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Rare-gas-induced broadening and shift of two-photon transitions
to intermediate (n = 9−14) Rydberg states of atomic thallium?
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Abstract. Results of broadening and shift measurements of Doppler-free two-photon lines for transitions
from the ground state to the nPJ Rydberg states with intermediate principle quantum numbers of atomic
thallium perturbed by rare gases are reported. The rates show a distinct behaviour in this range of principle
quantum numbers and significant dependence on the total angular momentum of the upper nP state. The
experimental results are compared with calculations using a Van der Waals potential and a superposition of
polarization and Fermi potentials. Additionally, broadening and shift rates of the transition Tl 6P3/2–9P3/2

have been measured for quadrupolar as well as for mainly scalar excitation. The rates for both kinds of
excitation coincide within the limits of error reflecting the small perturbation of the 6P3/2 state compared
to that of the upper 9P3/2 state.

PACS. 32.70.-n Intensities and shapes of atomic spectral lines – 31.50.+w Excited states – 34.20.-b
Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions

1 Introduction

The studies of broadening and shift of spectral lines associ-
ated with transitions between the ground state and highly
excited states of atoms in gases have been performed con-
tinually for relatively long time. Reviews of works in this
field can be found in the papers [1–3]. Measurements of the
broadening and shift rates provide information about the
interaction potentials between the radiating (or absorb-
ing) and perturbing atoms [4–6]. Broadening and shift of
the Rydberg levels by neutral perturbing atomic particles
have a number of distinctive features, associated with the
fact that interaction between the Rydberg atom and the
particle consists of two quasi-independent interactions: in-
teraction of the perturbing particle with the core of the
Rydberg atom and with the Rydberg electron. The the-
ory of pressure shift of the Rydberg levels originates with
Fermi [7], has been continued by Firsov [8] and extended
by Alekseev and Sobelman [9] to include broadening. Later
the theory of collisional broadening and shift of transitions
to Rydberg states has been developed by Omont [10] for
high Rydberg states. It has been improved and extended
in paper [11] to states with intermediate and low principle
quantum numbers and more recently generalized [12,13]
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taking into account the finite size of the interaction poten-
tial between the valence electron and the perturber and
the anisotropy of the Rydberg-perturber interaction po-
tential. These theories relate the spectral line shapes with
the parameters of the interaction potentials and show that
in the case of transitions between the ground state and
high Rydberg states the spectral line shapes are entirely
determined by the perturbation of the Rydberg states.
Broadening and shift of the high Rydberg states are in-
dependent on the quantum numbers and are determined
only by the type of perturbing atom. Measurements of
such transitions are in reasonable agreement with the the-
oretical results [1–3].

However, measurements of the recent years of the col-
lisional broadening of transitions to states with intermedi-
ate principle quantum numbers show a significant depen-
dence on the orbital [14,15] and total [16] angular momen-
tum of the upper state. This indicates the influence of the
anisotropy of the Rydberg-perturber potential on the col-
lisional process of Rydberg atoms with neutral perturbers
and on the broadening and shift of the Rydberg states
even after the angular average over the atomic collisions.
Moreover, for transitions from the ground to low states
collisional perturbation of the ground state may have es-
sential influence. In such a case the dependence of line
broadening and shift on the rank of the transition oper-
ator, mentioned for the first time in a theoretical work
of Cooper [17] and analyzed in detail using the density
matrix formalism by Omont [18,19], may appear.
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It was the aim of this work to investigate experimen-
tally the dependencies of broadening and shift of spectral
lines corresponding to transitions in the transient range
to the Rydberg states with the above mentioned asymp-
totic behaviour on the quantum numbers of the involved
states, on the anisotropy of the interaction potential, and
on the type of excitation, i.e. on the rank of the transition
operator.

Here a completed study of the impact broadening and
shift of thallium transitions involving intermediate 2PJ
fine structure states applying Doppler-free two-photon
spectroscopy is reported. In addition, the transitions
6P1/2–nP1/2,3/2 (n = 9−14) and 6P3/2–9P3/2 perturbed
by rare gases of low density were investigated with high
precision.

For Tl one- and two-photon transitions into low ly-
ing states with small principle quantum numbers n ≤ 9
broadening and shift rates caused by various rare gases
have already been published [16,20–24]. A few data exist
for transitions into states with n = 10, too [16,25]. With
the experiments of this work the data are improved and
extended to the especially interesting states with interme-
diate principle quantum numbers. Some of these results
are reported in a short form in paper [26].

In this study the experimental results are related with
calculations and discussed in detail. By comparing the
experimental results with calculations for various inter-
atomic potentials the reliability of these theoretical po-
tentials can be checked. The precise measurement under
identical experimental conditions and over a wide range
of principle quantum numbers of transitions into P1/2 and
P3/2 states of the same doublet with almost equal radial
wave functions allows the thorough analysis of the effects
on pressure broadening resulting from the anisotropy of
the interaction potential. It is an advantage of the mea-
surements on Tl that due to the large fine structure split-
ting inelastic collisions, usually complicating the theoret-
ical analysis and discussion, can be neglected even for
intermediate states. Furthermore, the dependence of line
broadening and shift on the rank of the transition opera-
tor is investigated on the 6P3/2–9P3/2 line. Quadrupolar
as well as mainly scalar excitation can be obtained for this
transition using appropriate polarizations of the exciting
laser beams in the two-photon experiment [27].

