zero values owing to the
equality Rii = 0 for our BOs.) More precisely, a pair of
interrelated direct interactions, viz. G(1)i j and G(1) ji =
−G(1)i j [44], refers to any initially-single (C-C) bond
of our chain. The newly formed bond between the ter-
minal AOs χ1 and χ2N is no exception here.

For the “internal” C-C bonds, the respective direct
interactions G(1)i j of (23) are proportional to the reso-
nance parameter δ , e. g.

G(δ )
(1)12 = −G(δ )

(1)21 = −1
4

δ , (40)

where the superscript (δ ) is used here and below
to distinguish the δ -dependent interactions from the
γ-dependent ones. The latter correspond to newly
formed bonds between terminal AOs and are express-
ible as

G(γ)
(1)1N = −G(γ)

(1)N1 =
1
4

γ, (41)

where the subscript 1N represents the pair of
BOs ϕ(+)1 and ϕ(−)N . It is seen that the right-hand
sides of (40) and (41) do not depend on the total num-
ber of the C=C bonds (N).

Let us turn now to the consideration of partial trans-
ferred populations q(k)

(+)i,(−) j. The above enumerated di-
rect interorbital interactions give birth to the respective
second-order increments q(2)

(+)i,(−) j and q(2)
(+) j,(−)i that

coincide one with another, e. g.

q(2,δ )
(+)1,(−)2 = q(2,δ )

(+)2,(−)1 =
1
8

δ 2 (42)

and

q(2,γ)
(+)1,(−)N = q(2,γ)

(+)N,(−)1 =
1
8

γ2. (43)
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Consequently, the extents of the virtual population ex-
change do not depend on the signs of the parameter γ
and thereby on the chosen way of closure of the chain
within the second-order approximation.

To reveal the above anticipated dependence, indi-
rect interactions between BOs and the respective par-
tial transferred populations of higher orders k should
be considered. To this end, the total number of C=C
bonds, N, should be specified. Indirect interactions in
hexatriene (N = 3) and octatriene (N = 4) are consid-
ered in the next subsections. Before finishing this sub-
section, let us dwell on the electrocyclic closure of bu-
tadiene (N = 2). Indeed, this simplest polyene makes
an exception, where direct interactions between BOs
of the C=C bonds determine the predominant way of
reaction.

It is evident that two principal direct interactions are
peculiar to this simple system, viz. the δ -dependent
interaction G(δ )

(1)12 corresponding to the C2-C3 bond

and the γ-dependent interaction G(γ)
(1)12 referring to

the newly formed bond C1-C4 (Scheme 1). As a re-
sult, the total direct interaction G(1)12 between the
BBO ϕ(+)1 and the ABO ϕ(−)2 (as well as G(1)21 be-
tween BOs ϕ(+)2 and ϕ(−)1) consists of two compo-
nents defined by (40) and (41), i. e.

G(1)12 =−G(1)21 = G(δ )
(1)12 +G(γ)

(1)12 =
1
4
(γ −δ ). (44)

This expression serves as an example of (26) for
k = 1. Consequently, mixed increments proportional to
the products G(δ )

(1)12G(γ)
(1)12 and/or G(δ )

(1)21G(γ)
(1)21 emerge

in the final expressions for the total second-order
transferred populations q(2)

(+)1,(−)2 and q(2)
(+)2,(−)1 along

with δ 2- and γ2-dependent terms of (42) and (43). We
then obtain

q(2)
(+)1,(−)2 = q(2)

(+)2,(−)1

= 2(G(δ )
(1)12)

2 + 2(G(γ)
(1)12)

2 + 4G(δ )
(1)12G(γ)

(1)12

=
1
8
[δ 2 + γ2 −2δγ]. (45)

It is seen that the signs of the two principal direct inter-
actions, viz. of G(δ )

(1)12 and G(γ)
(1)12, determine the relative

value of the population q(2)
(+)1,(−)2 and thereby of the

relevant second-order energy. Inasmuch as G(δ )
(1)12 is a

negative quantity as (40) indicates (note that δ > 0),

a negative sign of the interaction G(γ)
(1)12 also is re-

quired to ensure a large absolute value of q(2)
(+)1,(−)2.

