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Abstract. The non-stationary multistep (diffusion-like) ionisation of Rydberg atoms is 
considered theoretically. The investigation is based on the time-dependent Fokker-Planck 
equation and is related to collisional and microwave ionisation of Rydberg atoms. Analyti- 
cal expressions for the mean time and the higher moments of the distribution of the diffusive 
ionisation times are derived. The conditions for the occurrence of diffusive ionisation are 
obtained. The relation of the present study to stationary diffusive ionisation and the 
experimental investigation of the ionisation of Rydberg atoms is discussed. 

1. Introduction 

Considerable attention is devoted at present to the multistep transitions between the 
Rydberg states of atoms (see e.g. Biberman et a1 1982, Delone et al1978,1983, Kaulakys 
et a1 1984, Jensen 1984, Bayfield and Pinnaduwage 1985a, b, van Leeuwen e? al 1985). 
In such a process the change of the energy of a Rydberg atom in each elementary 
event (the absorption or stimulated emission of a low-frequency photon or the collision 
of a Rydberg atom with an atomic particle) is small in comparison with the binding 
energy of the Rydberg electron. The ionisation of the Rydberg atom and the recombina- 
tion of the electron occur as a result of a great number of elementary events and are 
described by the Fokker-Planck equation (see Pitayevsky 1962, Lifshitz and Pitayevsky 
1979, Biberman e? a1 1982, Kaulakys e? a1 1984). Until now a great deal of attention 
has been devoted to the theoretical investigation of the kinetics of Rydberg state 
occupation numbers, the ionisation rates of Rydberg atoms and the recombination of 
electrons in slightly ionised plasmas in stationary conditions only. Under the impulsive 
excitation of an atom to a high Rydberg state, as is the case in the experiments on the 
microwave ionisation of highly excited hydrogen atoms (Bayfield and Pinnaduwage 
1985a, b, van Leeuwen et a1 1985), the rate of diffusive ionisation of the Rydberg atom 
is defined by the solution of the non-stationary Fokker-Planck equation with specified 
initial and boundary conditions. In general, the non-stationary Fokker-Planck 
equation, in the case when the diffusion and drift coefficients are dependent on the 
energy, cannot be solved analytically, and one must be satisfied with the estimation 
of the order of the mean time of the diffusive ionisation only (Delone et a1 1978, 1983). 

The purpose of the present work is to obtain analytical expressions for the mean 
time and higher moments of the distribution of the diffusive ionisation times of the 
Rydberg atoms. In addition, the conditions for the occurrence of diffusive ionisation 
will be obtained and the relation between stationary diffusive ionisation and the 
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experimental investigation of the collisional and microwave ionisation of the Rydberg 
atoms will be discussed. 

2. Diffusive approximation 

In the situation when either the change in energy A E  of a Rydberg atom in one collision 
event with an  atomic particle or  when the absorption or  stimulated emission of the 
low-frequency photon is small in comparison with the binding energy of the Rydberg 
electron E = f n - ' ,  the process of the multistep transitions between the Rydberg states 
of atoms is diffusion-like. The theoretical treatment of the evolution of the probability 
density f ( ~ ,  t )  of the electrons in the energy space of the Rydberg atom leads to a 
Fokker-Planck-type diffusion equation (Lifshitz and Pitayevsky 1979) 

where fo( E )  is the steady-state solution of equation (l),  9( E )  = B(  &)YO( E ) ,  and B(  E )  

is the diffusion coefficient of electrons in the energy space, given by 

B ( E )  = t  C K , n , ( A E n , n ' ) 2 *  (2) 
n' 

Here K , , .  is the n + n' transition rate, and A&,,,. = E ' -  E. 

For the collisions of the Rydberg atoms with neutral atomic particles 

Kn3n'= (vun,nON ( 3 )  

where v is the relative collision velocity, N is the density of atomic particles, U,,,. is 
the cross section for a n + n' transition and the average is taken over the distribution 
of the relative collision velocity. 

