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Abstract. We obtain expressions for Rydberg level broadening and shift cross sections and 
rates suitable for elastic collisions of ground-state rare-gas atoms with Rydberg atoms. The 
semiclassical impact broadening theory is used. The interaction of a Rydberg atom with 
a rare-gas atom is approximated by the superposition of polarisation potentials and the 
Fermi pseudopotential. It is shown that similar expressions for the broadening and shift 
cross sections due to the perturber-Rydberg-electron interaction can be obtained in the 
JWKB approximation for the Rydberg-electron wavefunctions and for the square-well model 
potential. Consequently the shift and width of the Rydberg level are not very sensitive to 
the shape of the potential but only to its normalisation. Expressions for the shift and width 
in the square-well potential approximation suitable in the high-density limit of the perturb- 
ing atoms are obtained. Limits of the applicability of the expressions for the broadening 
and shift cross sections are discussed. Calculated broadening and shift rates agree well 
with experimental results for the broadening and shift of Rydberg levels with small, medium 
and large principal quantum numbers by all rare gases excepting neon. 

1. Introduction 

Measurements of the shift and broadening of spectral lines associated with transitions 
between the ground state and highly excited states have been performed continually 
during the last fifty years and are being carried out at present. A review of early work 
in this field can be found in the paper by Ch’en and Takeo (1957). An analysis of 
later experimental and theoretical investigations of the broadening and shift of atomic 
Rydberg levels in gases is given in the review by Kaulakys and Serapinas (1984). The 
theory of the interaction and collisions of Rydberg atoms with neutral perturbers, first 
formulated by Fermi (1934) and improved by Reinsberg (1937), Firsov (1951), Alekseev 
and Sobel’man (1969, has been recently reconsidered by Omont (1977). 

On the basis of the paper by Alekseev and Sobel’man (1965) the broadening and 
shift of a high-Rydberg series perturbed by neutral atomic particles were related to 
the resonances in the elastic scattering of an extremely slow electron by the perturber 
(Matsuzawa 1975, 1977, Kaulakys et al 1979, Kaulakys 1980, 1982). This allowed us 
to explain the oscillations in the dependences of the widths and shifts on the principal 
quantum number of the Rydberg levels of alkali atoms in the self-broadening. From 
a comparison of theory with experimental data (Mazing and Serapinas 197 1, Stoicheff 
and Weinberger 1980, Stoicheff et al 1981) the energy and width of the 3P resonance 
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in the scattering of an electron by alkali ground-state atoms was obtained (Kaulakys 
1982). The existence of this resonance explains the considerably stronger broadening 
of the alkali atoms’ Rydberg levels in self-broadening than in the broadening by noble 
gas (Kaulakys 1980). 

However the theory of Alekseev and Sobel’man (1965), as was shown by Omont 
(1977), is valid only under the conditions, where the Rydberg atom undergoes essentially 
inelastic collisions. For collisions with noble-gas atoms this means n 2  >> U-’, where n 
is the principal quantum number of the Rydberg level and v is the collision velocity. 
For collisions with other atoms, e.g. alkalis, the validity condition of the theory of 
Alekseev and Sobel’man cannot be so strong. In the case when the theory of Alekseev 
and Sobel’man (1965) fails the classical-path method for the description of the ground- 
state atom collisions with Rydberg atoms can be used. For elastic collisions the 
broadening and shift cross sections can be expressed in terms of the semiclassical 
phaseshift. However, in the case of small and medium n the contributions to the 
broadening and shift cross sections due to the Rydberg-electron-perturber and 
Rydberg-atom-core-perturber interactions are not additive. These cross sections must 
be calculated using the phaseshift due to both interactions (Omont 1977). Broadening 
cross sections were calculated numerically in such a way by Ueda et a1 (1982a, b) for 
rare-gas-induced broadening of calcium principal series lines. 

The purpose of the present work is to obtain expressions for the Rydberg level 
broadening and shift cross sections due to the elastic collisions of Rydberg atoms with 
ground-state noble-gas atoms of low and high densities. In addition, the comparison 
between theory and experimental data will be presented and validity criterion of the 
theory will be discussed. 

