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Abstract—One of stylized facts emerging from statistical analy-
sis of financial markets is the inverse cubic law for the cumulative
distribution of a number of events of trades and of the logarithmic
price change. A simple model, based on the point process
model of 1/f noise, generating the long-range processes with the
inverse cubic cumulative distribution is proposed and analyzed.
Main assumptions of the model are proportional to the process
intensity, 1/τ(t), stochasticity of large interevent time τ(t) and
the Brownian motion of small interevent time.

I. INTRODUCTION
One of the principal statistical features characterizing the

activity in financial markets is the distribution of fluctuations
of market indicators such as the indexes. Frequently heavy-
tailed long-range distributions with characteristic power-law
exponents are observable. Power laws appear for relevant
financial fluctuations, such as fluctuations of number of trades,
trading volume and price. The well-identified stylized fact
is the so-called inverse cubic power-law of the cumulative
distributions, which is relevant to the developed stock markets,
to the commodity one, as well as to the most traded currency
exchange rates. The exponents that characterize these power
laws are similar for different types and sizes of markets,
for different market trends and even for different countries
– suggesting that a generic theoretical basis may inspire these
phenomena [1]–[12].
Here we propose a simple model, based on the point process

model of 1/f noise [13]–[17] and the nonlinear stochastic
differential equations [18]–[20] generating signals with 1/fβ

(0 ≤ β ≤ 2) noise. The nonlinear stochastic differential
equation for the interevent time τ(t) consists of a superposition
of two processes: (i) the restricted additive Brownian motion
in time of the interevent interval τ(t) for the frequent events
(i.e., for small interevent time τ(t)) and (ii) the multiplicative
motion of the interevent time with the multiplicative noise
proportional to the intensity, 1/τ(t), of the process for the
large interevent times τ(t). The proposed model generates
long-range processes with two slopes of the power-law distri-
bution, including the inverse cubic distribution, and the power-
law distributions of power spectrum with two exponents.
Analytical and numerical analysis of the proposed model is
presented.

II. THE MODEL
Trades in the financial markets occur at the discrete times t1,

t2, ..., tk, ... and can be considered as a process of events. Such
process is stochastic and defined by the stochastic interevent

times τk ≡ tk+1 − tk. The generic multiplicative process
for the interevent time [15], [16] and for the stochastic rate
x (t) = a/τ (t) of events flow [21]–[23] has been introduced
and analyzed.
The simplest stochastic model of the process of events is

the point process [24]

x(t) = a
∑

k

δ(t − tk) (1)

representing the fluctuating variable x (t) as consisting of a
sequence of events at the discrete times {tk}, Here δ(t) is
the Dirac δ-function and a is an average contribution to the
variable x (t) of one event in the region of its occurrence time
tk. The low-frequency fluctuations of the long-range process
are defined by the fluctuations and statistical properties of the
time difference tk+q−tk at large q, determined by the slow dy-
namics of the average interevent time τk (q) = (tk+q − tk) /q
between the k-th and (k + q)-th events [16] .
Quite generally, the dependence of the average interevent

time τk on the occurrence number k may be described by the
general Langevin equation with the drift coefficient d (τk) and
a multiplicative noise b (τk) ξ (k),

dτk

dt
= d (τk) + b (τk) ξ (k) . (2)

Here ξ (k) is the Gaussian white noise,
〈

ξ(k)ξ(k
′

)
〉

= δ(k−
k

′

), where the brackets 〈...〉 indicate the average. Transition
from the occurrence number k to the actual time t in (2)
according to the relation dt = τkdk yields the Itô stochastic
differential equation in the actual time t,

dτ =
d (τ)

τ
dt +

b (τ)√
τ

dW , (3)

where W is a standard Wiener process.
The generic multiplicative process generating the power-law

distributed, Pk(τk) ∼ τα
k , sequence of the interevent time τk

is [15]–[17]

τk+1 = τk + σ2
(α

2
+ µ

)

τ2µ−1

k + στµ
k εk . (4)

In this model the (average) interevent time τk fluctuates
due to the random perturbations by a sequence of uncorre-
lated normally distributed random variables {εk} with the
zero expectation and unit variance, µ is the index of the
nonlinearity, and σ is standard deviation of the white noise.
Some motivations for the model (1)-(4) were given in papers
[13]–[17], [20]–[23], [25]–[27].
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The power spectral density of the process (1) generated
according to iterative equation (4) is 1/fβ in any desirable
wide range of frequency f [15], [16], i.e.,

S (f) ∼
1

fβ
, β = 1 +

α

(3 − 2µ)
. (5)

The distribution density of the signal (1) intensity is the
power-law, as well [16], [20],

