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A model is developed which describes for the first time inelastic collisions of Rydberg atoms
(RA) with complex neutral atomic particles, i.e., goes beyond the limits of the Fermi
pseudopotential approximation. The model is based on an analysis of a binary collision of an
RA electron with an incident particle. It is assumed that electron scattering by an atomic
particle is described by the free-electron scattering amplitude, and the transitions between the
RA states are due to the change of the kinetic energy and of the momentum of the electron
colliding with the atomic particle. In this model, the cross sections of the processes are given
by the amplitude of electron scattering by the incident atom, with allowance for the

dependence of the scattering on the electron momentum and on the scattering angle. The
general expressions obtained for the cross sections, rate constants, and diffusion coefficient of
an electron in the energy space of the RA include, as particular cases, the results of known
studies. These expressions account quantitatively for the experimentally observed dependences
of the inelastic-transition cross sections on the energy defect of the transition, on the principal
quantum number of the RA, and on the species and velocity of the perturbing particles, if the
cross sections of the processes are smaller than the geometric cross section of the RA.

1. INTRODUCTION

Much attention is being paid at present to processes in
which Rydberg atoms (RA) participate, including pro­
cesses accompanying collisions between RA and neutral
atomic particles (see the review I).The research into elastic
collisions of RA with atoms and molecules is half a century
old (see the review2 and the references therein), whereas
inelastic collisions that lead to transitions between RA levels
have been intensively investigated only during the past dec­
ade.I•3

As a rule, theoretical description of such processes are
based on the "free-electron" model proposed by Fermi,4 and
the interaction of a weakly bound RA electron with an inci­
dent neutral particle is described by a zero-radius pseudopo­
tential. Within the framework of this approximation, the
cross sections for nl ....•n' I I transitions were numerically cal­
culated,5-9 an approximation equation for the nl ....•n (I-mix­
ing) transition applicable at small defects I:J.En,•n• of the tran­
sition resonance was derived,1O analytic expressions were
obtained for the I-mixing cross sections of the elastic and all
inelastic processes at n2v~ 1 (v is the relative velocity of the
colliding atoms), II and the adiabatic mechanism of I-mixing
was investigated. 12 Quite recently, the Fermi pseudopoten­
tial model (the scattering-length approximation) was used
to obtain analytic expressions for the transitions n ....•n', 13

n ....•n', and nl ....•n'14 on the basis of the impulse approxima­
tion and by a quasiclassical method 15; these expressions are
applicable for arbitrary resonance-transition defects.

The scattering-length approximation is valid when the
amplitude for electron scattering by the perturbing particle
is independent of the scattering angle and of the absolute

value of the electron momentum within the limit of the per­
missible values of the electron momentum in the RA. This
approximation holds strictly only for the helium atom. For
heavier atoms, the scattering amplitude depends both on the
electron momentum and on the scattering angle (since p
scattering, and sometimes d scattering, are significant be­
sides the s scattering). There is no theory of inelastic colli­
sions ofRA and neutral atomic particles with account taken
of the dependences of the amplitude of the electron scatter­
ing by the incident atom on the electron momentum and on
the scattering angle. (There is only a numerical analysis of
inelastic collisions of RA with inert-gas atoms. 16-18 where
account is taken of two terms in the expansion of the s-scat­
tering amplitudes in the electron momenta.) Within the
framework of the widely used approaches based on the qua­
siclassical method or the impulse approximation, it is hardly
possible to obtain expressions for the cross sections for in­
elastic collisions of RA and netural particles with allowance
for the dependences of the free-electron scattering amplitude
on the momentum and on the scattering angle.