We make the following assumptions: (i) the impact approximation of the spectral 
line-broadening theory is suitable for low densities of the perturbing atoms, (ii) the 
perturbation of the upper (Rydberg) state induces the line broadening and shift, (iii) 
the semiclassical theory and straight-line trajectory approximation are appropriate, 
(iv) the interaction of a Rydberg atom with a rare-gas atom is approximated by a 
superposition of polarisation potentials and the Fermi pseudopotential, (v) the line 
broadening is induced by the isotropic part of these potentials, (vi) the JWKB approxima- 
tion for the Rydberg-electron wavefunctions is appropriate, and (vii) contribution from 
inelastic collisions to the broadening is negligible. 

2. Impact approximation for broadening and shift of Rydberg levels 

According to the impact theory, the intensity distribution of the line corresponding to 
a transition between two levels is given by the Lorentzian profile. The width y and 
the shift A of the line can be written as (see, e.g. Sobel’man et a1 1981) 

y = 2 N (  d v )  A = N(u“v) ( 1 )  

where N is the perturber density, ut and U” are the effective cross sections for the 
impact broadening and shift of the line, respectively. The average is taken over the 
distribution of relative velocity of the interacting atoms. It should be emphasised that 
the broadening and shift of an optical line corresponding to the transition between 
the Rydberg state and the low-lying state (e.g. ground state) is entirely determined by 
the perturbation of the Rydberg state. 
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For elastic Rydberg-atom-perturber collisions the broadening and shift cross sec- 
tions can be written as 

~ ‘ = 2 . i r  (1 -COS q ( p ) ) p  dp I,p 
U”= -27r lom sin q( p ) p  dp 

where p is the impact parameter and q is the semiclassical phaseshift due to the total 
interaction V between the Rydberg atom and perturber. Here q is given by the formula 

where R is the internuclear distance. A straight-line trajectory in equation (4) is 
assumed. 

3. Interaction of a Rydberg atom with a neutral atomic particle 

The potential of the interaction between the Rydberg atom and the neutral atomic 
particle consists of the polarisation attractions and the short-range interaction between 
the Rydberg electron and perturber. The polarisation interaction V,,, = -&E2,  where 
a is the polarisability of the perturber and 

is the electric field originated by the core of the Rydberg atom and the Rydberg electron. 
Here R and r are the location of the perturber and the coordinate of the electron, 
respectively, ro is the distance of the short-range interaction between the electron and 
perturber. Thus 

a R * - - ( R . ~ )  a V,,,(R, r )  = --+a -- IR - rl> ro. ( 5 )  2R4 R31R - rI3 21R - rI4 

V,( R )  = - a / 2 R 4  is the polarisation attraction between the perturber and the core of 
the Rydberg atom, 

R 2 - ( R .  r )  
R 3 / R  - rI3 

v,, = a 

is the interaction between the Rydberg electron and dipole momentum of the perturber 
induced by the core of the Rydberg atom. The calculation of the matrix element of 
the operator V,, becomes simpler if the expansion of this operator in terms of the 
Legendre functions P, is used. Then equation ( 6 )  is simply 
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where the expansion coefficient in (7) is (see Baylis 1969) 

r < R 

-CY"(")" R3r r r > R .  
VL:'(R, r )  = 

The potential of the electron-perturber interaction V,( r - R )  consists of the polarisa- 
tion attraction -a/2lr  - RI4 and short-range interaction. This potential causes the 
electron-atom scattering cross section and, for an atom with small polarisability, may 
be approximated by a Fermi pseudopotential 

V,(r - R )  = 27rLa(r - R )  (9) 
where L is the scattering length. 

Using hydrogen-atom wavefunctions 

ILnrm(r )  = Rndr)Y,m(r/r) 

we may evaluate the matrix elements of the operator V 

(nlllmll VIn212m2) 

((21 + 1)(21+3) 
(ImlP,Il+lm)= 

I (  1 + 1) - 3m2 
(ImlP,/Jm)= 1 3  I 

(21- 1)(21+3) 

and so on. 

elements of the operator V 
When only elastic collisions are important one needs only the diagonal matrix 

a0 
CY - - --+ 1 (lm/P,llm) lo VL:'( R, r)R:,( r)r2 d r  + ~TLR:~(R)I xm(R/R)12. 

