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Modeling long-memory processes by stochastic difference equations and superstatistical approach
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It is shown that the Poissonian-like process with slowly diffusing-like time-dependent average interevent time
may be represented as the superstatistical one and exhibits 1/f noise. The distribution of the Poissonian-like
interevent time may be expressed as g-exponential distribution of the Nonextensive Statistical Mechanics.
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1. INTRODUCTION

The widespread occurrence of processes exhibiting power-
law distributions, 1/f noise, as well as scaling behavior in
general (see [1-4] and references herein), suggests that a
generic, at least mathematical, explanation of such phenom-
ena might exist.

The non-Gaussianity is often taken as a signature of fluc-
tuator’s interaction [S]. Nevertheless, statistically indepen-
dent and noninteracting fluctuators may exhibit non-Gaussian
noise, as well [6], especially when the fluctuations are strong
[7, 8].

We have proposed stochastic models of 1/ f1 B noise, with
0.5 < B < 2, based on the simple point process models [7]
and on the nonlinear stochastic differential equations [4, 9].

On the other hand, the non-Gaussian, power-law and long-
range processes may be modeled as superstatistical schemes
(see, e.g., [10] and references herein). Superstatistical pro-
cesses from the superposition of Brownian processes with
Lorentzian spectra and a proper distribution of relaxation
times [7], from the superposition of stochastic sequences of
different size pulses [11], generated by the stochastic differ-
ential equation with fluctuating relaxation rate [12] and by the
driven Poisson processes [13] are long-range models with the
power-law distributions. They may be useful for analysis of
traffic [11], financial [13, 14] and other systems.

Here we show that the Poissonian-like point process with
slowly diffusing time-dependent average interevent time, i.e.,
a special case of the non-homogeneous Poisson process, may
be represented as the superstatistical one. The distribution of
the Poissonian-like interevent time may be expressed as g-
exponential distribution of the Nonextensive Statistical Me-
chanics [15-17].

2. POINT PROCESS MODEL

Point process model of 1/ f noise was introduced ten years
ago [18, 19]. Later on, it was generalized for 1/ f[3 noise with
0.5 < B < 2[7]. The signal, flow, current etc. in this approach
are represented as a sequence of correlated pulses or series of
events
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Here 3(¢) is the Dirac -function and a is an average contri-
bution to the signal x(¢) of one pulse at the time moment #.
The model [7] is based on the generic multiplicative pro-

cess for the interevent time Ty = 3| — t,
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generating the power-law distributed
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sequence of the interevent times Ty in k-space and 1/ f B power
spectral density of the signal (1),
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In this approach the (average) interevent time T; fluctuates
due to the random perturbations by a sequence of uncorre-
lated normally distributed random variables {g;} with zero
expectation and unit variance; © is the standard deviation of
the white noise and 7 is a coefficient of the nonlinear damp-
ing.

Interpreting k as a continuous variable we can transform
the difference equation Eq. (2) to the It0 stochastic differential
equation in k-space,

dye =y dk 4 othdW,. 5)

Here W, is the Wiener process in k-space.

Transition from the occurrence number £ to the actual time
t in equation (5) according to the relation dr = t;dk yields the
differential equation in the actual time 7. For the derivation of
such equation we rewrite Eq. (5) in the difference form,

AT = Yo Ak + 0T/ Akey. (6)

Introduction into Eq. (6) of the relation Ak = Ar/7 yields Ito
stochastic differential equation for the variable t(¢) as a func-
tion of the actual time ¢,

dt =yt 2dr + ot 2aw;, (7

where W, is a standard Wiener process.
Equation (7) generates the stochastic variable T, power-law
distributed,
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in the actual time ¢. Here (Ty) is the average interevent time.
The signal averaged over the time interval T; according to
Eq. (1) is I = /7. Therefore, the distribution density of the



454

intensity of the point process (1) averaged over the time inter-
val T is [7]
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Motivations for the introduction of the model (1)—(9) are
presented in papers [4, 7].

On the other hand, stochastic point processes arise in dif-
ferent fields, such as physics, economics, cosmology, ecol-
ogy, neurology, seismology, traffic flow, and Internet (see,
e.g., [20-28] and references herein).

The proposed point process model [7, 18, 19] can been
modified [4, 9] and useful for the modeling and analysis
of self-organized systems, atmospheric variability, 1/ f noise
observed financial markets [13], cognitive experiments, time
intervals production in tapping and oscillatory motion of the
hand [29] and other systems.