There exists, however, one more method of analyzing
inelastic collisions of RA with neutral particles, a method
based on a direct analysis of a binary collision of the RA
electron with an incident atom. This approach was success­
fully used by Pitaevskill9 to calculate the coefficient of elec­
tron diffusion in the RA energy space. Pitaevskil's method
was generalized and developed in Refs. 20 and 21, but no
analytic expressions were obtained for the inelastic-transi­

tion cross sections. We obtain in the present paper: on the
basis of an analysis of a binary collision of an RA electron
with an incident atom, analytic expressions for the cross sec­
tions and rate constants of the transitions n....•n' andnl -n',
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and also of the coefficient of electron diffusion in the RA
energy space. These expressions take full account of the am­
plitude of electron scattering by an incident atom as a func­
tion of the electron momentum and scattering angle, and
also of the discrete character of the atomic states. This per­
mits a rather simple calculation of the characteristics of the
inelastic scattering of a complex neutral atomic particle by
RA. From the expressions derived follows, as particular
cases, all the known equations for the cross sections and rate
constants ofRA collisions with atoms in the ground state. In
addition, an analysis of the expressions derived in this paper
reveals the physical meaning and the applicability limits of
the equations obtained by Alekseev and Sobel'man22 for the
cross sections for broadening and shifts of Rydberg levels.
The analysis generalizes also the Pitaevski'i model'9 to in­
clude the discrete character of the RA states; this makes it
possible to determine the coefficient of electron diffusion in
the RA energy space in the region of small RA principal
quantum numbers.

and the velocity dir~tions of p~~fi.cleB, QU~ tb..er~is no need
to average over the coordinates of B.

, f f 1 ~, . ,', ': '.,.' , . " "",- (

We shall consider the transitlOns itl.:.tn' a:nd n-n', Le.,
transitions with an undetermined electron orbital momen­

tum in the final state of the RA. We determine firsqhe cross
section du e~~ Ide, averaged over the vel<kity'direCtions of the
atom B, for the transfer of an energy e to the electron in e-B
scattering. We choose the coordinate frame such that the
electron momentum p is directed along the z axis prior to the
scattering by the atom B, and the electron radius vector r

relative toA + is in thexz plane, i.e., p(p,O,O) and r(r,x,O) in
a spherical coordinate system. After scattering, the coordi­
nates of the electron momentum (p'), of the momentum
transfer (Q), and of the velocity (v) of the atom B are then
p(p',fJ,q:»,Q(Q,(1T + fJ)I2,q:» and v(v,fJa ,q:>a)' Recognizing
that the mass of the atom B is much larger than the electron
mass, while the electron velocity is much larger than that of
the atom B, the law of energy and momentum conservation
in elastic e-B scattering yields for the electron energy after
the scattering

e=vQcosy, Q=2psin(8/2)

Integrating first over q:>aand q:>and then over fJa, we have

(2.4 )

lel<2vp,
(2.3 )

"

4~ S If. (p, 8) 12 /) (e-2vp sin (8/2) cos y)

X sin 8 sin 8. d8 d8. dcp dcp•. (2.2)

...:: S If. (p, 8) 12 cos 28 d8,vPe,

0, lel;;;;'2vp, 8,=2arcsin(lel/2vp).

lei
PI=Z;;'

The differential cross section for the transfer of an ener­

gye to the electron in e-B scattering is obtained by integrat­
ing the squared e-B scattering modulus lie (p,fJ) 12over the
scattering angles fJ and q:>,and averaging it over the angles fJa

and q:>a,under the condition that the electron had acquired
an energy e:

dcr'_B(p)

de

The rate constant of energy transfer to the electron,
which is equal to the rate constant of energy transfer to the
RA as a result ofa collision of the Rydberg atom of mom en­
tum p with the atom B, is obtained by multiplying (2.3) by
the electron velocity Ve (equal to p in atomic units). The
cross section dUPA_Blde for transfer of the RA energy as it
collides with B will equal the rate constant divided by the
collision velocity v and averaged over the momenta of the
Rydberg electron in the initial n! state:

(y is the angle between v and Q) or

e=2vp sin (8/2) cos y, cos y=-sin(8/2) cos 8.