2~~ 
(12) 

The isotropic part of this matrix element, or matrix element averaged over magnetic 
quantum number, is 

R:,(r)r2 dr+iLR$(R).  
1 

Vnl( R) E - 
21+1 m 
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This averaging in the calculation of the phaseshift according to equation (4) means 
that the quantisation axis of the Rydberg states is not rotated in the perturber-Rydberg- 
atom collisions. 

For evaluation of the integral in equations (12)-( 13) the JWKB approximation for 
the radial parts of the wavefunctions is convenient to use. We can write, according 
to Omont (1977), 

l o  r S  rl ,  r Z  r2 

where p r  is the radial impulse, 

p r  = [2/ r - l /n*2 - ( ~ + ~ ) 2 / r z ] 1 ’ 2  

rl and r2 are the roots of p r  which delimit the region of classical motion, 

r,,*= n*2F n*[n*’-(1+$)’]’12 (15) 

and n* is the effective principal quantum number. 

4. Broadening and shift cross sections 

According to equations (4) and ( 5 )  the phaseshift 7 may be written as 

T (  P )  = ~ c (  P )  +Tee( P )  + T e ( P )  

where 

is the phaseshift due to the polarisation attraction between the perturber and core of 
the Rydberg atom, qe and T~~ are the phaseshifts caused by Rydberg-electron-perturber 
interaction and by the potential Vce(R)  (see equation (6)), respectively. In the case 
of the Fermi pseudopotential ve can be evaluated according equations (4), (13) and (14) 

where K is the complete elliptic integral of the first kind. In equation (18) sin2(. . .) 
have been replaced by i. It can be seen that K approximately equals r / 2  if 1 << n. 
Accordingly 
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T,, may be evaluated in the same way. We have 

a ( r : + p 2 ) ( r 2 - p )  r2+p ' I 2  

q c e ( P )  { -2vpj+ vr:p4 (7) 
.?ra 

1-3 

fr, d p r2 

p 3 r2. 

Thus 1 vcel << I ~ , 1  if p S ir,. It should be noted that for R > r2 the polarisation interaction 
between the perturber and Rydberg atom defined by equation ( 5 )  results the van der 
Waals potential 

VbO,',(R, r )  = -%[ R 1 +2( i)2 +. . .] r < R. 

Approximately the total phaseshift may 'be written as 

* 2  L 
p s n  

1 5 .?ran *4 I 16vp5 

* 2  n * 2 s  p < 2n 

p > 2n*' 

The broadening and shift cross sections can be calculated substituting equation 
(22)  into equations ( 2 )  and ( 3 ) .  It should be emphasised that Rydberg-atom-perturber 
collisions with p > 2n*2 cause small contributions to the broadening and shift cross 
sections. For the van der Waals potential this can be seen from equations ( 2 ) ,  ( 3 )  and 
(22) ,  while for the Fermi pseudopotential Ve(R) = 271.L1(CIn,,(R)1' (see equation ( 9 ) )  
this follows from the analysis of the asymptotic of the radial part of the wavefunction 
which can be written as 

where CD is the Airy function (see Landau and Lifshitz 1960). 

have 
For small n* the integrals in equations (2)-(3) are defined by 77,. Accordingly we 

= 4 ~ i - n * ~  + $"[x4 Ci(x) - (x3 - 2x) sin x - (6  - x') cos x] 
(23 )  n* < 2-4/9 ( ~ / 5 . 7 ) ' " ~ n $  = 0.70nz 

where 
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Si(x) and Ci(x) are the sine and cosine integrals. From equations (23) and (24) it follows 

( 4 ~ r n * ~  n*<nf  
I 

u % - O  n*< 1.09nf. 

For larger n* from equations (2), (3) and (22) we have 

U ' =  U;+- 8 ~ r n f ' ~ [  I - -  (5;)i/2(2;)i/3 - - 1 ] n* > 0.70nf n *' 2n*2 

E(q V -$) +u:(;)1/3($--$) l.O9nf< n*<2-4/9n:=0.73n; 

(29) 

( 1 - $) + a: [ 1 - (;) n* > 0.73n,*, 
V $1 

,If = 

where 

are the broadening and shift cross sections due to the polarisation interaction between 
the perturber and core of the Rydberg atom. In equation (29) 3J2 is replaced by 1. 

