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Abstract. We consider the logistic map over quaternions H ∼ R4 and different 2D projections of
Mandelbrot set in 4D quaternionic space. The approximations (for finite number of iterations) of
such 2D projections are fractal circles. We show that a point process defined by radiuses R j of
fractal circles exhibits 1/ f noise.
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INTRODUCTION

1/ f noise is observed in large diversity of real life and artificial systems, which behavior
is usually defined by a complex interaction of many components. Complexity of the sys-
tem usually assumes that long-term correlations are observed. Examples are processes
and experimental data in condensed matter, traffic flow, quasar emissions, music, bio-
logical and medical systems, economic and financial data, human cognition and even
distribution of prime numbers (see [1] and references herein).

Fluctuations of signals defined by time series obtained from such systems are found
to be characterized by a power spectral density S( f ) diverging at low frequencies f like
1/ f α , here α is some real parameter. 1/ f (α ≈ 1) noise is an intermediate between the
white noise (α = 0) with no correlation in time and the random walk (Brownian motion)
noise (α = 2) with no correlation between increments. Note that Brownian motion can
be obtained integrating white noise and that taking the integral of the signal increases
the exponent α by 2 while the inverse operation of differentiation decreases it by 2.

Parameter α is closely related to the Hurst exponent H. It is known that fluctuations
which are fractionally homogeneous, i.e. unifractal or uniscaling, can be quantified by a
single coefficient H and a single exponent α [2].

Possible generalization leads to multiscaling or multifractals, with the exponent H
dependant on time. Therefore multifractal processes are characterized by a set of scaling
relations or power laws with correspondingly many exponents α [3].

POINT PROCESSES AND 1/ f NOISE

In many cases, the intensity of some current can be represented by a sequence of random
(however, as a rule, mutually correlated) or pseudo-periodic pulses. It is known (see [4]
and references herein) that only the transit times t j of these pulses (and not the shapes
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of the pulses) are responsible for appearance of 1/ f noise. The current I(t) (see Fig. 1,
left) is then expressed as I(t) = ∑ j δ (t− t j), here δ (t) is the Dirac delta function.

Hence, instead of current I(t), we further deal with point process, defined by the
sequence t1, t2, . . . , tN , . . .. The power spectral density of the current I(t) is defined as

S( f ) = lim
N→∞

2
tN − t1

∣∣∣∣∣ N

∑
j=1

e−i2π f t j

∣∣∣∣∣
2

(1)

where [t1, tN ] is assumed to be the interval of observation.
In this approach the power spectral density of the signal depends on the statistics

and correlations of point process (the transit times t j) only. In [4] we proposed simple
analytically solvable model for producing point process resulting in S( f )∼ 1/ f (α = 1)
noise. Discussion on the origin and universality of 1/ f noise was continued in [5, 6].
Some further work, related to the applications of the theory of point processes and 1/ f
noise to econophysics, was done in [7, 8].

1/ f NOISE IN QUATERNIONIC MANDELBROT SET

Complex numbers C ∼ R2, along to their real predecessors R, are widely used in
nowadays mathematical modeling and scientific computing. Beside others, they have
important applications in theories of complex systems, fractals and signal processing:
famous Mandelbrot and Julia fractal sets are defined in C, spectrum (Fourier transform)
is defined as integral of complex function etc.

There are some clues that we should not stop with the computations in R and C,
and that further generalization to quaternions H∼R4 (introduced by Hamilton) or even
octonions G∼ R8 (introduced by Graves) are particulary interesting and valuable, even
though the role of these hypercomplex numbers is not widely understood yet.

In order to define hypercomplex algebras, one has to consider not only two algebraic
operations + and ×, but also one geometric map: x 7→ x̄, where x̄ denotes the conjugate
vector of x.

The three operations are defined recursively as we define the algebras, in the following
manner. Let Ak be the real hypercomplex algebra of dimension 2k, k≥ 1. It is constructed
recursively as Ak = Ak−1×Ak−1 by means of the three following operations:

addition: (a,b)+(c,d) = (a+ c,b+d),

conjugacy: (a,b) = (ā,−b),
multiplication: (a,b)× (c,d) = (ac− d̄b,da+bc̄),

where ac denotes a×c in Ak−1. For k = 0, A0 is taken to be the field R with the arithmetic
operations + and ×, the conjugacy map being the identity on R: a 7→ ā = a ∈ R. This
construction is known to algebraists as the Cayley-Dickson doubling process.

About computations with hypercomplex numbers, and why only real numbers, com-
plex numbers, quaternions and octions are suitable for computations see [9, 10] and
references herein.
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Explicitly multiplication in H can be expressed as (a,b,c,d) × (a′,b′,c′,d′) =
(a′′,b′′,c′′,d′′), with

a′′ = aa′−bb′− cc′−dd′

b′′ = ab′+ba′+ cd′−dc′

c′′ = ac′+ ca′+db′−bd′

d′′ = ad′+da′+bc′− cb′

We consider the logistic map over quaternions H∼ R4

zk+1 = rzk(1− zk), r,zk ∈H, k = 0,1, . . . . (2)

with given initial value z0, for example z0 = (0.5,0,0,0). The logistic map (2) has been
extensively studied over R (real numbers) and C (complex numbers). Despite its great
simplicity this map exhibits an extremely complex behaviour. The study of (2) on R
gives birth to the Feigenbaum tree while the analysis of (1) on C leads to the famous
Mandelbrot and Julia fractal sets.

We further deal with 2D projections of Mandelbrot set in 4D quaternionic space. Any
two components of r are set to zero, while the remaining two vary. For example,

M12 =
{

(r1,r2) : r = (r1,r2,0,0), lim
k→∞

|zk|< ∞

}
,

M24 =
{

(r2,r4) : r = (0,r2,0,r4), lim
k→∞

|zk|< ∞

}
.

Note that M12 is just the famous Mandelbrot set in C. We also get that M12 = M13 =
M14 and M23 = M24 = M34.

FIGURE 1. (Left) Current I(t) vs time t. Such dependences appear when registering the consecutives
heart beats, cars on a highway passing through the reference point, transactions in financial markets etc.;
(Right) Approximation (after 50 iterations) of Mandelbrot set M23 (one gets exactly the same for M24 or
M34).

The approximations (for finite number of iterations) of Mandelbrot set M23 = M24 =
M34 (near its boundary) are fractal circles (see Fig. 1, right), dependant only on radius

R =
√

r2
2 + r2

3.
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Define the point process R j as the values of radius of each circle – mathematically
they are the values of R, small change of which result in significant change of num-
ber of iterations needed for |zk| to reach “infinity” (1010 for example). The values R j
correspond to peaks in Fig. 2, left.

FIGURE 2. (Left) The number of iterations needed to reach |zk| > 1010 vs radius R when computing
M23; (Right) log10 S( f ) vs log10 f with N = 796474. The plot is compared to the function 1/ f .

According to (1), the power spectral density of such point process is defined as

S( f )≈ 2
RN −R1

∣∣∣∣∣ N

∑
j=1

e−i2π f R j

∣∣∣∣∣
2

,

here N is the volume of point process data (N →∞, as R j recording resolution increases).
We obtain (see Fig. 2, right) that S( f ) ∼ 1/ f , i. e. radiuses R j of fractal circles in

Mandelbrot set M23 exhibit pure 1/ f noise (α = 0) or unifractal noise.
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