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PACS. 05.45+b – Theory and models of chaotic systems.
PACS. 32.80Rm– Multiphoton ionization and excitation of highly excited states (e.g., Rydberg

states).
PACS. 42.50Hz – Strong-field excitation of optical transitions in quantum systems; multi-

photon processes; dynamic Stark shift.

Abstract. – Mapping equations of motion of the highly excited classical atom in a monochro-
matic field are generalized for the two-frequency microwave field. The analysis of the obtained
equations shows the weak sensitivity of the position of the recently observed ionization peak
near the main resonance to the frequency and amplitude of the additional microwave field.
In the high-frequency region, however, the sensitivity of the enhanced ionization peaks on the
additional field frequency is predicted.

At present, studies of the highly excited atoms in an intense electromagnetic field attract
a great interest. The Rydberg atom in a monochromatic field is one of the simplest real
quasiclassical systems with stochastic behavior which may be investigated both theoretically
and experimentally [1-3]. The classical regular motion and the stochastic dynamics of the
excited electron in the monochromatic field resulting in diffusion-like excitation and ionization
processes may be described by a map, called the “Kepler map” [2-6]. This greatly facilitates
numerical and analytical investigations of the transition to the stochasticity and ionization
process. It appears that, although the derivation of the Kepler map is based on the classical
perturbation theory, the map is, nevertheless, suitable even for the low-frequency field at the
transition to the chaotic behavior when the strength of the ionizing field is comparable with
the Coulomb field [6].

The main objective of the present work is to derive and investigate the mapping equations
of the motion for the highly excited atom in two- and multi-frequency fields. The urgency
of this problem follows also from the experimental and theoretical investigations [7], where
nonmonotonic behavior (peak) in the two-frequency ionization has been observed. The rel-
atively simple mapping form of the equations of motion allows theoretical investigation and
predictions of similar peculiarities for different parameters of the problem.

(∗) E-mail: kaulakys@itpa.lt

c© EDP Sciences



124 EUROPHYSICS LETTERS

We start from the minimal coupling [6] of the electromagnetic field to the electron through
the A ·P interaction, where A is the vector potential of the field and P is the generalized
momentum of the electron. From the Hamiltonian of the hydrogen atom in a linearly polarized
total external field FT, we can obtain an equation for the electron energy E change due to the
interaction with this field [4-6]

Ė = −ṙ · FT . (1)

Here ṙ is the electron velocity. The full field strength may be expressed through the components
as

FT =
∑
k

Fk cos(ωkt+ ϑk) , (2)

where Fk, ωk and ϑk are the amplitudes, frequencies and phases of the field components,
respectively. Further, for simplicity, we restrict ourselves to the two-frequency field parallel to
the x-axis

FT = F cos(ωt+ ϑ) + F2 cos(ω2t+ ϑ2) , (3)

and, as widely used in theoretical analysis [2-8], consider the one-dimensional model which
corresponds to the very extended states along the electric-field direction. We retain the
same [4-6, 8] notation for the parameters of the first (reference) field, i.e. F, ω and ϑ without
the subscripts, while the second field parameters are supplied with subscripts 2.

To minimize the number of the free parameters, it is convenient [5, 6, 8] to introduce some

scaled and relative quantities: the scaled energy ε = −2E/ω
2/3

, the relative field strengths

F0= Fn4
0 and F2,0= F 2n

4
0 (with n0 = (−2E0)

−1/2
the initial principle quantum number of

the hydrogen atom) and the relative field frequencies s = ε−3/2 = ω
(−2E)3/2 and s2 = s/κ =

ω2

(−2E)3/2 . Here κ = ω/ω2 = s/s2 is the ratio of two microwave frequencies while s and s2

are the ratios between the microwave frequencies, ω and ω2, and the Kepler orbital frequency
Ω = (−2E)3/2, respectively. Then, using the parametric equations of the unperturbed motion
of the electron, 

x =
1− cos ξ

−2E
,

t =
ξ− sin ξ

(−2E)3/2
,

(4)

and integrating eq. (1) for the electron motion between two subsequent passages at the aphelion
(where ẋ = 0 and there is no electron energy change), we obtain the map for the scaled energy
ε and the field phase ϑ at the electron passage of the perihelion, x = 0, moment (see [4-6] for
analogy) εj+1 = εj − πε2

0[F0h(εj+1) sinϑj + F2,0κ
2/3h(κ2/3εj+1) sinϑ2,j ],

ϑj+1 = ϑj + 2πε
−3/2
j+1 − πε

2
0[F0η(εj+1) cosϑj + F2,0κ

7/3η(κ2/3 εj+1) cosϑ2,j ] .
(5)

Here

h(εj+1) =
4

εj+1
J′sj+1

(sj+1), η(εj+1) =
dh(εj+1)

dεj+1
, (6)

ϑ2,j = ϑ2,0 − ϑ0/κ + ϑj/κ and J′s(z) is the derivative of the Anger function. Note that here

ε0= −2E0/ω
2/3, s0 = ωn3

0 = ε
−3/2
0 and s2,0 = s0/κ indicate the initial values of the scaled
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energy and relative field frequencies, respectively, while εj , sj and s2,j = sj/κ correspond to
the current values of the variables.