Thus we have that the broadening cross section as-a function of n* for small n* 
increases as n*4, reaches its maximum value ( + ~ ~ ~ = y J $ r n ~ ~  at n* = ($)'/'nT and then 
decreases asymptotically approaching the value U;. The shift cross section increases 
very rapidly at n* = nf ,  and reaches its asymptotic value U"= a," +U:, where a," = 
2~rL/v.  Note that equation (28) is close to the expression given by Omont (1977). 

It is important to note, that the broadening and shift cross sections due to the 
perturber-Rydberg-electron interaction are not very sensitive to the shape of the 
potential but only to its normalisation. To show this we consider scattering by the 
square-well potential 

{irL!qrr:= 3L/16n*6 R < 2n*2 
R > 2n*2 Vsw(R) = 

(see Hickman 1979). The normalisation is chosen such that 477 1; Vsw( R ) R 2  dR = 2rL.  
Potential (3 1) corresponds to the Fermi pseudopotential (9) when the electron charge 
density is uniformly spread out inside a sphere of radius r,. Substituting equation 
(31) into equations (2)-(4) we obtain expressions for the broadening and shift cross 
sections which are very close to the expressions (22) and (24). Approximately 

n* < n:' 

Compare equations (32)-(33) with equations (26)-(29). 
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Broadening and shift rates may be expressed in terms of the averaged cross sections 
according to equation (I): 

a: = (a’v)/ B a; = (a”v)/ 73. (34) 

For a Maxwellian distribution of relative velocity of the colliding atoms from equations 
(26), (28), (30) we have 

where 

L2 
Y = n  

f ( y )  = y-II2[ 1 - ( 1 - y )  e-Y] + y3/2Ei( - y )  

and Ei(-y) is the exponential integral. The limiting form of the function f ( y )  for 
small arguments is 

f ( y )  = 2y”’ - (0.923 -In y)y3/’ +. . . 

f ( Y )  = Y-I /*  

y + o  (yGO.01) 

and the asymptotic expansion is 

y+co ( y 3 4 ) .  

The function f ( y )  reaches its maximum value at the point y = 0.68: f(0.68) 
representative plot of function f(y) is shown in figure 1. 

a’,”””=2.81LI/fi at the point n* = 1 , 0 8 ( ~ L ~ / 4 ~ 7 ) ~ ~ ~ .  

necessary (see § 6). . 

0.8. A 

The broadening cross section, U:, as a function of n* reaches its maximum value 

The extension of this average to the shift cross section is evident but not very 

Y 

Figure 1. The function f(y) according to equation (36). 
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5. High-density limit 

The impact approximation of the broadening theory used above is applicable at 
relatively low densities of the perturbers. The general condition for the validity of the 
impact approximation is a small number of perturbing particles in the interaction 
volume. For Rydberg-atom-neutral collisions we have two interaction distances: the 
Weisskopf radius for scattering by the core pC=(.rrcu/4v)"' (see equation (17)) and 
the radius of the Rydberg atom r2.  Thus we have as the condition of the validity of 
the impact approximation for the scattering by the core of the Rydberg atom 

xC = $.rrp:N = (f.rr2aN/v) << 1 (37) 

which is satisfied up to the densities N = 1 rd = 2.69 x 10'' cm-3 = 3.98 x au. For 
the interaction of the perturber with the Rydberg electron the condition of the validity 
of the impact approximation of the broadening theory formally is 

,ye = $rrr:N = y.rrn*6N <C 1. (38) 

Note that at N = 1 rd, ,ye = 1 when n* = 4.4. 

of density are (see Royer 1980), 
More precisely, the expansions for the width and shift of the spectral line in powers 

A l d = N d + ~ N 2 a b +  . . .  YId = 2Nb +o( N3)  (39) 

where a, b and d are constants depending on the interaction potential and velocity of 
the perturbers. 