This condition is met for a negative resonance param-
eter γ as (41) shows and thereby for a conrotatory way
of closure.

Hence, it is the conrotatory reaction that is predicted
to be allowed for butadiene on the basis of our selection
rule. The disrotatory reaction is accordingly expected
to be forbidden. The above analysis also shows that
the overall closure process of butadiene is governed by
second-order terms of power series. Thus, it may be
referred to as a second-order process.

4.2. The Closure Process of Hexatriene

Let us turn now to the hexatriene molecule (N = 3).
Let us dwell first on the pair of terminal bonds C1=C2
and C5=C6 (Scheme 2). Orbitals of these bonds,
e. g. ϕ(+)1 and ϕ(−)3, interact both directly by means

of the element G(γ)
(1)13 following from (41) for N = 3

and indirectly through orbitals of the remaining
C3=C4 bond. The interaction of the former type gives
birth to the second-order partial transferred popula-
tion q(2)

(+)1,(−)3 defined by (43). The indirect interac-

tions G(δ )
(2)13 and G(δ )

(2)31 follow from (24) and take the
form

G(δ )
(2)13 = −G(δ )

(2)31 =
1
8

δ 2 > 0. (46)

It is seen that G(δ )
(2)13 of (46) always is a positive

quantity. Hence, a positive sign of the direct in-
teraction G(1)13 also is required to ensure positive
signs of the third-order partial transferred popula-
tions q(3)

(+)1,(−)3 and q(3)
(+)3,(−)1 following from (12).

This condition proves to be met for positive γ val-
ues as (41) indicates. An analogous result may be also
easily obtained for interactions of the remaining pairs
of bonds of hexatriene. For example, the BOs ϕ(+)1
and ϕ(−)2 of bonds C1=C2 and C3=C4 interact di-
rectly by means of the negative element G(1)12 follow-
ing from (40). Meanwhile, the newly formed resonance
parameter γ between AOs χ1 and χ6 of hexatriene of-
fers a new pathway for the relevant indirect interac-
tions. The respective second-order elements are

G(2)12 = −G(2)21 = −1
8

δγ. (47)
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Comparison of (40) and (47) indicates that coinciding
signs of both elements, i. e. of G(1)12 and G(2)12, and
thereby a positive sign of the third-order partial trans-
ferred population q(3)

(+)1,(−)2 are ensured for positive pa-
rameters γ . It is also evident that the case of bonds
C3=C4 and C5=C6 completely resembles the above
considered one. It should be also mentioned that the
third-order terms of intrabond nature (e. g. q(3)

(+)1,(−)1)
vanish owing to the equality G(1)ii = 0. After invok-
ing (38) we may then conclude that the disrotatory way
of closure is predicted to be allowed for hexatriene on
the basis of our selection rule, whereas the conrotatory
way is expected to be forbidden. Moreover, the closure
process is governed by third-order terms in this case.

4.3. The Electrocyclic Closure of Octatriene

Let us consider finally the octatriene molecule (N =
4) (Scheme 3). In case of the terminal bonds C1=C2
and C7=C8, (41) and (43) may be directly applied
to obtain the second-order partial transferred popula-
tions q(2)

(+)1,(−)4 and q(2)
(+)4,(−)1. Furthermore, the indi-

rect interactions G(2)14 and G(2)41 vanish for octatriene
because of absence of mediators between the orbitals
concerned. This implies zero values for the respective
third-order partial transferred populations q(3)

(+)1,(−)4

and q(3)
(+)4,(−)1 and thereby the relevance of the fourth-

order corrections q(4)
(+)1,(−)4 and q(4)

(+)4,(−)1. The latter

are defined by (13), where the (G(2)14)2-containing in-
crement vanishes for reasons mentioned above. The re-
sulting expression for q(4)

(+)1,(−)4 is

q(4)
(+)1,(−)4 = 4G(1)14[G(3)14+

1
2
(G(1)G

+
(1)G(1))14], (48)

where G(1)14 is shown in (41). The third-order interac-
tions contained within the square brackets of (48) may
be derived as described previously [25]. These are

G(δ )
(3)14 = − 3

32
δ 3 < 0,

(G(1)G
+
(1)G(1))14 = − 1

64
δ 3 < 0

(49)

and make up a negative quantity. Substituting (41)
and (49) into (48) yields the following result:

q(4)
(+)1,(−)4 = − 13

128
δ 3γ. (50)

It is seen that coinciding signs of both G(1)14 and of
the total third-order interaction contained within the
square brackets of (48) and thereby a positive sign
of q(4)

(+)1,(−)4 are ensured if the newly formed resonance
parameter γ is a negative quantity.