+cos (8/2) sin 8. cos(cp-cp.). (2.1)

2. FREE-ELECTRON MODEL FOR THE TRANSITIONS nl-n'
ANDn_n'

Consider the collision of an RAA **(n!) with a netural
atomic particleB. The RA is large and the Rydberg electron
has a high probability of being located at a distance r,;>n2

from the core (ion) A +. The interactions Ve and Vs of the
neutral particle with the electron and the ion can therefore
be considered independently. These interactions are jointly
manifested only in the broadening and shift of the Rydberg
levels,23 whereas the inelastic processes are governed in al­
most all cases by the Ve interaction. Transitions due to colli­
sions of neutral particles with the atomic core are caused by
the inertia force that acts on the Rydberg electron as a result
of the accelerated motion of the Coulomb center A + upon
collision with a neutral. As seen from Refs. 24 and 25, the

cross sections related to this transition,mechanism can be
comparable with those due to the Ve interaction only for
very large principal quantum numbers (n,;>30--50) and in
some special cases (see the analysis of this question in Ref .
15). The present paper deals therefore with processes due to
interaction of an incident particle with a Rydberg atom.

The model developed here for inelastic collisions of
neutral particles with RA is close to the approach used in
Refs. 19-21, i.e., it is assumed that the state of the RA
changes when the RA-electron energy and momentum are
changed by collision with the incident particle B. The elec­
tron is scattered by particle B as if it were free, with scatter­
ing amplitude Ie (p,fJ), where p is the electron momentum
and fJ the scattering angle. The change of the electron coor­
dinate in the e-B scattering is insignificant and does not alter
substantially the potential energy of the RA electron. The
last assumption means that the changes of the electron ener­
gy and momentum do not depend on the e-B collision point
(at which the electron coordinate r coincides with the coor­
dinate R of the atom B), but depends on the initial momen­
tum of the electron and on the scattering angle. To calculate
the inelastic-transition cross section it is therefore necessary
to average over the electron momenta, the scattering angles,
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We obtain the cross section for the nl ....•n' transition by
multiplying the cross section by the distance t:..e = n,-3

between the hydrogen levels:
"

21'

n S 2 S 2 1 !:lE I=213 Ignl(P) I pdp If.(p,Q) I dQ, PI=-2-'
vn 1', 21" V (2.5)

Equation (2.5) is the solution of the problem of ex­
pressing the cross section of the nl ....•n' transition in terms of
the amplitude of the e-B scattering amplitude. Let us ana­
lyze this equation. IfJ: is independent of the momentap and
Q. (2.5) agrees with the results obtained in the impulse ap­
proximation [Eq. (3) of Ref. 14] and by the quasiclassical
method. 15 This agreement between the particular Eq. (2.5)
and equations obtained by other methods justifies the as­
sumptions on which it was derived. According to (2.5), in
the case of a finite transition energy defect (t:..E ';1:0) a contri­
bution to the cross section a nl.n' is made only by scattering of
an electron having a momentum higher than the threshold
momentump" and through an angle exceeding the thresh­
old angle et,

The total cross section for scattering of the particle B by
the electron cloud of A is obtained by summing the cross
section (2.5) over n'. At 2vn2~ 1 the cross section anl•n, de­
pends little on n' (see also Ref. 14) and summation of (2.5)
over n' can be replaced by integrating (2.4) with respect to
de. Changing the order of integration in (2.4) and integrat­
ing it by parts with respect to de, we get

OS-PA. = 2n S (S If.(p, e) 12 sin ede) Ignt(P) 12p3dp
v 0 0

Equation (2.6) agrees with the result of Alekseev and
Sobel'man.22 It follows hence also that the connection found

in Ref. 22 between the amplitude of forward scattering of
atomic particle B by the RA electron cloud and the ampli­
tude of forward scattering of an electron by B,