2 Experimental set-up

The experimental arrangement is shown in Figure 1. An
electrically heated quartz-cell contained the thallium
vapour. The Tl vapour pressure could be adjusted with
the temperature of an independently heated reservoir. For
the chosen temperature of about 970 K the vapour pres-
sure is 10.9 Pa corresponding to Tl number densities of
8.1 × 1014 cm−3 in the 6P1/2 and 7.8 × 109 cm−3 in the
6P3/2 state. The cell was connected to a vacuum and gas
filling system via a heated valve sealed by polished quartz
surfaces. The gas pressure has been measured with a tem-
perature stabilized capacitance manometer (MKS Bara-
tron) with an accuracy better than 0.5%.

The beam of a stabilized cw-dye-ring laser (Spectra
Physics 380D) with a line-width of less than 1 MHz op-
erated with Stilben 3 (6P1/2–nP1/2,3/2; n = 9−12), Stil-
ben 1 (6P1/2–nP1/2,3/2; n = 12−14), and Rhodamine 110
(6P3/2–9P3/2) was focused into this quartz cell. After
crossing the cell the laser beam was reflected and refocused
by a spherical mirror. For the measurements on the 6P3/2–
9P3/2 transition one or two additional quarter-wave plates
were included in the paths of the exciting laser beams to
get the desired circular polarizations. Circular polariza-
tions rotating in the same direction result in pure quadru-
polar two-photon excitation, whereas for opposite direc-
tions of the circular polarization the ratio of scalar to
quadrupolar transitions is optimized for maximum scalar
excitation. Additional polarizers were needed for decou-
pling the laser system.

The Doppler-free two-photon absorption signal was de-
tected by measuring the fluorescence on the λ = 378 nm
(7S1/2–6P1/2) and λ = 352 nm (6DJ–6P3/2) lines. Stray
light of the laser and infrared radiation of the oven could
be sufficiently reduced by a Schott UG1 filter and an ethy-
lene glycol filled quartz cuvette, respectively. The signal-
to-noise ratio was improved by using lock-in technique
in combination with intensity modulation of the retrore-
flected laser beam.

For stable wavelength calibration of the spectra a
marker cavity (confocal interferometer, free spectral range
150.4 MHz) actively locked to an I2-stabilized He-Ne laser
was used. Long-term drifts of the calibration marks
smaller than 1 MHz made possible the accurate determi-
nation of line broadening and, in particular, of line shift.
In order to reduce the errors resulting from a small nonlin-
earity of the laser scan additional calibration marks were
recorded during the measurements on the 6P3/2–9P3/2

transition. For that purpose, sidebands in the laser fre-
quency spectrum with separations of 20 MHz were gen-
erated by means of an electro-optical phase modulator.
Three sidebands on each side of the carrier could be re-
liably detected with the marker cavity for a modulation
index of about three (Fig. 2).

The fluorescence signal as well as the transmission of
the marker cavity were digitized with a data acquisition
board (Datalog DAP 1200) and stored into a personal
computer used both as a 16-bit multi-channel analyzer
and as laser scan-control unit.

3 Measurements and results

The broadening and shift rates for the two-photon tran-
sitions Tl 6P1/2–nP1/2,3/2 (n = 9−14) perturbed by rare
gases (He, Ne, Ar, Kr, Xe) are presented in Table 1. Due
to the nuclear spin I = 1/2 of 205Tl several hyperfine
(HFS) lines exist. In the case of the 6P1/2–nP1/2 transi-
tions the strongest of the two HFS-lines (F = 1→ F ′ = 1)
was scanned, whereas for the 6P1/2–nP3/2 transitions we
used the most separated line (F = 0 → F ′ = 2) of the
HFS spectrum. The scan range was 760 MHz, the scan-
ning time 75 s and the cell temperature 1040 K. For each
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Fig. 1. Experimental set-up. BS,
beam splitter; EOM, electro-optical
phase modulator; F, optical filter;
FR, Faraday rotator; L, lens; M,
mirror; PBS, polarizing beam split-
ter or beam combiner; P, polar-
izer; PD, photodiode; PM, photo-
multiplier; λ/4, quarter-wave plate;
ADC, DAC, analog-to-digital and dig-
ital-to-analog converter. Components
marked with dashed lines were only
used for measurements on the 6P3/2–
9P3/2 transition.

Fig. 2. Two-photon absorption signals of the transition Tl
6P3/2–9P3/2 perturbed by Helium for excitation with two
counter-propagating laser beams with same circular polariza-
tion (upper drawing) and of the transition Tl 6P3/2–9P3/2 per-
turbed by Argon for opposite polarization of the laser beams
(lower drawing): (a) without admixture of rare gas, (b) per-
turbed by 0.8 Torr Helium and 0.8 Torr Argon, respectively,
(c) wavelength calibration marks

transition measurements were performed at four or five
different rare gas pressures up to 10 Torr.