A simple analytical expression for the cross section of the state-changing collisions 
of Rydberg atoms with neutral atomic particles is given by Kaulakys (1985, 1986) on 
the basis of the free-electron model 

Here g n r ( p )  is the radial wavefunction of the Rydberg electron in momentum space 
and  f e ( p ,  Q) is the electron-perturber scattering amplitude for a given momentum 
transfer Q. Substitution of equations ( 3 )  and (4) into equation ( 2 )  yields (see Kaulakys 
1986) 

2 y / 2 N u , v ~ 2 ( ~ ' 2 ( 3  +4&) ___- B( E )  = 
Trb3'2(3 + 2 ( 3 2  

where b = 0.645, ue is the electron-perturber elastic scattering cross section, vT = 
( 2 ~ / p ) ' / '  is the thermal velocity, and (d = b e / v T .  If (d << 1 ,  equation ( 5 )  reduces to 
the result of Pitayevsky (1962) 

= ( 2 ' / ' / 3 ~ ) N u ~ v % ~ ~ ' '  ( 6 )  

where ut( =U, )  is the momentum transfer cross section for electron-perturber elastic 
collisions. 
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The steady-state solution fO( E )  for such a process is the Boltzmann distribution 
(Lifshitz and Pitayevsky 1979, Kaulakys et a1 1984): 

(7) f - & - S I 2  
0 -  exp(s/T) .  

Note that according to equation (2) the diffusion coefficient in the space of the 
principal quantum numbers B, =$,, K,,,,(n’- n)*,  when lAnl<c n, n’, is related to the 
difiusion coefficient in energy space by 

B, = B(e)n6/Z4 E = Z2/(2n2)  (8) 

where Z is the charge of the core of the Rydberg atom. 
The latest experiments on the microwave ionisation of highly excited hydrogen 

atoms (Bayfield and Pinnaduwage 1985a, b, van Leeuwen et a1 1985) indicate that the 
atom polarised along the direction of a microwave electric field responds to the field 
one dimensionally, and the multiphoton transitions between Rydberg states appear as 
a chaotic process. In such a case the steady-state solution is equal to the density of 
the states of the one-dimensional Rydberg atom 

and the diffusion coefficient for wn3Z-2  >> 1 was given by Delone et a1 (1983) and 
Jensen (1984) 

B, = 0.27F&3/(wZ)4/3 w n 3 ~ - 2  >> I .  (10) 

Here Fo and w are the microwave electric field amplitude and angular frequency. 
According to equation (8) we have 

B(E)  = 0.75F&3/2/(Zw4)’/3. (11) 
Similar investigation is possible for other processes involving the multistep transi- 

tions between the Rydberg states of atoms, such as Rydberg-electron inelastic collisions 
in a low-temperature plasma (see Biberman et a1 1982) and, perhaps, for Rydberg- 
Rydberg and Rydberg-molecule inelastic collisions. 

Under a non-stationary excitation of atoms to the high Rydberg states the rate of 
diffusive ionisation of the Rydberg atoms for such multistep processes is defined by 
the solution of the Fokker-Planck equation (1). In general, equation (1) with the 
diffusion coefficients and the functionfO(e) given by equations (5)-(11) (and so on) 
cannot be solved analytically. We shall, however, show in the next section that the 
mean time and the moments of the distribution of the diffusive ionisation times of 
Rydberg atoms may be obtained analytically. 

3. Diffusive ionisation time 

The Fokker-Planck equation (1) may be rewritten in the following form 

where the drift coefficient 
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The distribution function f ( ~ ,  t )  is also the function of the initial electron energy 

f (e ,  t )  = d E ,  tlso, 0) p(., O l E o ,  0) = 8 ( E  - E o ) .  (14) 

The function P ( E ,  t l E o ,  0), as a function of E ~ ,  satisfies the backward Fokker-Planck 
equation (see e.g. Gardiner 1983) 

The probability density of the time that the electron spends in the energy interval 
[ E ] ,  E ~ ] ,  under the condition that at time t = O  the energy of the electron was so, is 

(16) 