In the high-density limit the lineshape approaches a Gaussian and these expansions 
become, in powers of N-'l2 

where ( V) = V ( R )  dR and classical approximation for atomic collisions is used. 

in closed form. Approximately 
In the square-well potential model (equation (31)) all quantities can be obtained 

a = s g n ( ~ ) 2 ~ . r r n * ' ~ / 3 n T ~  b = 4 ~ v n * ~  d = O  n*<nT (42) 

Thus 
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while the expression for the width coincides with equations (32) and (1). The high- 
density expansions are 

Ahd = 2 r L N [  1 - 3 ( 2 6 ~ n  *6 N ) - ' ]  (45) 

We can formally define broadening and shift cross sections as 

6. Discussion and comparison with experiment 

The expressions obtained may be used for the description of the broadening and shift 
of nl Rydberg levels by noble gases provided 1 << n and the contribution from inelastic 
collisions to the broadening may be neglected. According to equations (26)-(30) for 
small n* broadening is defined by the Rydberg-electron-perturber interaction while 
for higher n* (n* 3 n t )  the contribution of this interaction to the broadening decreases 
and the broadening cross section becomes defined by the core-perturber elastic scatter- 
ing cross section. The Rydberg level shift for small n* is very small in accordance 
with the strong collision limit ( T (  p )  >> 1)  of the general spectral line broadening theory 
(see e.g. Royer 1980). Under the conditions for the Rydberg-neutral collisions with 
high n*, we have the weak collision limit in the spectral line broadening theory for 
the Rydberg-electron-perturber interaction. We find that the shift rate due to this 
interaction is defined by the integral of the interaction potential and for the Fermi 
pseudopotential (9) equals 2rL. 

If the number of perturbing atoms inside the Rydberg atom is great, i.e. if ,ye >> 1, 
we must use the high-density expansions for the broadening and shift due to the 
Rydberg-electron-perturber interaction. In the limiting case ,ye + CO ( n  + CO) the shift 
rate defined by this interaction approaches 2rL, the same value as in the impact 
approximation for high n*, while the broadening rate decreases and is smaller than 
(uLu). Thus the broadening becomes defined by the Rydberg-atom-core-perturber 
interaction-as is also the case in the impact approximation. 

Precise measurements of Rydberg level broadening until now have been performed 
in the relatively low-density region of the perturbing gases, i.e. at N << 1 rd while almost 
all the measurements of Rydberg level shifts so far have been performed in densities 
N b  1 rd (see Kaulakys and Serapinas 1984). Thus for the description of the experi- 
mental results for the broadening and shift of spectral lines associated with transitions 
between the ground state and highly excited states in most cases we must use the 
impact approximation for the broadening and high-density expansions for the shift. 

In figures 2 and 3 plots of the theoretical broadening and shift cross sections are 
shown together with experimental results for broadening of Na(ns) and shift of Cs(np) 
levels by noble gases. Scattering lengths and polarisabilities for the rare-gas atoms 
employed in the present calculation are shown in table 1. In table 1 the typical values 
of the critical effective principal quantum numbers n t  and n? are also presented. Note 
that measurements of the broadening have been performed in noble gases of low 
density ( N  - 10-6-10-4 rd) while measurements of the shift were carried out at N = 
0.948 rd. Thus for a description of the broadening we must use the impact approxima- 
tion (equation (35)) but the shift of Rydberg levels with n * s  10 produced by Ar, Kr 
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Figure 2. Broadening cross sections averaged over the Maxwellian collision velocity 
distribution plotted against n* for the broadening of Na(ns) levels by noble gases. The 
symbols indicate the experimental results of Kachru et al (1980) ( N  - 10-6-10-4 rd, 
T=400 K). The full curves show the present theoretical calculations, equation (35); the 
broken curve indicates a; = 4 ~ a ; n * ~ .  

Figure 3. Shift cross sections averaged over the Maxwellian collision velocity distribution 
plotted against n* for the broadening of Cs( np) levels by noble gases. The symbols indicate 
the experimental results of Tan and Ch'en (1970) ( N  = 0.95 rd, T =  550 K). The full curves 
show the present calculations in the impact approximation, equation (29) ; the broken 
curves designate the high-density expansion for the square-well potential, equations (45) 
and (47). 
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Table 1. Scattering length, L, and polarisability, a, of the rare-gas atoms and typical values 
of the critical effective principal quantum numbers nT and nf  corresponding to the collisions 
with Na at a temperature T = 400 K. 