Additionally, measurements on the Tl 6P3/2–9P3/2

two-photon transition were performed for studying the
dependence of line broadening and shift on the rank of
the transition operator. The HFS excitation spectra of
this transition consist of four components (see Fig. 2).
For the chosen circular polarizations of the exciting laser
beams the contributions of scalar and quadrupolar transi-
tions to the excitation of the HFS-components are listed
in Table 2. All components were scanned together because
of their small spectral separations. The scan range was
620 MHz, the scanning time 150 s. In this case measure-
ments were performed with a cell temperature of 1036 K
for Helium and Argon perturbers at gas pressures between
0 and 1 Torr in 0.1 Torr steps. The maximum pressure of
1 Torr was chosen in order to avoid too wide overlapping
of the HFS-components.

The Lorentzian halfwidth γTP and the shift ∆/2 of
the two-photon lines were obtained from least-square fits.
Thereby, in the case of the 6P3/2–9P3/2 transition the sum
of four Lorentzian profiles was fitted to the experimental
data. The halfwidth γTP contains several contributions
and is given by

γTP = (γf + γTl + γ) /2 . (1)

The natural linewidth γf and the Tl self-broadening γTl

for a given Tl vapour pressure are constants, whereas γ
varies with the rare gas pressure. The same statements are
true for the line shift as well.

The halfwidth γTP and the shift ∆/2 showed the ex-
pected linear dependence on the rare gas number den-
sity N . The broadening rates γ/N and shift rates ∆/N
resulting from the linear regressions are presented in Ta-
ble 1 and Table 3 . The errors given in these tables con-
tain the double standard deviation of the linear regression.
The total estimated errors of most results are in the range
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Table 1. Comparison of experimental broadening and shift rates of two-photon transitions Tl 6P1/2–nP1/2, 3/2 (n = 9 − 14)
perturbed by rare gases (Exp) with calculated rates for Van der Waals potential (C6) and a superposition of polarisation and
Fermi potentials (PF).

Broadening rate (γ/N)/10−20 cm2 Shift rate (∆/N)/10−20 cm2

Transition Helium Neon Argon Krypton Xenon Helium Neon Argon Krypton Xenon

6P1/2–9P1/2 C6 — — 10.03 9.95 11.07 — — −3.64 −3.61 −4.02

PF 20.42 4.46 15.28 11.47 9.89 7.76 2.39 0.00 0.00 0.00

Exp 13.97(42) 3.75(20) 17.44(48) 16.24(58) 16.55(71) 12.41(31) 2.65(18) −6.35(31) −4.07(32) −3.80(40)

6P1/2–9P3/2 C6 — — 10.35 10.26 11.42 — — −3.76 −3.73 −4.15

PF 19.9 4.5 15.07 12.37 10.67 6.55 2.10 0.00 0.00 0.00

Exp 14.87(53) 4.95(23) 17.54(50) 15.63(64) 15.79(56) 10.00(29) 1.99(16) −5.84(29) −3.95(25) −3.94(28)

6P1/2–10P1/2 C6 — — 13.72 13.61 15.14 — — −4.98 −4.94 −5.50

PF 13.7 4.08 27.25 24.73 21.32 16.85 2.28 0.00 0.00 0.00

Exp 10.28(42) 3.03(9) 24.14(71) 31.2(12) 28.24(82) 15.58(39) 2.63(13) −12.52(48) −5.20(32) −5.75(38)

6P1/2–10P3/2 C6 — — 14.08 13.97 15.54 — — −5.12 −5.07 −5.65

PF 15.3 4.20 23.5 25.83 22.72 15.15 2.16 0.00 0.00 0.00

Exp 11.17(49) 3.72(16) 25.20(93) 26.64(92) 25.87(83) 13.57(32) 2.28(13) −11.42(31) −5.15(32) −5.48(33)

6P1/2–11P1/2 C6 — — 17.81 17.66 19.66 — — −6.47 −6.42 −7.14

PF 9.5 3.83 26.6 46.14 40.56 20.14 2.04 −15.01 0.00 0.00

Exp 6.86(26) 2.86(13) 23.79(90) 54.9(16) 44.8(11) 17.05(32) 2.39(13) −18.96(48) −15.00(80) −5.60(41)

6P1/2–11P3/2 C6 — — 18.22 18.07 20.11 — — −6.62 −6.56 −7.30

PF 10.5 3.90 27.9 40.96 42.53 19.35 1.98 −12.73 0.00 0.00

Exp 8.36(32) 3.35(18) 26.58(86) 48.2(13) 39.6(13) 15.32(37) 2.06(14) −18.07(50) −9.90(58) −6.92(34)