We express the e-B scattering amplitude and cross section in
terms of the partial amplitudes

f.(p, e) =1: (2LH)fdp)PL(COS e),
L

(2.10)
L

where PL is a Legendre polynomial.
We analyze first the cross section for mixing degenerate

nlstates (t:..E=0). Substituting (2.10) in (2.9) and inte­
grating at et = 0 we obtain according to (Ref. 26, Vol. 2, p.
447)

O"I."(P)

2n\"'1 (11=-2 -3 k..(2L+1)fL(P)fL·'(p).F3 -L,L+1,-,-;
v n L,L' 2 2

1,L'+ ~ ,-L'++;1). (2.11)

Here 4F3 is a generalized hypergeometric (Ref. 26, Vol. 2, p.
745). Averaging (2.11) in accordance with (2.8), we obtain
the total cross section for orbital-angular-momentum mix­
ing of degenerate nl states. The Rydberg electron is slow (its
characteristic mO,mentum is p - n -I), therefore the main
contribution to e-B scattering is made as a rule only by sand
p scattering. According to (2.8) and (2.11) we have then

Onl,n= :n3[ If,(p) 12+2 ReU.(p)fp'(p»vn

3·7 ]+-5-lfp(p) 12 + ... , (2.12)

where the ellipsis stands for the contributions of d,f, ... scat­
tering and the superior bar denotes averaging over the mo­
menta of the Rydberg electron, in analogy with (2.8), at
P, = O. Comparison of (2.12) and (2.10) shows that in the

general case the cross section anl•n [in contrast to the total
cross section ani (2.6)] is not expressed in terms of the e-B
scattering cross section. The amplitudes fL of the e-B scat­
tering enter in the expression for anl,n with different weights,
and interference of the amplitudes sets in. The following ap­
proximate relation, however, is satisfied:

1',

where 11- is the reduced mass of the RA and of the atom B, is
valid when the cross sections for transitions with change of
the principal quantum number of the RA are large (contrary
to the assumptions of Ref. 22). See also Refs. 2, 11, and 14
concerning this question.

We obtain now explicit expressions for the cross sec­
tions anl.n" Equation (2.5) can be written in the form

The cross section anl.n' has an even more complicated
dependence on the partial e-B scattering amplitudes at a
finite energy defect t:..E = (2n*2)-J - (2n'2)-1 of the tran­
sition (n* is the effective principal quantum number of the
initial nl state). Thus, substituting (2.10) and (2.9) in (2.8)
we obtain

(2.13 )

(2. is)

On/. ,,""'cr. (p) 12v2n3, !:lE=O.

2:n
On/,n'=---;;-7J [If,(p) 121'(PltP)+2 Re(f,(p)fp'(p) )/,p(Pt,p)v"n

+3Itp(p) 12IP(Pt,p~+ ... ]. (2.14)

,J'(p" p)=1-p//p, I'P(p" p)=1-3pjp+2(P',/p)2,

IP(p~, p)='/,-3Pt/p+4(pJp)~~I2/~(p,/pV

(2.8)

(2.7)

. (2.9)

II

0",.,,' (p) •••v~h'.f If.(p,6) 12 CQS~ de,
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FIG. 1. Dependence of the integrals I ;«6i') (A 1) on the Massey parameter
S = I~E In*l2v. Curves 1,2, and 3-theintegralsl:O,l~ and I";., respec­
tively according to (A3)-(A8); curves 4,5, and 6--the integrals 1~,lS;:
and l~ respectively according to (AIO)-(AI5).

The superior bar denotes here averaging in accordance with
(2.8), i.e.,

in Fig. 1. This makes it easy to c:!etermine·.the~ross sec;;tions
CTnl,n' by using (2.14) and (2.17). Npte that 1.::(s) becomes
negative at s)o.~.. J .. ,:. (, :', ..