P (x) ∼ x−λ , λ = 3 + α . (6)

Therefore, for the pure 1/f noise, generated by the simplest
iterative equations, e.g.,

τk+1 = τk + σεk , (7)

with the appropriate boundary conditions, restricting the diffu-
sion of τk in the finite interval [18] corresponds P (x) ∼ x−3

or the inverse squared, P> (x) ∼ x−2, cumulative distribution.
The simplest equations generating the inverse cubic law of

the cumulative distribution, P> (x) ∼ x−3, are

τk+1 = τk + στ−1/2

k εk , (8)

dτ (t) =
σ

τ (t)
dW , (9)

and
dτ (t) = σxx (t) dW , (10)

where x (t) = a/τ (t) and σx = σ/a.
Equation (10) reveals the particularly obvious meaning, i.e.,

the intensity of fluctuations of the interevent time τ (t) is
proportional to the intensity of the process x (t) ∝ 1/τ (t).
The condition of the stationarity of the process requires the

appropriate restrictions of the movement of τ in some interval
[τmin , τmax]. We will use the reflective boundary condition at
small τk = τmin and the exponential restriction of diffusion at
large τk = τmax by introducing the additional term in (8),

τk+1 = τk − σ2 1

τmax

+ σ
1

√
τk
εk . (11)

The steady-state distribution density Pk (τk) in k-space of
interevent time τk, given from the associated Fokker-Planck
equation of process (11) is [16], [28], [29]

Pk (τk) )
2τk

τ2
max

exp

(

−
τ2
k

τ2
max

)

. (12)

Consequently, the steady-state distribution of the intensity
of the process x(t) = 1/τ(t), exponentially restricted at small
x = xmin = 1/τmax is (see [16], [19] for analogy)

P (x) )
4x3

min√
πx4

exp

(

−
x2

min

x2

)

. (13)

Here and further for the brevity we continue the analysis
for a = 1. The generalization for a *= 1 is straightforward.
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Fig. 1. The steady-state distribution density Pk(τk) of interevent time τk

calculated according to (11), open circles, and the Poissonian-like distribution
density Pj(τj) converted from τk by (16), open squares. Used parameters are
τmin = 0.1, τmax = 100, and σ = 0.1. Solid line represents the analytical
result (12).

The cumulative distribution P> (x) of x is

P> (x) =

∞
∫

x

P (x) dx

) erf
(xmin

x

)

−
2xmin√
πx

exp

(

−
x2

min

x2

)

=
x3

min

x3
γ∗

(

3

2
,

x2
min

x2

)

.

(14)

Here γ∗ (a, z) is the regularized lower incomplete gamma
function. Consequently

P> (x) )
4x3

min

3
√
πx3

, x + xmin , (15)

and we find out the inverse cubic law.

A. Poissonian-like process
Further we can consider a more realistic model assuming

that τk is a time-dependent average interevent time of the
Poissonian-like process with the time-dependent rate. Within
this assumption the actual interevent time τj is given by the
conditional probability [17], [22]

ϕ(τj |τk) =
1

τk
e−τj/τk , (16)

similar to the non-homogeneous Poisson process. In such
a case, the distribution of the actual interevent time τj is
expressed analogically to the superstatistical schemes [30],

Pj(τj) =

∫

ϕ(τj |τk)Pk(τk)dτk . (17)

The generalized model (16) and (17) represents a more
realistic situation, because the concrete event occurs at random
time (like in the Poisson case), however, the average interevent
time is slowly (Brownian-like) modulated.
This additional stochasticity of the actual interevent time τj

by randomization (16) of the concrete occurrence times does
not influence on the low frequency power spectra of the signal.
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Fig. 2. Power spectral density S(f) of the signal x(t) (1) calculated
according to Eq. (11), open circles, and that of the Poissonian-like distributed
(16) interevent time τj , open squares. Used parameters are as in Fig. 1.
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Fig. 3. Probability distribution density P (x) of the signal (1). Used
parameters and notations are as in Fig. 1. Solid line represents the analytical
result (13).
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Fig. 4. Cumulative distribution P>(x) of the signal (1). Used parameters
and notations are as in Fig. 1. Solid line represents the analytical result (14).

