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Abstract. We present and analyze the nonlinear stochastic differential equations generating scaled 
signals with the power-law statistics, including 1 / / ^ noise and (/-Gaussian distribution. Numerical 
analysis reveals that the process exhibits some peaks, bursts or extreme events, characterized by 
power-law distributions of the burst statistics and, therefore, the model may simulate self-organized 
critical and other systems exhibiting avalanches, bursts or clustering of events. 
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INTRODUCTION 

Power-law distributions, including 1 / / noise, are ubiquitous in physics and in many 
other fields [1, 2, 3]. Despite the numerous models and theories, the intrinsic origin of 
1/f noise and other scaled distributions still remain open questions. Starting from the 
multiplicative point process [4] we obtained the stochastic nonlinear differential equa
tions, which generated signals with the power-law statistics, including 1 / f^ fluctuations 
[3, 5]. Here the other nonlinear stochastic differential equation generating q-Gaussian 
distribution of the bursting signal and \/f^ noise is presented and analyzed. 

THE THEORY 

We consider a nonlinear stochastic differential equation 

Ax=(n-^x\{xl,+x^)'^'\At+{xl,+x^Y'^&W, 77 > 1 , A > 1 (1) 

generating ^-Gaussian distributed signal 

2 

with q = I + 2/A. Here W is a standard Wiener process and Xm is the parameter of the 
^-Gaussian distribution. Eq. (1) for small x <CXm represents the linear additive stochastic 
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process generating the Brownian motion with the linear relaxation, whereas for x > Xm 
Eq. (1) reduces to the nonlinear multiplicative equation. 

In accordance with Refs. [3, 4] the power spectrum of the process generated by Eq. 
(2) may be approximated as 

with A characterizing the intensity of 1 //'^ noise, /o '-̂  fmin being the frequency for 
transition of spectrum at low frequencies to the flat spectrum, and 

/3 = 1 
A - 3 

2(77-1] 

The autocorrelation function of the process is 

C(5) ^ ( / ) c o s ( 2 ; r / 5 ) d / = - ^ f ^ 
0 r (p /2 ) V/o 

Kk{2nfos), 

(4) 

(5) 

with Ki^{z) being the modified Bessel function and /i = (/3 — l) /2. The second order 
structural function F2{s) and height-height correlation function F{s) are expressed as 

F{s)=Fi{s) = {\x{t + s) -x{tf) = 2[C(0) -C(5)] = A j ^ S{f)^m\nsfW. (6) 

Particular cases of Eqs. (5) and (6) are presented in Ref. [3]. 

NUMERICAL ANALYSIS 

We present here the investigation results of the dependence of characteristics of Eq. (1) 
solutions on the nonlinearity parameter r\ for the fixed parameter A = 3, i.e., for the pure 
1//noise. 

FIGURE 1. Examples of the numerically computed signals according to Eq. (1) with the parameters 
A = 3, Xm = 10^^, whereas 7] = 1.5 (left figure) and 7] = 2.5 (right figure). 

As examples, in figure 1 we show the illustrations of the signals generated according 
to Eq. (1). We see bursts of the signal. In figures 2 and 3 the numerical calculations 
of the distribution density, P{x), power spectral density, S{f), autocorrelation function. 
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FIGURE 2. Distribution density, P{x), and power spectral density, S{f), for solutions of Eq. (1) with 
A = 3, Xm = 10^^ and different values of 7] = 1.5 (circles), J] = 2 (squares) and 7] = 2.5 (triangles) in 
comparison with the analytical results (solid lines) according to Eqs. (2) and (3), respectively. 

. r -^i^pijaiigafE^at^w^ir^fjr-—-
^ ^ f f l 

j ^ ^ i ^ M I ^ M 

: 1̂ 

^^m 

10 10 10 10 10 10 10 10 

FIGURE 3. Autocorrelation function, C{s), and the second order structural function, F2 (s), for solu
tions of Eq. (1) with the same parameters as in figure 2 in comparison with the analytical results (solid 
lines) according to Eqs. (7) and (8), respectively. 

C{s), and the second order structural function, F2{s), for solutions of Eq. (1) with A = 3, 
Xm = 0.01 and different values of the parameter 77 are presented. We see rather good 
agreement between the numerical calculations and the analytical results for /3 = 1, 

C{s) =-A[r+\n{n/os)] (7) 
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FIGURE 4. Dependence of the burst size 5' as a function of the burst duration T and distributions of the 
burst size, P{S), for the peaks above the the threshold value x^ = 0.1. Calculations are as in figures 2 and 
3 with the same parameters. 

15 

Downloaded 18 Sep 2009 to 137.195.108.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



FIGURE 5. Burst duration, P{T), and interburst time, P(6), for the peaks above the the threshold value 
Xii, = 0.1. Calculations are as in figure 4 with the same parameters. 

F2{s) = ^2A[\n{nf,^^s)-r], (8) 

where 7 = 0.577216 is Euler's constant and fmax is the cutoff of the 1 / / spectrum 
at high frequency. Figures 4 and 5 demonstrate that the size of the generated bursts 
S is approximately proportional to the squared burst duration T, i.e., S <x T^, and 
asymptotically power-law distributions of the burst size, P{S) '-^ S^^-^, burst duration, 
P{T) r^ r-i"* and interburst time, P(0) '-^ 9^^-^, for the peaks above the threshold value 
Xth of the variable x{t). These dependencies slightly depend on the degree of nonlinearity 
exponent 77 of the stochastic equation and are similar to those discovered [3] for the q-
exponential distributions. 

CONCLUSION 

The nonlinear stochastic differential equations may generate ^-Gaussian distributed 
signals with 1 //'^ power spectrum, exhibiting bursts, similar to the crackling processes 
[6] and observable long-term memory time series [7, 8]. 
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