It follows from the foregoing analysis.that if the e-B
scattering amplitude changes little with chapge of the elec-

o tron momentum is in the interval p,:<p 's. n *- J, the c'rOss
section of the transition n/ - n' is described with good accu­
racy by the expression

(2.18 )

In this approximation, the behavior of the cross sections of
the transitions n/-n'(/<,n) and n-n' follows respectively
from (2.18), (A3), (A4) and (2.18), (AlO), (All). In par­
ticular, the cross section CTnO,n' as a function of n* with v and
t:JV* = n' - n* constant reaches a maximum value

at n:'ax = 1.31(lan*I/2v)I/2, while the cross section CTn•n,

reaches a maximum

0"";:' =0.160. (p) 1l.1n I"V'I.

atn:'ax = 1.36( lan*I/2v)I/2. Analysis of the behavior of the
cross section CTnO,n' as a function of the collision velocity v

shows that, with accuracy not worse than 22%, the rate con­
stant of the transition n/ --+n'(/ <,n) is

(2.19)

where the angle brackets denote averaging over the Maxwel­
lian distribution of the collision velocities.

To calculate the rate constant of the transition n - n' we

express the cross section Un,"' in accordance with (2.18),
(AI), and (A9), after integrating by parts, in the form

PI

p=max(n*-', p,), ~=n*pt=I.1Eln*/2v,

(2.21 )

(2.22)

80.(p) S dx
0","' = 3nv'n'3 (1+xZ)" (2.20)~

Averaging (2.20) over the Maxwellian distribution of the
collision velocities we obtain by integrating by parts and in
accordance with Ref. 26 (Vol. 1, p. 324) the rate constant of
the n -n' transition (n > n')

K ,=2a·(p)u(~~. z)"," '3 2 ' 2 ,~rnvrn 0

_ 2'I·O.(p) (') (9 ",)- '. exp ST 12 U -2 ' 2 ~T ,nvrn

Here ST = laEln/2vnvT = (2T/j.t) 1/2 is the thermal ve­
locity of the colliding atoms, U(a,b;z) is a confluent hyper­
geometric function, and U(a,z) is a Whittaker function tab­
ulated in Ref. 27 (Chap. 19). From (2,21) follow limiting
expressions for the rate constants:

K", "'=0. (p)!n'l·vTn·, sr~1, .

Kn, n,=26a.(p) vT'!nn'n'·I.1EI', ST»1.

At nmax = 1.3(lanl/2vT) 1/2 the rate const~nt Kn,n' as a
function of n has a maximum at constant v and an:

IlL (p) I'IL (p" p) "" IfdM ,ZIL(p" p) =I/L(p) 11I"I£(6),

(2.17)

Using the approximate expressions for the distributions of
Ign/ (p) 12 averaged over the oscillations (see the Appendix),
we can easily average in (2.16) if the funct"ions fL (p) are
known. The contribution to the integrals (2.16) is made by a
relatively narrow range of electron momenta, viz., fromp, to
approximately 11*-1 if p, $n*-I, or in the vicinity of the
point P, if P, >n* - I. If there are no singularities (reson­
ances) in the e-B scattering at p -P, or n* -I, the scattering
partial amplitudesfL (p) change little, as a rule, in the indi­
cated momentum interval, and can therefore be taken out­
side the integral sign.in (2.16). Thus,

where S is the Massey parameter for the considered transi­
tion II (see also the Appendix). Note that in this case .the
characteristic internuclear distance is n*/2, half the de
Broglie length of the R.ydberg electron. The Appendix con­
tains expressions for the integrals!;/ (s), which are ploued
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(3.9)

(3.6)

4. LIMITS OF APPLICABILITY OF THE MODEL AND
COMPARISON WITH THE EXPERIMENTAL DATA

It is assumed in the here-developed model of a free elec­
tron that the processes are due to collisions of the quasifree
Rydberg atom with the perturbing atomB during the entire
time that the atom B remains in the inside the RA. Inverse
transitions are not taken into account. The free-electron

model in this sense is therefore applicable when the investi­
gated processes are not highly effective. This means that the
cross sections for the processes described by the free-elec­
tron model must be much smaller than the geometric cross
section of the RA. Thus, for mixed degenerate states we have

according to (2.43) 8mJ2n 7). ae (P)i, which is an inverse cri- ~
terion'for the validity of the'adiabati<:knechanism~ 12 For

