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An analysis of transition from chaotic to nonchaotic behavior and synchronization in an ensem-
ble of systems driven by identical random forces is presented. The synchronization phenomenon
is investigated in the ensemble of particles moving with friction in the time-dependent potential
and driven by the identical noise. The threshold values of the parameters for transition from
chaotic to nonchaotic behavior are obtained and dependencies of the Lyapunov exponents and
power spectral density of the current of the ensemble of particles on the nonlinearity of the
systems and intensity of the driven force are analyzed.

1. Introduction

Often trajectories of the nonlinear dynamical sys-
tems are very sensitive to the initial conditions and
unpredictable, i.e. the systems are chaotic. These
systems exhibit an apparent random behavior. It
might be expected that when turning on additional
random forces make their behavior even “more
chaotic”. However, a transition from chaotic to
nonchaotic behavior in an ensemble of particles with
different initial conditions bounded in a fixed exter-
nal potential and driven by an identical sequence of
random forces was observed by Fahy and Hamann
[1992] and recently analyzed theoretically and nu-
merically by Kaulakys and Vektaris [1995a, 1995b)]
and Chen [1996]. It has been shown that the ensem-
ble of trajectories in such a case may become identi-
cal at long times. The system becomes not chaotic:
The trajectories are independent on the initial con-
ditions. The similar effects have been observed
in the different systems as well [Yu et al., 1990;
Maritan & Banavar, 1994a] and have resulted to
same discussion concerning the origin and causality
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of such nonchaotic behavior [Pikovsky, 1994;
Maritan & Banavar, 1994b; Gade & Basu, 1996].

Moreover, the observed effect resembles a phase
transition but does not depend crucially on the di-
mension of the space in which the particles move.
This phenomenon has some importance for Monte
Carlo simulations and can influence on the cluster-
ing of particles process.

It should be noted that Maritan and Banavar
[1994a] have analyzed the similar effect using the
Langevin equation, however, in the limit in which
the time separation between successive forces be-
come small compared to any characteristic macro-
scopic time of the system and two logistic maps
linked with a common noise term.

Here we analyze the similar phenomenon in the
ensemble of particles moving with friction in the
time-dependent potential and driven by the dis-
crete identical noise. We define the threshold val-
ues of the parameters for transition from chaotic
to nonchaotic behavior and investigate dependen-
cies of the Lyapunov exponents and power spectral
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density on the nonlinearity of the systems and char-
acter of the driven force. Our theoretical analysis
is based on the mapping form of equations of mo-
tion for the distance between the particles and the
difference of the velocity of the particles while nu-
merical calculations are performed according to the
derived mapping equations as well as directly cal-
culating the system’s trajectories and the Lyapunov
exponents. The mapping analysis results in the con-
clusions very close to those obtained from the direct
simulations and numerical calculations

2. Models and Theory

Consider a system of particles of mass m moving
with friction according to Newton’s equations

dr dv

B 1dV(r,t)
dat = m o dr

el 1
dt m dr LA

in the time dependent potential V' (r, t), e.g. in the
potential V(z, t) = z* — 2% — az sin wt, and with
the friction coefficient ~.

At time intervals 7 the particles are partially
stopped and their velocities are reset to the mix-
ture of some part o of the old velocities with the
random velocity v viV = aveld 4 vi*", where
k is the stop number. Note that v;*" depends on
the stop number £ but not on the particle. The sim-
plest and most natural way is to choose the random
values of velocity v;* from a Maxwell distribution
with kgT = m = 1, i.e. from the Gaussian distri-
bution of variance 02 = 1. Figure 1 illustrates the
difference of evolution of the ensemble of particles
with randomly distributed (from the Gaussian dis-
tribution of variance o2 = 1) initial conditions and
perturbed by the replacement vV = av°ld + v
for different values of the time interval 7 between
such perturbations. We see the transition to one
(common for all particles) trajectory for sufficiently
small time interval 7.

Theoretically a transition from chaotic to non-
chaotic behavior in such a system may be detected
from analysis of the neighboring trajectories of two
particles initially at points ro and r( with starting
velocities vo and v(. The convergence of the two
trajectories to the single final trajectory depends
on the evolution with a time of the small variances
Ary =r), —r; and Avy = vj —vi. From formal so-
lutions r = r(rg, vg, t) and v = v(rg, v, t) of the
Newton’s equations with initial conditions r = ry
and v = v at t = 0 it follows the mapping form of

the equations of motion for Ar and Av [Kaulakys
& Vektaris, 1995a, 1995b]:

(met) =las v m) (o) @

Avi Avy,

where the T matrix is of the form

or or
= a2
Trr aTrv (9I‘k (9Vk

T = ( ) _ 3)
T,. oT,, ov ov
AN
8rk 8vk

and the time interval 7, may depend on the step k.
For one-, two- and three-dimensional systems
the dimension of the T matrix is 2, 4 and 6,

respectively.