B. Numerical analysis

The numerical calculations of the distribution of the in-
terevent time, Pk (τk), power spectral density, S (f), distribu-
tion density of the signal, P (x), and the cumulative distribu-
tion, P> (x), are presented in Fig. 1, Fig. 2, Fig. 3, and Fig. 4,
respectively. We observe in Fig. 1 the analytically predicted
(12) distribution of τk and the Poissonian-like distribution
density Pj(τj) ) cont for τj , τmax, as given in Ref. [17].
As far as in this case µ = −1/2 and α = 1, according to (5),
β = 5/4, i.e., at low frequency in agreement with Fig. 2, both
without and with the additional stochasticity (16).
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Fig. 5. Probability distribution function P (N) of the counting of events
(18) for the process (11) without, open symbols, and with, full symbols, the
additional Poissonian stochasticity (16). Used parameters are as in Fig. 1.
Results are presented for 〈N〉 = 1, 10, 100, and 1000, the increasing
probabilities, respectively.
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Fig. 6. Cumulative distribution P>(N) of the counting of events (18). Used
parameters and notations are as in Fig. 5

Figs. 3 and 4 demonstrate the distribution density and the
inverse cubic cumulative distribution of the signal (1) without
the additional Poissonian stochasticity (16). This extra ran-
domization (16) results in the flat distribution, Pj(τj) ) cont,
of the actual interevent time τj and, consequently, in the
inverse squared cumulative distribution, as it follows from (6)
for α = 0.
Variable x(t) = 1/τ(t) represents the formal instantaneous

process and does not contain any scale of time. Actually, one
measures the number of events N in the definite time window
τw, e.g., the trading activity, as a number of events in some
time interval, or the return at time lag τw. These quantities are
represented as the integral of the variable x(t) in time interval
τw or counting of events in the time lag τw [15], [21]–[23],

N(t) =

t+τw
∫

t

x (t′) dt′. (18)

Figs. 5 and 6 demonstrate the distribution density of N and
the inverse cubic cumulative distribution of N both without
and with the additional Poissonian stochasticity (16).
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III. GENERALIZATION OF THE MODEL
For modeling the long-range processes with β < 1 and with

the power-law correlation function [20]

C (t) ∼
1

t1−β
(19)

we should modify Eqs. (8)-(10) assuming the simple additive
Brownian motion of small interevent time, keeping the same
dependence for large τ(t). For this purpose, instead of (9) we
propose equation

dτ = σ
1

τc + τ
dW , (20)

where τc is a crossover parameter, separating the two kinds
of the stochastic motion: (i) the simple Brownian motion for
τ , τc and (ii) the model of Section II for τ + τc.
Eq. (20) with restrictions at τ = τmin and at τ = τmax

dτ = σ2

(

τ2
min

τ2
−

τ2

τ2
max

)

dt

τ (τc + τ)2
+ σ

dW

τc + τ
. (21)

may be solved using a variable step of integration

∆ti =
κ2

σ2
(τc + τi)

2 τ2
i , κ , 1, (22)

τi+1 = τi + κ2

(

τ2
min

τ2
i

−
τ2
i

τ2
max

)

τi + κτiεi . (23)

Note, that iterative equations in k-space like (4), (7), (8),
and (11) correspond to the integration step ∆tk = τk.
The steady-state distribution density Pk (τk) in k -space of

interevent time τk, instead of (12), for τmin , τc , τmax is

Pk (τk) )
2 (τc + τk)2

τ2
maxτk

exp

(

−
τ2
min

τ2
k

−
τ2
k

τ2
max

)

. (24)

The steady-state distribution of the intensity of the process
x(t), exponentially restricted at small xmin = 1/τmax and
large xmax = 1/τmin, is

P (x) )
4x3

min (xc + x)2√
πx4

exp

(

−
x2

min

x2
−

x2

x2
max

)

. (25)

The cumulative distribution P> (x) of x for x < xc is given
by the same Eq. (14). The average intensity of the process
〈x〉 = 〈τk〉−1, where 〈τk〉 )

√
π

2
τmax. The counting of events

may be calculated according to the same Eq. (18).
The numerical calculations of the power spectral density

S(f) of the signal x(t) (1) calculated according to Eqs. (21)–
(23) are presented in Fig. 7. The cumulative distributions of
this generalization are similar to those of Fig. 4 and Fig. 6.
More complex equations for modeling the financial systems

have been introduced and analyzed in Refs. [21]–[23], [27].

IV. CONCLUSIONS
Simple stochastic nonlinear differential equations generating

the long-range processes with the inverse cubic cumulative
distributions are proposed.
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Fig. 7. Power spectral density S(f) of the signal x(t) (1) calculated accord-
ing to Eqs. (21)–(23), open circles, and that of the Poissonian-like distributed
(16) interevent time τj , open squares. Used parameters are τmin = 0.01,
τmax = 100, τc = 1, and σ = κ = 0.1.

Main assumptions of the model are: (i) the Brownian motion
of small interevent time and (ii) the multiplicative stochasticity,
proportional to the intensity of the process, of large interevent
time.
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