Here a, is the e-B scattering transport cross section. At con­
stant a, averaging of (3.8) yields in accordance with (A9)

= 2nNB < v2 J [J If,(p,e) 12(1-cos e)sin e de]3 0 0

Xlgn(P) 12p'dP)

=NB<U2)O,(p)p'/3. (3.8)

Since a, ozae, expression (3.7) differs from (3.9) mainly
only by a factor (l +4Sd2/3)(l +2Sd2/3)-2. It follows
therefore that the Pitaevskil' expression (3.9) is valid only
for Sd < 1, i.e., for n;:: np = 0.5 (fJ./T) 1/4. At thermal veloc­
ities, np - 20:-40. At n S n p one must use the expression
(3.7) above for the diffusion coefficient. Allowance for the

discreteness of the atomic states at n S n p leads to a decrease
of the electron diffusion coefficient in the RA energy space,
to a decrease of the ionization and recombination coeffi-, ..

cients in a low-temperature plasma, and to a longer time and
less effective ionization of the RA by collisions.

which has the correct asymptotic values and differs from the
exact result (3.6) by less than 15% for all Sd'

We compare now (3.7) with Pitaevskil's result, 19which
is likewise obtained by changing the order of integration in
(2.4) and integrating it by parts with respect to dE, i.e.,

where 5d = bE JUT' Averaging separately the numerator
and denominator of (3.3), we obtain from (3.4) an approxi­
mate for the diffusion coefficient

b, and is therefore a good approximation of the sum at all a.
Averaging in (3.3), with allowance for (4.4) over the Max­
wellian distribution of the velocities, we have

B(E) = (2"'lnb"')NBo.v:'" '6:' exp('6112) [(4Sd2+1) V ('/2, 2'I·W

(3.1)

(2.23)

E=(2n2)-1,

32N RO, J ~ J dx
B(E)= 3n'l'n" exp(-v2Iv/)vdv",", k2 (1+x")3'• 0 k_1 M2un' (3.2).' • , 'I'

After integration by parts with respect to du, expression
(3.2) takes the form

mGZ (- 'I, I 'Kn,n' =0,140. p)vT I dnl '.

Note that at ST ~ 1 we have'

2'N a nv 2 < ~ u"k3)B(E)= Rn' T "'"' I (?"n"i"-l-Ir2l" , (3.3)'~I
where the angle brackets denote averaging over the Maxwel­
lian distribution of the collision velocities. The sum in (3.3)
is of the form

i.e., b = (1.SJ) -1/2 =' 0;645;' At"d> t (3.4) depends little oil

~. k3 J k3dk a2+2b2,",", ~ = . (3.4)
k_1 (a2+k2)3 b (a2+k2)3 4(a2+b2)"

The lower integration limit must be chosen here to have
( 3.4) yield the exact result as a -- 0 (Ref. 26, Vol. 1, p. 651):

ss= L,k-,=J k-' dk= (2b2)-I=L202, (3.5)
k_1 b

whereNB is the density oftheatomsB. Using (2.20), we can
write

K••., n,~2,30n, n' «v» <v).

If the e-B scattering amplitude!. (p,O) depends strong­
ly on the momentump atp, <.pS n*-I, the cross section for
the inelastic transition must be calculated from (2.14)­
(2.16). It follows hence also that in the vicinity of the reso­
nant scattering of slow electrons by atoms (which we have in
fact predicted before28-3ofor alkali-metal atoms) the ampli­
tude influences only transitions with lan*1 S 2vn*3(2E,) 1/2,

where E, is the position of the resonance, with E, -0.1 to
0.0011 eV for alkali-metal atoms.30 Consequently, such re­
sonances contribute mainly only to the cross sections for
elastic and quasielastic scattering (Ian* I< 1).