Let us turn now to the remaining pairs of bonds of
octatriene. The cases of neighbouring bonds closely re-
semble that of the terminal bonds as it was demon-
strated for the hexatriene molecule. By contrast, the
next-neighbouring pairs (such as C1=C2 and C5=C6)
are of some additional interest. The point is that
second-order indirect interaction is peculiar to these
pairs (e. g. G(2)13 for the above-mentioned bonds). This
interaction is mediated by orbitals of both intermedi-
ate bonds, i. e. of C3=C4 and C7=C8. The total ele-
ment G(2)13 defined by (24) then consists of two con-
tributions, viz.

G(2)13 =
1
8
(δ 2 − δγ). (51)

The increments 1
8 δ 2 and − 1

8 δγ correspond here to the
mediating effects of orbitals of the C3=C4 and C7=C8
bonds, respectively [see (46) for comparison]. The el-
ement G(2)13 of (51), in turn, gives birth to a fourth-
order partial transferred population defined as

q(4)
(+)1,(−)3 = 2(G(2)13)

2. (52)

It is seen that the above specified partial transferred
population takes a larger absolute value if the two com-
ponents of the second-order interaction are of the same
sign. The latter condition, in turn, is ensured for a neg-
ative value of the parameter γ .

On the whole, the electrocyclic closure of octatriene
is predicted to be allowed, if the newly emerged param-
eter γ is negative. After invoking (38) we may conclude
that the allowed process coincides with the conrotatory
one.

4.4. Summarizing Discussion of the Electrocyclic
Closure of Polyenes. Consideration of the
Diels-Alder Reaction

Let us start with the fact that a conrotatory closure
of the chain is predicted by our selection rule for even
N values, whereas a disrotatory process follows for
odd N values. Inasmuch as 4n and (4n + 2) electrons,
respectively, correspond to these cases, the above es-
tablished result coincides with that of the Woodward-
Hoffmann rule [18 – 20]. Coincidence of this conclu-
sion to those of more sophisticated approaches to the
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2
+

ϕ(+)1

+
1

δ∥∥∥∥∥∥∥∥∥∥∥

−

ϕ(−)1

+ γ1 − ϕ(−)3 +

+

ϕ(−)2

γ2 −

∥∥∥∥∥∥∥∥∥∥∥
+ ϕ(+)3 +

3
+

ϕ(+)2

+
4 Scheme 4. Model of the Diels-Alder reaction

between butadiene and ethene.

same reaction [26, 73 – 76], as well as to experimental
results [1 – 4] also may be mentioned. Thus, adequacy
of our selection rule for the thermal electrocyclic clo-
sure of polyenes is beyond any doubt.

The above obtained results provide us also with an
interpretation of the observed alternation of the al-
lowed way of closure between the conrotatory and
the disrotatory one if the number N grows. The main
point here is that an N-independent direct interaction
is multiplied by an N-dependent indirect interaction
when making up the decisive partial transferred pop-
ulation, and the signs of the latter interactions alternate
with growing N values in addition. In particular, the N-
independent direct interaction G(γ)

(1)1N of (41) is multi-

plied by the negative first-order element G(δ )
(1)12 of (40),

by the positive second-order interaction G(δ )
(2)13 of (46),

and by the negative total third-order term within the
square brackets of (48) for the cases N = 2, 3 and 4,
respectively. The sign of the direct interaction is then
chosen so as to ‘neutralize’ the alternation of signs of
indirect interactions and thereby to ensure the positive
sign of the product. As a result, the above specified
alternation of the allowed way of closure follows. It
is seen, therefore, that the choice of the allowed way
of the closure process is actually determined by the
signs of indirect (through-bond) interactions of BOs
of terminal bonds. An analogous dependence was ob-
tained previously [25] by consideration of the very
early stage of the closure process characterized by the
relation γ � δ .