6P1/2–12P1/2 C6 — — 22.29 22.11 24.60 — — −8.10 −8.03 −8.94

PF 6.88 3.68 21.4 63.22 70.44 21.13 1.84 −26.52 0.00 0.00

Exp 5.49(19) 2.87(13) 21.65(73) 63.7(20) 88.9(25) 17.94(35) 2.25(9) −23.77(50) −30.34(89) −11.6(10)

6P1/2–12P3/2 C6 — — 22.71 22.52 25.06 — — −8.25 −8.18 −9.11

PF 7.67 3.73 24.2 54.3 66.17 20.80 1.81 −23.48 0.00 0.00

Exp 6.99(32) 3.18(16) 24.2(11) 66.4(21) 66.3(21) 16.26(36) 1.99(7) −23.29(66) −22.76(97) −8.24(68)

6P1/2–13P1/2 C6 — — 27.10 26.88 29.91 — — −9.84 −9.76 −10.86

PF 5.41 3.59 18.3 61.16 104.74 21.43 1.70 −32.31 −28.42 0.00

Exp 4.71(18) 2.89(12) 18.89(80) 59.5(22) 129.5(46) 18.27(30) 2.10(10) −26.83(56) −43.5(19) −35.1(26)

6P1/2–13P3/2 C6 — — 27.56 27.34 30.42 — — −10.01 −9.93 −11.05

PF 5.93 3.63 19.6 60.0 88.0 21.28 1.68 −30.48 −23.99 0.00

Exp 6.28(31) 3.19(19) 20.71(85) 71.8(34) 109.7(46) 16.86(34) 1.93(12) −26.78(60) −38.2(19) −17.9(27)

6P1/2–14P1/2 C6 — — 32.26 32.00 35.61 — — −11.72 −11.63 −12.94

PF 4.55 3.54 15.32 50.2 119.61 21.51 1.59 −35.01 −49.46 0.00

Exp 4.28(26) — 15.72(85) 50.4(30) 142.1(65) 18.75(44) — −28.55(64) −52.1(30) −64.5(51)

6P1/2–14P3/2 C6 — — 32.78 32.52 36.18 — — −11.91 −11.81 −13.14

PF 4.90 3.56 16.7 55.1 105.5 21.44 1.58 −34.06 −41.80 0.00

Exp 5.94(47) — 17.96(85) 66.1(36) 153.4(85) 17.47(42) — −29.03(63) −50.7(32) −41.7(46)

Table 2. Relative intensities of the HFS lines in the
6P3/2–9P3/2 spectra and relative contributions of scalar and
quadrupolar transitions to the total line intensities

Circular polari- HFS Relative Relative contributions
zation of two transition intensity to the total intensity by
exciting laser F → F’ scalar quadrupolar
beams with transitions transitions

Same 1 → 1 3 0 100
orientation 1 → 2 3 0 100

2 → 1 3 0 100
2 → 2 7 0 100

Opposite 1 → 1 27 88.9 11.1
orientation 1 → 2 3 0 100

2 → 1 3 0 100
2 → 2 47 85.1 14.9

Table 3. Observed broadening rates γ/N and shift rates ∆/N
for two HFS lines F → F ′ of the 6P3/2–9P3/2 transition per-
turbed by He (upper part of table) and Ar (lower part of table),
respectively.

(γ/N)/10−20 cm2 (∆/N)/10−20 cm2

Excitation F = 2 → F ′ = 2 F = 1→ F ′ = 1 F = 2→ F ′ = 2 F = 1 → F ′ = 1

mainly scalar 15.21(41) 15.08(39) 10.45(49) 10.46(54)

quadrupolar 15.25(39) 15.03(39) 10.32(60) 10.40(62)

mainly scalar 17.16(55) 17.57(54) −5.97(46) −6.08(40)

quadrupolar 17.35(41) 17.19(49) −5.94(46) −5.73(46)

1.5–3% resulting from the precision of the temperature
and pressure measurement (1%) and from other error
sources like time-of-flight broadening, the residual Zeeman
splitting due to stray magnetic fields.

As the rare gas number density N was calculated by
means of the cell temperature measured with a
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Table 4. Dipole polarizability α [31] and scattering
length L [32] of the rare gases used for calculations (a0 is Bohr
radius).

Helium Neon Argon Krypton Xenon

α/a3
0 1.384 2.663 11.08 16.73 27,29

L/a0 1.17 0.204 −1.55 −3.50 −6.50

thermocouple on the surface of the quartz cell a possible
difference between the surface temperature and the tem-
perature in the excitation region results in an additional
error. The estimated uncertainty of the temperature in the
excitation region of ±20 K is, however, of no importance
for the comparisons of the measured rates within this pa-
per, e.g. between transitions into P1/2 and P3/2 states,
because the cell temperature was controlled within ±5 K.
If these rates are compared with the results of other au-
thors, the additional errors of 2% should be taken into
account. For n = 9 and 10 these results differ from those
of reference [16] because of systematic errors of the pre-
vious values resulting from the measurements of the cell
and reservoir temperatures, furthermore, partly from the
signal distortion in the electronic readout system.