Matrix elements 7T,. and 7T, satisfy the
equation
T, 1 (T d) dV (r, t) dT,
a2~ T m\ T dr) T dr ey | dE

and initial conditions at ¢ =0

T!'r(rk’ Vk:, 0) = TVV = ]" TI‘V = TV!' = 0

Trr(rk) Vi, 0) = Tvv = 0; Trv — 17
. 1 &2V (5)
Tvr = T 5 ’
m dr? |, _,,

while T, = T,r and T, = T,v. Here and further
the points over the letters express the derivatives
with respect to the time.

Further analysis is based on the general the-
ory of dynamics of classical systems represented as
maps: We can calculate the eigenvalues uj of the
T matrix for each step and evaluate the averaged
Lyapunov exponents or KS entropy of the system

1
7= (= Il
Tk

1 N

. 1
= J\:}lgnoo N kzz:l T_k 1n|uk(rk) Vk7 Tk)| (6)

A criterion for transition to chaotic behavior is
Omax = 0. (7)

Comparisons of the threshold values 7. for
transition to chaos according to Egs. (2)-(7)
with those from the direct numerical simulations
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Fig. 1. Illustration of the difference of evolution in the (x, v)-space of the ensemble of particles in the autonomous Duffing
potential V(z) = #* — 22 with randomly distributed initial conditions and perturbed at time intervals 7 by the replacement
vV (k) = av(k7) + 0P, k =1, 2,... with a = 0.5. For the relatively large 7 = 2 there is no transition to the common
trajectory, for smaller 7 = 0.8 the clustering process of particles with different initial conditions is relatively slow while for
sufficiently small 7 = 0.6 a collapse to the common trajectory at the time moment ¢ = 100 is evident.
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indicate to the fitness and usefulness of the method
(2)—(7) for investigation of transition from chaotic
to nonchaotic behavior in randomly driven ensem-
ble of systems bounded in the fixed external po-
tential without the friction [Kaulakys & Vektaris,
1995a, 1995b].

3. Results of Calculations

Here we calculate the Lyapunov exponents directly
from the equations of motion and linearized equa-
tions for the variances of coordinate and velocity.
Further we extend the same analysis for the sys-
tems with friction in the regularly time depending
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Fig. 2. Lyapunov exponent (multiplied by 7) from the direct
calculations versus the time 7 between the resets of the ve-
locity v™*% (k7) = aw®? (k1) 4+ Bui*®, k =1, 2,... for motion
in the autonomous Duffing potential.

-1.5

Fig. 3. Lyapunov exponent A for motion in the autonomous
Duffing potential versus the time interval 7 between the re-
sets of the velocity v™°% (k) = av®(k7)+Gvi*™, k=1, 2,...
for different values of the parameter a.

external field and perturbed by the identical for all
particles random force.

Figures 2-5 represent an extensive analysis of
the autonomous system based on the numerical
solutions of the differential equations of motion.
Figure 2 shows quite similar behavior of the Lya-
punov exponent to that calculated from the map-
ping equations of motion (curve (a) of Fig. 2 in the
paper [Kaulakys & Vektaris, 1995a]). Figures 3-5
represent dependences of the Lyapunov exponents
on the different parameters of the model. Areas
of the parameters for which the Lyapunov expo-
nents are negative corresponds to the nonchaotic
Brownian-type motion.

In general, motion in the nonautonomous Duff-
ing potential with friction describe equations

t=v. (8)

v =2z — 42> — yv + a sin wt,
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Fig. 4. Asin Fig. 3 but for different values of 3.
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Fig. 5. As in Fig. 3 but for small values of S.
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Fig. 6. As in the Fig. 1 but for motion according to Eq. (8) in the nonautonomous Duffing potential with v = 0.07, a = 5,
a = 0.8 and 8 = 1. A transition from the actual chaotic (at 7 = 00) to the nonchaotic dynamics with the decrease of the time
interval 7 between the resets of the velocity is observable.
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Fig. 7. Lyapunov exponent A\ versus the time 7 between
the resets of the velocity v"°%(kr) = av®d(k7) + Bui*®,
k =1, 2,... for different values of the parameter o for mo-
tion in the driven Duffing potential with friction according
to Eq. (8).