The first equation of the map (5) contains two terms corresponding to the change of the
electron scaled energy during the intrinsic motion period due to the influence of the two
field components, respectively, while the second equation follows from the requirement of

area-preserving of the map. Note also that expression κ2/3εj+1(= −2Ej+1/ω
2/3
2 ≡ ε2,j+1) in

eqs. (5) is in fact the electron energy scaled according to the frequency ω2 of the second field
component.

We have, therefore, derived the two-dimensional map for the dynamics of the hydrogen
atom in the two-frequency field similar to that for the monochromatic field [4-6]. Taking into
account the condition that phases of the field components are all time interrelated, we can
easily generalize map (5) to the multi-frequency fields as well; simply adding terms to the
right-hand side of eqs. (5) corresponding to the additional field components.

The analysis of chaotic dynamics and ionization process described by map (5) and (6) is,
therefore, quite similar to that of the simple Kepler map [4-6]. So, we can easily analyze the
dependencies of the dynamics on the parameters of the problem and obtain the ionization
threshold field strengths as functions of the field frequencies and ionization probabilities for
the given field strengths and frequencies.

In such a way we have analyzed the threshold ionization field F th
0 dependence on the initial

relative frequency s0 = ωn3
0 for different values of the quantities F2,0 and s2,0 = ω2n

3
0. As an

illustrative example, in fig. 1 we show the results of the calculations for F2,0 = 0 (one-frequency
ionization) and F2,0 = 0.01, s2,0 = 0.986 (two-frequency ionization). The parameters of the
latter case are close to that of the experiment in [7]. However, since the purpose of this
paper is the derivation of the mapping equations for the multifrequency field and the analysis
of the ionization threshold field dependence on the frequencies, but not the analysis of the

Fig. 1 Fig. 2

Fig. 1. – Threshold field strength F th
0 as a function of the initial relative frequency s0. Numerical

results are shown: (a) for F2,0 = 0, (b) and (c) for F2,0 = 0.01, s2,0 = 0.986 with random and
with correlated initial phases, ϑ0 = ϑ2,0, respectively. Curves (d) and (e) represent analytical
estimations according to approximation (9) for one- and two-frequency field with the above parameters,
respectively.

Fig. 2. – Ionization probability Pion as a function of the relative frequency s0 for (a) F2,0 = 0,
(b) F2,0 = 0.01, s2,0 = 0.986, (c) F2,0 = 0.01, s2,0 = 0.18, respectively. In all three cases calculations
are fulfilled with F1,0 = 0.0298 and random initial phases.
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definite experiments, we calculate the “absolute” threshold fields and ionization probabilities
(for the infinitely long action of the microwave field with the constant amplitude), i.e. the
values not depending on the concrete experimental conditions: increase and decrease of the
field amplitudes, finite time of the fields action, cutoff of the high principle quantum number,
and so on. Therefore, the parameters in our illustrations are chosen according to the purpose
of demonstration of the most pronounced resonance structure in the field-atom interaction.
So, if, as in ref. [7], we choose F2,0 = 0.0169 instead of F2,0 = 0.01, we would observe in fig. 2
a certain (with probability 1) “absolute” ionization probability in the relatively large interval
of frequency s0 near the first peak at s0 ' 0.8. It should be noted that in paper [7] also
theoretical results obtained using the mapping equations of paper [4] (somehow generalized)
are presented. The used equations, however, have not been published. Note also that the
authors of paper [7] analyze only the region of the first peak near the main resonance.

Let us analyze the results of the calculations. So, the two curves in fig. 1 corresponding
to the one-frequency ionization and two-frequency ionization, (a) and (b) respectively, have
similar minimum-maximum structure. The main effect of the second field manifests itself in the
shifting of the minimum (maximum) positions to the lower relative frequencies. Besides, due
to the influence of the additional field, the first threshold field F th

0 minimum (near s0 = 0.8)
becomes much more pronounced. The same also occurs with the second minimum (near
s0 = 1.7). The third minimum (near s0 = 2.7) has been, however, almost lost after supplying
the second field. Note that curve (b) differs only slightly from curve (c) calculated using
correlated initial phases, ϑ0= ϑ2,0. This means that the initial phase difference value is not
very important for the qualitative behaviour of the threshold field F th

0 . A similar effect has
been observed also in the experiment and calculations of ref. [7].