4 Discussion

For the given experimental parameters (low rare gas pres-
sures and observation of the line center) the experimental
results can be discussed within the framework of the im-
pact theory. The line shape is given by a Lorentzian profile
with halfwidth γ and shift ∆,

γ = 2N 〈v σb(v)〉 (2)

∆ = N 〈v σs(v)〉 (3)

where N is the perturbing particle density and the brack-
ets denote the average over the Maxwellian distribution of
relative velocities v of the interacting atoms. The broad-
ening and shift of an optical line corresponding to a tran-
sition from the ground state is mainly determined by the
perturbation of the upper state. The broadening and shift
cross sections σb and σs are given for a degenerated upper
level with angular momentum Jf by [19]

σb − Iσs = 2π

∫ ∞
0

Π(b, v)b db (4)

Π(b, v) = 1− (2Jf + 1)−1
∑
mf

〈mf |S(b, v)|mf〉 (5)

where b is the impact parameter,mf is the magnetic quan-
tum number, and S is the collision S matrix connecting
the wave functions Ψ before and Ψ ′ = SΨ after the colli-
sion.

4.1 Isotropic interaction potentials

For an isotropic interaction potential V (R), as given in the
case of the 6P1/2–nP1/2 transitions, the S matrix elements

in equation (5) can be expressed by the phase shift ηf in
the form 〈mf |S|mf〉 = e−Iηf and equations (4) and (5)
result in the well known expressions of the adiabatic phase
shift theory

σb(v) = 2π

∫ ∞
0

[1− cos ηf(v, b)] b db (6)

σs(v) = −2π

∫ ∞
0

sin ηf(v, b) b db (7)

η(b) = −
2

v

∫ ∞
b

V (R)/~√
1− b2/R2

dR . (8)

Broadening rates γ/N and shift rates ∆/N were calcu-
lated from these expressions assuming as interaction po-
tentials a Van der Waals potential V (R) = C6R

−6 as well
as a superposition of a polarization potential and a Fermi
pseudopotential.

The final formulas used for the Van der Waals potential
are [28,29]

γ/N = 7.90 (2πc)−1v̄3/5|C6/~|2/5 (9)

∆/N = −2.87 (2πc)−1v̄3/5|C6/~|2/5 (10)

where v̄ = (8kT/πµ)
1/2

is the mean relative velocity (with
k being the Boltzmann constant and µ the reduced mass
of the radiator-perturber system). For the Van der Waals
coefficient C6 the approximation C6 = −αe2〈r2〉 was used
with α being the dipole polarizability of the perturber
listed in Table 4, e the elementary charge and 〈r2〉 the
expectation value of r2 for the thallium valence electron.
The values of 〈r2〉 were calculated in the Coulomb approx-
imation [30].

Another model potential for the Rydberg–neutral in-
teraction is the superposition of the polarization potential,
Vp = −αe2/2R4, describing interaction of the perturber
with the core of the Rydberg atom and the Fermi pseu-
dopotential, VF = 2π

(
~2/m

)
Lδ(r−R), representing in-

teraction between the perturber and the Rydberg electron
(with R and r being the coordinates of the perturber and
of the Rydberg electron, respectively, m the mass of the
electron and L the electron-perturber scattering length).
The broadening and shift cross sections taking into ac-
count only the isotropic part of the Fermi potential have
been calculated as [11]

σb =



4πa2
0n
∗4, n∗ < n∗1 = (|L| /4τ0v)

1/4

8πa2
0
n∗81

n∗4

(
1− n∗81

2n∗8

)
, n∗1 < n∗ < 0.70n∗2

σb,c + 8πa2
0
n∗81

n∗4

(
1−

(
σb,c

πa2
0

)1/2
1

2n∗2

)
,

n∗ > 0.70n∗2

(11)
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Fig. 3. Experimental broadening rates γ/N and shift rates ∆/N for the transitions Tl 6P1/2–nP1/2 (•, ◦) and Tl 6P1/2–
nP3/2 (�, �) (n = 7 [16]; 9 – 14) perturbed by Neon (Ne) and Xenon (Xe). Calculated rates for a Van der Waals potential
(−−−−) and a superposition of a polarization and a Fermi potential (P1/2: ———–, P3/2: − · − · −).

σs =



∼ 0, n∗ < 1.09n∗1

2π~L
mv

(
1− n∗81

n∗8

)
+ σs,c

(
v0α
2a3

0v

)1/3 (
n∗6

2n∗81
− 1

n∗21

)
,

1.09n∗1 < n∗ < 0.73n∗2

2π~L
mv

(
1− n∗81

n∗8

)
+ σs,c

[
1−

(
v0α
2a3

0v

)1/3
1
n∗2

]
,

n∗ > 0.73n∗2.
(12)

Here

σb,c = 5.7

(
e2α

2~v

)2/3

, σs,c = −
√

3σb,c (13)

are the broadening and shift cross sections due to the po-
larization interaction between the perturber and the core
of the Rydberg atom,

n∗2 =

[
|L|

(a3
0α)

1/6
(v/v0)

5/6

]1/3

,

while a0 = ~2/me2, τ0 = ~3/me4 and v0 = e2/~ are the
atomic units of length (Bohr radius), time and velocity,
respectively.