For a = 0 and 7 = 0 Egs. (8) represent mo-
tion in the fixed external potential. As it was men-
tioned above, in the paper by Kaulakys and Vek-
taris [1995a] some theoretical and numerical anal-
ysis of this model was fulfilled on the bases of the
mapping equations (2)—(7).

Figure 6 illustrates evolution of the ensem-
ble of particles with randomly distributed initial
conditions in the nonautonomous Duffing poten-
tial with friction and perturbed by the replacement
vV (k1) = av®d(kT) +vf, k=1, 2,.... We ob-
serve a transition from the actual chaotic dynamics
for large 7 to the nonchaotic common for all parti-
cles trajectory with the decrease of 7. In Fig. 7 we
show the dependence on 7 of the Lyapunov expo-
nents for the motion in the nonautonomous Duff-
ing potential with friction. For the values of pa-
rameters corresponding to the positive Lyapunov
exponents, i.e. without the random perturbation
(T — 00), the system is chaotic. The negative Lya-
punov exponents for small 7 indicate to the non-
chaotic Brownian-type motion.

4. Spectrum of the Current Noise

As it has already been observed in the paper by
Kaulakys and Vektaris [1995b] such systems ex-
hibit the intermittency route to chaos which pro-
vides sufficiently universal mechanism for 1/ f-type
noise in the nonlinear systems. Here we analyze nu-
merically the power spectral density of the current
of the ensemble of particles moving in the closed
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Fig. 8. The power spectral density of the current of the en-

semble of particles moving according to Eq. (9) with F =1,
v = 0.1 and perturbed by the common for all particles noise
vV (k) = av?(kr) + vi*, k =1, 2,... with a = 1 and
different values of 7. The dense lines represent the averaged
spectra.

contour and perturbed by the common for all par-
ticles noise. The simplest equations of motion for
such model are of the form

V=F—yv, &=v 9)
with the perturbation given by the resets of veloc-
ity of all particles after every time interval 7 ac-
cording to the identical for all particles replacement
vV (k1) = av®ld (k) + 08 k=1, 2,. ... For suffi-
ciently small 7 we observe the current power spec-
tral density S(f) dependence on the frequency f
close to the 1/f-dependence (Fig. 8). It should be
noted that such spectral density dependence is non-
sensitive to some additional (nonlinear) terms in the
equation for velocity. The essential condition for the
1/ f-type dependence of the current power spectral
density is the random sufficiently strong perturba-
tion of the particles’ velocities (see also [Kaulakys
& Meskauskas, 1997] for analysis of other systems
and different perturbations).

5. Conclusions

From the fulfilled analysis we may conclude that,
first, synchronization and transition from chaotic
to nonchaotic behavior in ensembles of the identi-
cally perturbed by the random force nonlinear sys-
tems may be analyzed as from the mapping form
of equations of motion for the distance between the



particles and the difference of the velocity as well as
from the direct calculations of the Lyapunov expo-
nents and, second, the model of Fahy and Hamann
[1992] may be generalized for the ensemble of par-
ticles moving with friction in the time-dependent
potential.

The transition from chaotic to nonchaotic be-
havior in the ensemble of particles moving with fric-
tion may also be observed in the more realistic case
of motion without the momently stops of the par-
ticles. On the other hand, the motion in the time-
dependent potential without the random periodic
perturbations even in the one-dimensional case may
be chaotic or nonchaotic, depending on the system’s
parameters. Therefore, such generalization of the
model allows to investigate the synchronization phe-
nomenon and transition from chaotic to nonchaotic
behavior effect in an ensemble of systems driven
by identical random forces on the base of relatively
simple (one-dimensional) models for larger variety
of the system’s dynamics.

Moreover, an ensemble of systems linked with
a common external noise may exhibit the 1/ f-type
fluctuations. Our model may easily be generalized
for systems driven by any random forces or fluctu-
ations. On the other hand, the phenomenon when
an ensemble of systems is linked with a common
external noise or fluctuating external fields is quite
usual. Thus, an ensemble of systems in the exter-
nal random field may provide a sufficiently universal
mechanism of 1/ f-noise.
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