By analogy with paper [4], we can try to make some analytical evaluation of the threshold
field F th

0 for the two-frequency case as well. Using the chaos criterion proposed in [9]

max

∣∣∣∣δϑj+1

δϑj
− 1

∣∣∣∣ ≥ 1 , (7)

from eq. (5) one gets

F th
0 =

s
4/3
0

12π2s
7/3
j J′sj (sj)

−
J
′

s2,j
(s2,j)s2,j

J′s0(s0)s0
F2,0 . (8)

For sj = s0 this expression simplifies to the form

F th
0 =

1

12π2s0J
′

s0(s0)
−

J
′

s2,0
(s2,0)s2,0

J′s0(s0)s0
F2,0 . (9)

The dependences of the appropriate threshold field F th
0 on s0 are shown in fig. 1 by curves

(d) and (e) for the one- and two-frequency field, respectively. For the low initial relative
frequency (s0 < 1) eq. (9) is a rough approximation. For relatively high frequencies (s0 > 1)
it gives, however, quite accurate threshold field values. The analytical curves are monotonic
and, therefore, they represent only an approximate threshold field, F th

0 , behavior and do not
reproduce minimum-maximum sequences. For a more accurate evaluation of the threshold field
strength according to the criterion (7), the increase of the electrons energy by the influence of
the electromagnetic field should be taken into account [6]. If the scaled energy εj decreases as
a result of the relatively regular dynamics in the not sufficiently strong microwave field, then
the lower field strength is enough for the transition to the chaotic dynamics.

There is one-to-one correspondence between the threshold ionization field F th
0 and the

ionization probabilities Pion. Both quantities are measurable. It is, however, often easier to
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Fig. 3. – Ionization probability projection to the plane of the initial frequencies s0 and s2,0 for
F0 = 0.0298, F2,0 = 0.01 with random initial field phases. The lightness of the background correlates
with the ionization intensity, black: no ionization, white: a certain (with probability 1) ionization.

carry out measurements of the ionization probabilities. Using map (5), we have calculated
the ionization probabilities for one- and two-frequency fields. Curve (a) in fig. 2 shows
the one-frequency ionization probability as a function of the initial relative frequency s0

for F0 = 0.0298. Curves (b) and (c) represent two-frequency ionization probabilities for
F2,0 = 0.0298, s2,0 = 0.986 and F2,0 = 0.01, s2,0 = 0.18, respectively, when the initial phases
of the field components are random. The first peak (near s0 = 0.75) for the two-frequency
field with parameters similar to case (b) had been observed in the experiment by Haffmans
et al. [7]. We see that the second field broadens and shifts the ionization probability peaks.
Actually, one can realize their behavior from the threshold field curves (fig. 1) too.

We have performed similar calculations for different second initial relative frequency s2,0

values. The results show that the first ionization peak is very stable with respect to the relative
frequency s2,0 changes. This is not the case for the high-frequency peaks —their positions and
shapes are quite sensitive to the frequency but not to the field intensity variations. To illustrate
this, in fig. 3 we represent the ionization probability projection to the frequency s0 and s2,0

plane. White color corresponds to the ionization peaks, dark indicates the ionization valleys.
The pattern is almost symmetric with respect to the line s0 = s2,0 although the field amplitudes
F0 and F2,0 differ considerably. This means that the minimum-maximum structure is weakly
sensitive to field strengths.

Finally, some remarks should be made concerning the validity conditions of the analysis
based on the map (5). Earlier calculations and comparisons with experimental results [1-8,10]
have shown that the one-dimensional hydrogen atom model reproduces quite reasonably the
threshold field strength for the one-frequency field in the low-relative-frequency region (s0 ≤ 1).
The quantum analysis has suggested and experimental results have confirmed that for the
high relative frequency of the monochromatic field the classical chaotic diffusion is suppressed
by quantum effects [1-3, 5]. It is, however, natural to expect that an additional microwave
field, like any other external perturbation [11, 12], should result in the delocalization of the
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states superposition and restoration of the chaotic dynamics. Therefore, mapping equations
of motion (5) for the multifrequency field should have a larger region of validity than those for
the monochromatic field.

In summary, using the condition that the phases of the field components are all the time
interrelated and that in the derivation of the Kepler map we integrate over the period of
the electron intrinsic motion, we can easily generalize the Kepler map for the multifrequency
field. The dimension of the map does not increase with the increase of the number of the
field components and, therefore, the analysis based on the maps of the dynamical chaos and
ionization by the multicomponent field remains relatively simple. As an example, we have
analyzed the map (5) for the two-frequency field and have obtained the threshold ionization
field and the ionization probability curves (fig. 1 and 2, respectively) for a broad relative
frequency range, 0.05 ≤ s0 ≤ 3. They show that the position of the first peak (near the
main resonance) in the ionization probability and the corresponding threshold field minimum
are weakly sensitive to the second field strength and frequency values. In the high-frequency
region peaks of the ionization probability are, on the contrary, frequency-dependent. On the
other hand, the minimum-maximum structure is weakly sensitive to field strength values.
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