The above performed study of the closure processes
allows us also to conclude that the size of the cycle un-
der formation plays the decisive role in the predictions
of allowed and forbidden processes. That is why anal-
ysis of cycloaddition reactions of aliphatic conjugated
hydrocarbons closely resembles that of respective clo-
sure processes. To demonstrate this, let us consider the
most popular Diels-Alder reaction between butadiene
and ethene [1] (Scheme 4). Let the BOs of butadiene
be denoted as in the above study. The intramolecu-

lar resonance parameter between AOs χ2 and χ3 will
retain the designation δ , where 0 < δ < 1. The BBO
and the ABO of the only C=C bond of the approaching
ethene will be designated by ϕ(+)3 and ϕ(−)3, respec-
tively. The signs of ABOs ϕ(−)1, ϕ(−)2, and ϕ(−)3 will
be chosen as shown in Scheme 4. The intermolecular
resonance parameters will be denoted by γ1 and γ2.

Comparison of the cycles of Schemes 2 and 4 indi-
cates them to differ one from another only in the desig-
nations of the resonance parameters between 2pz AOs.
The principal direct and indirect interorbital interac-
tions representing the Diels-Alder reaction take then
the form

G(1)13 =
1
4

γ1, G(2)13 =
1
8

δγ2,

G(1)12 = −1
4

δ , G(2)12 = −1
8

γ1γ2.

(53)

These interactions yield positive third-order partial
transferred populations if the signs of the newly
formed resonance parameters γ1 and γ2 are uniform,
i. e. both of them are either positive quantities or neg-
ative ones. Consequently, the Diels-Alder reaction is
predicted to be allowed in either the supra-supra or
antara-antara fashion. This result coincides with the
relevant predictions of other approaches, including the
generalized Woodward-Hoffmann rule [77], as well as
with experimental facts [1]. Thus, the applicability of
our selection rule to bimolecular cycloaddition pro-
cesses is also supported.

5. Concluding Remarks

1. The principal contribution of the overviewed
studies to the theory of chemical reactivity consists
in the development of a unified quantum-chemical de-
scription of both heterolytic and pericyclic processes
resolving itself into a common selection rule. The fact
that direct and indirect interorbital interactions play the
role of the principal terms in this rule indicates a rather
universal nature of this concept.
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2. The direct and indirect interorbital interactions
underlying the suggested selection rule embrace frag-
ments of the whole reacting system instead of those
of an isolated reactant. This implies that both intra-
and intermolecular interactions play equally important
roles in the choice of the predominant ways of organic
reactions.

3. Non-zero values of the resonance parameters are
sufficient for direct and indirect interorbital interac-
tions to arise. Thus, the validity of the suggested com-
mon selection rule for organic reactions indicates the
choice of the predominant way of a chemical process
to be made at its very early stage. It is also note-
worthy that weak intermolecular interactions vs. the
intramolecular ones are not required in the approach
applied in contrast to the standard perturbative ap-
proaches [4 – 17]. Hence, an invariance of the chosen
way within an extended range of the reaction coordi-
nate may be expected.

4. The signs of direct and indirect interorbital in-
teractions underlying our selection rule are determined
by those of interorbital resonance parameters and/or of
the related overlap integrals. Thus, the choice of the
predominant way of any organic reaction may be con-
cluded to be conditioned by the overlap topology of a
certain set of principal orbitals (as it was shown to be
the case with pericyclic precesses [26], in particular).

5. Delocalized (canonical) MOs neither of the iso-
lated reactant nor of the whole reacting system are in-
voked in the approach applied. Moreover, the present
approach may be considered as a part of the non-
canonical theory of MOs [27, 32, 43, 44]. Hence, the
success in formulating the common selection rule for
organic reactions indicates the efficiency and fruitful-
ness of the non-canonical MO method, in general, and
of the localized way of representing electronic struc-
tures and their alterations during chemical reactions,
in particular.
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