3. ELECTRON DIFFUSION COEFFICIENT IN THE RA

ENERGY SPACE

Having now an expression for the rate constant of the
n -+ n' transition, we can calculate also the electron diffusion
coefficient in the RA energy space, due to collisions of the
RA with neutral particles of type B. Quantities expressed in
terms of the diffusion coefficient are the ionization and re­

combination coefficients in a low-temperature plas­
ma, 19,31,32and the efficiency and time of collisional ioniza­
tion of the RA.33.34The diffusion coefficient was calculated
in Refs. 19 and 31 without allowance for the discrete charac­

ter of the atomic states. We obtain now an expression for the
diffusion coefficient B(E), with full allowance for the dis­
crete character of the atomic states, and for the transitions
between all the RA levels. By definition, 19,31-34
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[nOP= (2/5n) [7 arcctg H366'+22s

-(366'+40s'+156)ln(Hs-')], , (A7)

!g"o(p) 1'=4n'/np'(Hn"p')', (2n")-I«p«t+t/,. (A2)

Substituting (2.15) and (A2) in (Ai) we get

(A6)
6«1,

~:;»1,
lap f 1-(6/n)s(21n ~-I-1)+ ... ,

nO ~ 1 -1/3n~'+2/5n6'+ ... ,

["0'= (2/n)[ arcctg s-s In(Hs-') ], (A3)

['~{ 1-(2/n)~(2In~-I+1)+ ... , s«1, (A4)
nO 1/3ns'-4/15ns'+ ... , s:;»1,

Ino'p= (2/n) [arcctg ~+4s- (4~'+3~)In (H;-2) ], (A5)

APPENDIX

Calculation of the Integrals 1~~t')(S).

From (2.16) and (2.17) we have

j' '.' 'of' ",p ./f{',)\; '".;.) >~..fl .,~(,?~"',
5,CONCLUDINGREMARKS, "',,, ,,'" ';;;. d(i

r A model was'deveiop&iwjth1whi6h it Was po~~it>ie;\for
the first time ever, to describe theoretically inelastic cOlli­
sions ofRA with neutral atomic particles, without resorting
to the Fermi-pseudopotential approximation. The mollel is
based on an analysis of a binary collision of a Rydberg elec­
tron with an incident particle. In this approximation, the·
transition cross sections are expressed very simply in terms
of the amplitude of the scattering of the electron by th~ atom­
ic particle, with allowance f0r the dependence of this ampli­
tude on the electron momentum and on the scattering angle.
Measurement of the cross sections of processes that occur in
collisions of an RA with a neutral particle permits a deter­
mination of the characteristics of scattering of a very slow
electron by an atomic particle. This model cari be general­
ized to describe nl .....•n'[' transitions, where it is necessary to
consider also the changes of the angular momentum of the
Rydberg atom as it collides with the atomic particles, as'\vell
as for the description of RA collisions with molecules, when
scattering by a Rydberg atom takes a molecule into another
vibrational-rotational state. Furthermore, in view of our
present results, it is necessary to revise the physical meaning
and the limits of applicability of the Rydberg-level broaden­
ing theory based on the impulse approximation.2,22,28-30,37

The author is indebted to L. P. Presnyakov for constant
support of the research in this field and to V. S. Lisitsa for
helpful remarks.

At [~ n we use the radial part, averaged over the oscillations,
of the Rydberg-electron ns-state wave function in the mo­
mentum representation 11,14.22:

[L(L') (I::) [L(L') ( ) J [L(L') ( ) I () I' 'd,,(I) ••••••• ,,(I) P" P = P" P g"(l) P P p.
'" (AI)

cipat quantum numbers, n>20-2S: ..F9tlRA1ot)1Ijsions with
inert gases, our model is applicable also at SQ1a).le'i; n'" ( -10-,.
20).14, :" J:' '/\!.\n :1\\ . ',::.• ~:~ ~,(~.:·r~li "£,\(Je,l

IJ

I6.EI=min({6,}n'-', [1-{6,} ]n'-'),

where {8/} is the fractional part of the quantum defects. [at
{8/} ;::,0.5, transitions to two groups of states with
n' ;::,n* ± 0.5 are significant, and the cross section for the
quenching such an nl state is equal to the sum of two cross
sections of type (2.18).]