Here we generalize the point process model of 1/f noise
and relate it to g-exponential distribution.

3. RELATION TO SUPERSTATISTICS AND
NONEXTENSIVE STATISTICAL MECHANICS

Due to divergence of the power-law distribution and the
requirement of the stationarity of the process, the stochastic
difference equation (2) should be analyzed together with the
appropriate restrictions of the diffusion of the interevent time
T¢ in some finite interval Tpin < T < Tmax- BY analogy with
Ref. [9] we improve Eq. (2) as
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The associated Fokker-Planck equation gives the steady-state
distribution

T Tmi
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The constant C is defined from the normalization
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Here Ky (z) is the modified Bessel function of the second kind.

As examples, in figure 1 we show distribution density,
P(7), of the interevent time, T, and spectrum, S(f), of the
point process defined by Eq. (10) coinciding with analytical
results.

Further we assume that T; is a slowly diffusing time-
dependent average interevent time of the Poissonian-like pro-
cess with the time-dependent rate. Within this assumption the
actual interevent time T; is given by the conditional probabil-

1ty
1 —Ti/T%
o(tjlt) = —e V7, 13)
; T

similar to the non-homogeneous Poisson process.
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FIG. 1: Distribution density, P(t), of the interevent time, T, and the
power spectral density, S(f), of the point process defined by Eq. (10)
with the parameters Ty, = 1077, Tpax = 1, u=0.5, 6 = 10*2;
whereas o0 = —0.4, left column, and o = 0.4, right column, in accor-
dance with the theoretical results by Eqs. (11) and (4), respectively,
dashed lines.

This additional stochasticity of the actual interevent time T;
by randomization (13) of the concrete occurrence times does
not influence the low frequency power spectra of the signal.

The generalized model (10)-(13) represents, however, a
more realistic situation, because the concrete event occurs at
random time (like in the Poisson case) controlled, neverthe-
less, by the Poissonian distribution with the slowly modulated
according to equation (10) average interevent time.
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FIG. 2: Distribution density, P(t), of the interevent time, T, and
the spectrum, S(f), of the Poissonian-like point process defined by
Egs. (10) and (13) with the parameters as in figure 1 in accordance
with the theoretical results by Egs. (18), (19) and (4), respectively,
dashed lines. The analytical dotted curve according to the exact
Eq. (15) coincides with the numerical calculations.

In such a case, the distribution of the actual interevent time
T; is expressed analogically to the superstatistical schemes
[10, 13],

Pi(e)) = [ o(xi[wP (w0 (14)
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Introduction of Eqgs. (11) and (13) into Eq. (14) yields
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It has been shown [7, 18, 19] that the small interevent times
and clustering of the events [4] make the greatest contribution
to1/f B noise and the exhibition of the long-range scaled fea-
tures. Expansion of Eq. (15) for Ty +T; < Tmax, yields

ool
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From Eq. (16) for oo > 0 we have

= const, a>0. 18)

Pj(t)) ~ T
Therefore, the power-law distribution (3) for o > 0 as a re-
sult of introduction along with the superstatistical scheme
of the second stochastic (non-homogeneous Poisson) pro-
cess, according to Egs. (17) and (18), reduces to the flat,
Pj(t;) ~ const, distribution.
For a0 < 0, however, Eq. (16) yields the g-exponential dis-
tribution,

I(—a) 1 o\ & —lof 2
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—-1<a<0, (19)
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with the index g = 1+ 1/]|al.

In figure 2 we demonstrate that the distribution den-
sity, P(t), of the interevent time, T, of the superstatistical
Poissonian-like point process defined by Eqgs. (10) and (13)
looks quite different from the distribution density of the au-
toregressive point process (10). The power spectral den-
sity, S(f), of such non-homogeneous Poissonian-like process,
however, is almost the same as of the simple autoregressive
point process (10), i.e., the superimposition of the Poissonian
distribution does not influence the low-frequency spectrum.

Note, that the special nonlinear stochastic differential equa-
tions [14] may generate g-Gaussian distributed signals with
1/f B power spectrum, exhibiting bursts, similar to the crack-
ling processes [30] and observable in long-term memory time
series [31, 32].

4. CONCLUSION

The special nonlinear stochastic difference and differential
equations generating power-law distributed signals and 1/f
noise, due to the appropriate restriction of the diffusion-like
motion of the stochastic variable, may result in g-exponential
or g-Gaussian distributions of the variable, preserving exhibi-
tion of 1/f noise.
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