He 1.14 1.383 4.5 7.7 
Ne 0.2 2.68 3.3 4.8 
Ar -1.6 11.08 5.8 9.3 
Kr -3.2 16.74 7 .  I 11.8 
Xe -5.8 27.06 8.3 14.2 

a Golovanivsky and Kabilan (198 1 ) .  
Radtsig and Smirnov (1980). 

and Xe can only be explained by the high-density expansion (equation (45)), while 
for n* >> ny we have the weak collision limit and the expression for the shift in the 
high-density expansion coincides with the impact approximation. For the shift pro- 
duced by He and Ne n? is small (n:' = 4.4 and 3.4 respectively) and for n* b 5 we have 
the weak-collision limit. That is why the shift produced by He and Ne can also be 
explained by the impact approximation. 

The agreement of the calculation with the experiment is rather good except for 
broadening by neon for which the scattering length approximation is not very suitable. 
For helium this approximation is valid if the electron's energy is smaller than about 
1 eV (see e.g. Golovanivsky and Kabilan 1981). The scattering length approximation 
for the description of the scattering of the electrons by heavy rare-gas atoms is 
appropriate for very low energy, or slow, electrons. At large distances from the core 
the Rydberg electron is slow and that is why the Fermi pseudopotential approximation 
(equation (9)) for the interaction of the Rydberg electron with rare-gas atoms is suitable 
at large impact parameters. On the other hand, the broadening and shift cross sections 
(see equations ( 2 )  and (3)) depend mainly on the phaseshift ~ ( p )  at values of p for 
which q( p )  G 1. However, according to equation (19) such a condition at small n* is 
valid for large p. Therefore our calculations are valid for the description of the 
broadening and shift of the Rydberg levels with small, as well as with large, n* by all 
rare-gas atoms except neon. The theory must be improved when inelastic collisions 
are important (see Gounand et a1 1982, Kaulakys and Serapinas 1984). 

Finally a few remarks should be made on recent papers that have treated Rydberg- 
neutral collisions. Thus in papers by Hahn (1981, 1952), Flannery (1982) and Mat- 
suzawa (1984) the impulse approximation theory has been developed and the limits 
of applicability of the impulse approximation in thermal Rydberg-neutral collisions 
has been discussed. In a paper by Cheng and van Regemorter (1981) semianalytical 
methods are presented for computing quantum form factors in inelastic Rydberg- 
neutral collisions. Model potential calculations for the Rydberg states of the NaNe 
molecule have been performed in a paper by Masnou-Seeuws et a1 (1982) which 
predicted that rare-gas collisions could induce a population transfer from a Rydberg 
( n  + l ) p  level to the nl( I >  2) manifold. Such transitions would not be predicted by 
the Fermi model. However, as is shown in the present paper, such complicated 
numerical calculations are not necessary for the description of the broadening and 
shift of Rydberg levels by all rare gases excepting neon when the contribution from 
inelastic collisions is negligible. That is why the broadening and shift cross sections 
are not very sensitive to the dependence of the Rydberg-electron-perturber interaction 
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potential on the internuclear distance and angular coordinates but are defined by the 
integral of the interaction potential (see 5 4). 

Summarising, expressions for the Rydberg level impact broadening and shift cross 
sections suitable for elastic collisions of ground-state rare-gas atoms with Rydberg 
atoms have been obtained. The potential of the interaction of a Rydberg atom with 
a rare-gas atom is approximated by a superposition of polarisation potentials and the 
Fermi pseudopotential. Similar expressions of the broadening and shift cross sections 
have been obtained for the scattering by the square-well potential and it was shown 
that such expressions are not very sensitive to the shape of the potential but only to 
its normalisation. This allowed us to use the square-well potential for the construction 
of the high-density expansions for the width and shift of the Rydberg levels. It was 
shown that low-density and high-density expansions for high n(n*  >> n;) lead to the 
same broadening and shift rates while for small and medium n non-linear dependences 
of the broadening and shift on the perturbing gas density were predicted. 
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