By way of example, Figure 2 shows a comparison of the
experimental35 cross sections for quenching the RA Rb (ns)
by rubidium atoms in the ground state Rb(5S), on the one
hand, with the cross section (2.18) obtained in the free elec­

tron model; on the other. Since the quantum defect of the ns
series of Rb is 8s = 3.13, the principal channel of Rb(ns)
quenching is the transition with the smallest transition-ener­
gy defect ,aE = 0.13n*-3, i.e., the transition
ns .....•(n - 3) j,g,h, .... The cross section used by us for elec­
tron scattering by Rb(5S) was 0'/ = 29001Ta6, obtained in
Ref. 35 after averaging the theoretical cross section for elec­
tron scattering by the Rb atom36 over the momenta of the
Rydberg electron. Note that the cross sections for RA
quenching by alkali atoms are very large, so that the free­
electron model is applicable here at relatively large RA prin-

transitions from an isolated level with large defect of the
transition resonance, the free-electron model is applicable at
smaller principal quantum numbers of the RA, i.e., accord-
ing to (2.18), at 81Tv2n7~O'e (p)In/ (5'). ,

At 2vn2~ 1, transitions to a large number of states with
n';""'n are effective. For the model to be valid in this case it is

necessary that the summary cross section (2.6) likewise be
smaller than the geometric cross section of the RA, i.e.,
41Tn4~O'B_PAe ;::'O'e(p)/vn. According to the optical
theorem, O'e(fi) ;5 41Tp-2 ;::,41Tn2.It follows therefore that at
2vn2 ~ 1 the free-electron model and the theory of Alekseev
and Sobel'man22 can be used to describe collisions of RA

with any neutral atomic particle.
In experiment one measures most frequently the cross

sections for quenching nl states with smalll = 0,1,2,3. Ac­
cording to our present results, such cross sections are deter­
mined at 2vn2 ~ I by transitions to the nearest n' level with
the smallest transition-energy defect

FIG. 2. Cross section for quenching of the ns states of rubidium by colli­
sions with rubidium atoms in the ground state, at temperature T = 400 K,
vs the effective principal quantum number n*. Circles-experimental
data35, solid curve-calculation according to (2.18) at (Fe = 29()(l1Ta~,
dashed and dash-dot curves, respectively-numerical calculation35 in the
impulse approximation at (Fe = 41T1 1.1 z = 29001Ta~ and with allowance
for the dependence of the cross section Ue, averaged over the electron
momenta in the ns state, on n,
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I n'= (2/n) [arcctg;- (3;3+5;) /3 (1+;2) 2], (AlO)

In (A3 )-(A8) we have 5" =PI n* ~n*; 5" ~ 1 means ac­
tually that 5S0.1, while 5"~ 1 means that 5"~ 3. Plots of
I~it') (5) are shown in Fig. 1.

n-l

2 _ 1 ~ 2 _ 32n2
Ign(P) I =2.Ll (2Z+1) Ignl(P) I - (1+ 2 2\4' (A9)n '~O .. n n P

Substitution of (2.15) and (A9) in (AI) yields

Translated by J. G. Adashko
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(AI4)

(AI5)

(All)

S<1,
;»1,

;<1,
s»1,

I { 1-16;/n+ ... ,
'P ~

n ~ -8/5n;'+144/35n;' +... ,

{ 1-16;/3n+ ... ,I,,' ~ 16/15n£'-16/7n;7+ .. "

I,,'P= (2/n) [arcctg ;+16;3 In (1+;-2)

- (16;'+25;3+1£) / (1+;2) 2).

InP= (2/5n) [7 arcctg;+ (384;5+160;3) In (1+;-2)
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