This theory in general and equations (11) and (12)
in particular are widely used for analysis of experimental
results and have been modified in different ways ([2, 3,
12-16, 21-23, 26, 33-37] and references given there).

According to this theory the broadening cross section
σb as a function of the effective principle quantum num-
ber n∗ of the upper state is proportional to n∗4 for small

n∗, reaches its maximum value σmax
b = 16

3

√
2
3πa

2
0n
∗4
1 at

n∗ =
(

3
2

)1/8
n∗1 and then decreases asymptotically for high

n∗ approaching the value σb,c owing to the pure core-
perturber interaction. The shift cross section σs according
to this theory is very small for n∗ ≤ n∗1, then increases very
rapidly with the increase of n∗ in the region of n∗ ' n∗1,
and reaches fast its asymptotic value σs = σs,e + σs,c

(with σs,e = 2π~L/mv being the shift cross section due
to the Fermi interaction between the perturber and Ryd-
berg electron) [11].

For comparison of the theory with experimental data
we need the broadening and shift rates, γ/N and ∆/N ,
i.e. the cross sections averaged over the Maxwellian distri-
bution of the relative velocity of the colliding atoms. For
the broadening cross section the averaging was performed
in paper [11]. For the shift cross section this has been
done by Thompson et al. [15]. The averaging smooths a
little bit the sharp dependences of the cross sections on the
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principle quantum number in the region of n∗ ' n∗1. Thus,
the broadening rate reaches a maximum at n∗ ' 1.08n∗1
and this maximum is about 20% lower than the maximal
value of σb (v̄) v̄, of the rate without averaging.

These results of papers [11] and [15] were used in this
work for calculations of the broadening and shift rates of
the 6P1/2–nP1/2 lines. Values for the perturber scattering
length L and the polarizability α applied in these calcula-
tions are given in Table 4.

The theoretical rates for the two considered potentials
are presented in Table 1 together with the experimental
results. Results for Ne and Xe perturbers are also plotted
in Figure 3. Experimental results of Borstel et al. [16] for
the 6P1/2–7P1/2 line are added in this figure, too. Curves
for He, Ar and Kr perturbers have already been presented
[26].

The comparison of the experimental and theoretical
data shows, that for Ar, Kr, and Xe perturbers the Van
der Waals potential provides rates in agreement with the
experimental data for transitions into states with small
principle quantum numbers n. This is obvious for n = 7.
With increasing n the experimental broadening rates be-
come significantly larger those predicted by the Van der
Waals potential for transitions into the 9P and higher lev-
els. For shift rates, on the contrary, the agreement of the
experimental values with predictions of the Van der Waals
potential is extended to higher principle quantum numbers
as it can be seen clearly for Kr perturbers up to n = 10
and for Xe up to n = 11.

This remarkable difference between line broadening
and line shift is a result of the different regions of the im-
pact parameter b, which provide the main contributions
to γ/N or ∆/N . The line shift is mainly produced by col-
lisions with relatively large impact parameters, where the
interaction potential is well approximated by the long-
range polarization potential even for spatially more ex-
tended states with higher n∗. This is especially true for
Kr and Xe perturbers with large polarizabilities. For the
line broadening, on the contrary, collisions with smaller b
are most important and even for the 9P state the scatter-
ing interaction potential of the Tl valence electron with
the rare gas atom penetrating into the electron shell must
be taken into account.

Due to the small polarizability of He and Ne, the scat-
tering of the valence electron by the perturbers is more
important for the line shift and broadening by these gases
even for small n. In combination with the positive scat-
tering length, this results in the observed blue shift of the
lines whereas red shifts are predicted by the Van der Waals
potential.

Using the superposition of polarization and Fermi po-
tentials in paper [11] the electron scattering by the per-
turbers has been taken into account. The theoretical rates
obtained from the formulas (11) and (12) show the
correct behaviour with increasing effective principle quan-
tum number n∗. The maximum of the calculated broad-
ening rates at n∗ = 1.08n∗1 is in agreement with the
measured values. Very good agreement between the ex-
perimental and theoretical data is found for He, Ar, and

Kr at n∗ > n∗1. For n∗ < n∗1 the superposition of the po-
larization and the Fermi potentials provides broadening
rates in better agreement with the experiment than the
Van der Waals potential if the extension of the wave func-
tion 2n∗2a0 exceeds the Weisskopf radius for the Van der
Waals potential. The strong increase at n∗ ≈ n∗1 and the
asymptotic behaviour for larger n∗ of the shift rates are
correctly described by the theory [11], too.

However, some discrepancy between experimental and
theoretical predictions of the shift by Xe at n∗ ' n∗1 is
observed. Theoretical underestimation of the shift rates
in such a case is due to some approximations in the theo-
retical analysis. The squared radial JWKB-wavefunctions
used in [11], averaged over oscillations, are rough approxi-
mations for the states with small n∗ and result in a jump of
the phase shift ηf(b) at the classical radius of the Rydberg
atom b ' r2 ' 2a0n

∗2 if n∗ ≤ n∗1. Thereby, the devia-
tions for small n∗ may be explained. This results in the
underestimation of the shift cross sections for n∗ ≤ n∗1. An
attempt to overcome this discontinuity of ηf taking into
account the finite size of the perturber has been under-
taken in [12].

Here we want to pay attention to another approach
considered in [11] where the Fermi pseudopotential with
the electron charge density uniformly spread out inside a
sphere of radius r2 has been introduced. The broadening
and shift cross sections for such square-well potential may
be expressed as

σb,sw '


4πa2

0n
∗4, n∗ ≤ n∗1

9πa2
0
n∗81

n∗4

(
1− n∗81

2n∗8

)
, n∗ > n∗1,

(14)

σs,sw '


0, n∗ ≤ n∗1

2π~L
mv

(
1− 9

10
n∗81

n∗8

)
, n∗ > n∗1.

(15)

We see that these cross sections are very similar to those
given by equations (11) and (12) except of the shift cross
section at n∗ ' n∗1. Therefore, this model yields the broad-
ening and shift rates close to those given in Table 1 and
Figure 3 except the shift rates by heavy rare gases at
n∗ ' n∗1.

The averaging of the shift cross section (15) over the
Maxwellian velocity distribution gives the shift rate

∆sw

N
=

2π~L
m

[
2
√
π

e−y
√
y + (1− 1.8y) erfc

√
y

]
(16)

where y = L2/4πτ2
0 v̄

2n∗8.
According to equation (16) the shift rates of the 13P

and 14P states perturbed by Xe are −17 × 10−20 cm2

and −53×10−20 cm2, respectively, which are considerably
closer to the experimental results than calculations with
the Van der Waals potential and JWKB approximation.

Therefore, there is no essential disagreement between
the experimental data and results of theoretical analysis
in the whole range of quantum numbers and rare gases
under consideration.



136 The European Physical Journal D

4.2 Dependence on the angular momentum

The measured broadening and shift rates of the Tl 6P1/2–
nP1/2, 3/2 lines show a significant dependence on the an-
gular momentum Jf of the upper state indicating that the
anisotropy of the interaction potential must be taken into
account in the case of the P3/2 states. Relative differences
of the rates of up to 50% are observed between transi-
tions into nP1/2 and nP3/2 states with the same principle
quantum number n.

A theoretical analysis of the collisional broadening and
shift of lines corresponding to transitions into upper lev-
els with angular momentum Jf ≥ 1 taking into account
the anisotropy of the interaction potential is given in pa-
per [13]. For the superposition of a polarization and a
Fermi pseudopotential the diagonal elements of the colli-
sion S matrix have been approximately calculated. After
that the broadening and shift cross sections depending on
the angular momentum Jf were derived according to equa-
tions (4) and (5). These cross sections are related with the
cross sections σb,s(α,L) given by equations (11) and (12)
for the isotropic part of the considered potential. For P1/2

and P3/2 states we have [13]

σb,s(P1/2) = σb,s(α,L) (17)

σb,s(P3/2) = 1/2 [σb,s(α,L/2) + σb,s(α, 3L/2)] . (18)

Equations (17) and (18) are valid for both broadening and
shift cross sections.

The results of this theory may be explained as fol-
lows. While in case of isotropic nP1/2 states each colli-
sion with a given collision parameter b produces the same
phase shift, in case of nP3/2 states collisional trajectories
near the nodal surfaces of the anisotropic wave function
result in smaller phase shifts and others in larger ones
than for nP1/2. For n∗ < n∗1 the contributions of collisions
with smaller phase shifts result in the deviations for the
nP3/2 broadening rates compared to the isotropic nP1/2

states. Collisions with larger phase shifts that totally de-
stroy the optical coherence, even for n∗ > n∗1, cause the
shift of the maximum of the nP3/2 broadening rates to-
wards higher n∗.

The largest differences of the shift rates may be ob-
served at effective principle quantum numbers near n∗1.
For nP1/2 states with such principle quantum numbers all
collision geometries with collision parameters b in a cer-
tain range near 2n∗2a0 result in phase shifts η < π that
are significant for contributing to line shift. The smaller
nP3/2 shift rates result from collisions with small phase
shifts, which only yield very small line shift contributions,
or from collisions with large phase shifts η > π. Such colli-
sions destroy the optical coherence but do not contribute
to line shift.

The resulting rates for the 6P1/2–nP3/2 lines are pre-
sented in Table 1 and Figure 3, too. The differences in the
calculated broadening and shift rates between the 6P1/2–
nP1/2 and the 6P1/2–nP3/2 lines agree with the exper-
imental data. The broadening rates coincide within the
limits of error for very small principle quantum numbers,
but with increasing n∗ they are smaller for 6P1/2–nP3/2

than for 6P1/2–nP1/2 lines. In the vicinity of n∗1 this ratio
of the observed broadening rates inverts and with further
increase of n∗ γ/N is larger for transitions to nP3/2 states
than for transitions to nP1/2 states. This characteristic
dependence on n∗ can be best seen for the Kr perturbers.

As predicted by the theory the absolute value of the ex-
perimental shift rates is smaller for the 6P1/2–nP3/2 lines
than for the 6P1/2–nP1/2 lines with the same n or agree
within the limits of error. Large differences are observed
at effective principle quantum numbers in the vicinity of
n∗1 except for Ar perturbers.

It is instructive to consider in more detail the line shifts
by Ar, Kr, or Xe. For small n∗ the differences between the
shift rates for nP1/2 and nP3/2 states are small as long as
the rates can properly be calculated by means of the Van
der Waals potential. This is in accord with the results of
an estimation done for an anisotropic Van der Waals po-
tential of the form [38,39] V (R, r) = −αe2r2R−6(P0 +P2)
(where Pk(R, r/Rr) are the Legendre functions) and pro-
viding differences of the shift rates of less than 1%. Con-
siderable discrepancies between the shift rates of 6P1/2–
nP1/2 and 6P1/2–nP3/2 lines are observed with increasing
n∗ just for those principle quantum numbers for which
the experimental rates deviate from the predictions for
the Van der Waals potential. As the deviations are caused
of the valence electron scattering by the perturber, this
interaction must be considered as the principle reason for
the angular momentum dependence of the line shifts, too.
This statement is in agreement with the theoretical anal-
ysis in [13].

4.3 Dependence on the rank of the transition operator

A theoretical analysis of pressure broadening including the
dependence on the rank of the transition operator is given
by Cooper [17] and in more detail using a density matrix
formulation by Omont [18,19]. They found two necessary
conditions for the observation of rank dependent broaden-
ing and shift rates. The angular momenta Ji,f of the initial
and the final state of the transition must be equal or more
than one, Ji,f ≥ 1, implying anisotropic interaction po-
tentials for both states involved in the transition and the
perturbation of both states must significantly contribute
to the line broadening and shift. Furthermore, Omont pre-
dicted that under these conditions the lines of a hyperfine
multiplet should have different broadening and shift rates.

Our measurements on the 6P3/2–9P3/2 transition done
for quadrupolar as well as for mainly scalar excitation
show no significant rank dependence of the rates (see
Tab. 3). For both kinds of excitation the broadening and
shift rates of all considered hyperfine structure lines agree
within the limits of error contrary to a guess made in pa-
per [16]. We performed these measurements with He and
Ar perturbers in order to investigate a repulsive as well as
an attractive collisional system.

Whereas the condition Ji,f ≥ 1 is satisfied in the case
of the 6P3/2–9P3/2 transition, it must be assumed that due
to the larger extension of the 9P3/2 state
wavefunction compared to that of the 6P3/2 state, the
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perturbation of the lower state can be neglected in pres-
sure broadening considerations and, therefore, the rank
dependence vanishes. This is a usual assumption in the
literature for transitions between the ground state and
higher excited states. The negligible contribution of the
6P3/2 state can further be proved by comparing the tran-
sitions 6P1/2–9P3/2 and 6P3/2–9P3/2. The broadening and
shift rates of these transitions coincide within the limits
of error.

These results also justify the neglect of the interaction
between the perturbers and Tl atoms in the lower state in
the discussion of the broadening and shift of the 6P1/2–
nP1/2, 3/2 lines in Sections 4.1 and 4.2.

5 Conclusions

Although we have found quite good qualitative agreement
between the experimental data and the results of the cal-
culations the quantitative comparison shows some typical
perturber independent deviations indicating that the the-
ory can be further improved:

– The maximum of the calculated broadening rates is
larger for transitions into isotropic nP1/2 states than
for transitions into anisotropic nP3/2 states, but it is
vice versa for the measured rates. A similar behaviour
of the experimental data was found for n′S–nS and
n′S–nD lines of alkali-metals broadened by rare gases
[14,40], too.

– Near n∗ = n∗1 the ratio of the broadening rates for the
6P1/2–nP1/2 and the 6P1/2–nP3/2 lines inverts with
the increase of the principle quantum number n∗. This
inversion is found for smaller principle quantum num-
bers than predicted by the theoretical analysis.

– The differences of the calculated rates between transi-
tions into nP1/2 and nP3/2 states are smaller than the
measured differences.

It should be noted, however, that it is the advantage of
the approximate solution given in [13] to provide analyti-
cal expressions for the broadening and shift rates explicitly
showing their dependence on the effective principle quan-
tum number.

Further improvement of the theoretical analysis may
be achieved by a more sophisticated calculation of the
relevant collision S matrix elements.

The observed independence of the broadening and shift
rates of the transition Tl 6P3/2–9P3/2 on the rank of tran-
sition operator justifies the neglect of the interaction be-
tween the perturbers and the radiator in the lower state in
the calculations of the line broadening and shift for tran-
sitions from the ground state even to low Rydberg states.
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