Integration of equation (15) over the energy E according to equation (16) yields 

The moment of order k for the distribution of the times spent by the electron in the 
interval [e1, s 2 ]  is given, according to equation (16), by 

(18) 
k T k ( & O ) G t  ( E o ) = -  

In equation (18) it has been taken into account that G( eo ,  0) = 1 and G( E ~ ,  CO) = 0. 
Multiplying equation (17) by tk - '  and integrating over the time interval (0, a), one 
obtains an equation for the moment Tk(eo) :  

T o = l .  (19) 

Equation (19) must be supplemented by the boundary conditions corresponding to 
the Rydberg atom's ionisation process, such as 

The first of the conditions (20) implies the absence of free electrons and, consequently, 
the absence of electrons with very small binding energy, i.e. f ( s ,  t ) l E + O =  0 (see e.g. 
Gardiner 1983). The second condition implies the absence of a flow of electrons for 
certain s 2 >  (as a consequence of the large intervals between neighbouring energy 
levels of the Rydberg atom). As will be shown below, the solution of equation (19) 
is not usually very sensitive to the E~ in the second boundary condition. 

The solution of equation (19) with boundary conditions (20) is of the following form 

Expression (21) represents a recurrence relationship and enables one to obtain any 
moment of the distribution of the Rydberg atom's diffusive ionisation time. Having 
obtained some of the moments, the distribution function may then be constructed 
according to the maximum-entropy principle (see e.g. Kociszewski 1985). 
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Among the most interesting practical cases, the dependence of fa and B on the 
energy E is a power-type dependence (see, for example, equations (6),  ( 7 ) ,  (9 ) ,  ( 1 1 )  
and also Biberman et a1 (1982), Kaulakys et a1 (1984))t 

fo = e&-’ 
where C, A, r and s are constants. The substitution 
(21) yields 

B = Ass 

T (  E o )  = TI( E o )  = - 

(22) 

of equation (22) into equation 

r - s + l > O  2 - s > 0  

(23) 
& y S )  

T 2 ( E o )  = (2 - s ) ’ ( r  - 1) (  r +  s -3)A’ 

2(2 - s)( r + s - 3 )  
( r  - s +  l ) ( r  - 2 s + 3 )  

+ 
and so on. 

It should be noted that all of the moments of the distribution of the Rydberg atom’s 
diffusive ionisation time are finite if r - s + 1 > 0 and 2 - s > 0. The mean ionisation 
time and the other moments of the time for diffusive ionisation become infinite if either 
of these conditions is violated. On the other hand, the analysis of the solutions of the 
stationary Fokker-Planck equation (see Kaulakys et a1 (1984) and § 4 below) shows 
that diffusive ionisation takes place if r - s + 1 > 0 and it becomes impossible when 
r - s + l < O .  

According to equation (23) the mean time of the diffusive ionisation depends weakly 
on E~ if r >> 1 or E’ >> .so. When E’ = gives, respectively, 
the lower and the upper bounds for the mean ionisation time. 

and + 0;) the quantity T (  

Equation (19) may also be solved with other boundary conditions, for example 

Tk(0)  = 0 T k ( E 2 )  =o.  (25) 

The second of the conditions (25) implies the absence of electrons with binding energy 
E 5 E*. This may be due to the quenching of the Rydberg atoms with small principal 
quantum numbers, caused by radiative relaxation, and so on. 

The solution of equation (19) with boundary conditions (25) is 

The substitution of equations (22) into equation (26) yields 

T‘O’( eo) = (2 -  s ) ( r  - l ) A  [ 1 - (:)‘-‘I r - s + 1 > 0 2 - s > 0  

t The analysis of formula (21) shows that the exponential in equation (7)  may be neglected when ( E /  T) =s 1. 
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Equations (26)-(28) do not represent the moments of the diffusive ionisation time 
but represent the moments for the distribution of the times that the electron spends 
in the interval [0, cZ] when the electron may escape from this interval through either 
end of the interval. In addition, the relative probability of the ionisation of the Rydberg 
atom is (Gardiner 1983, Kaulakys et a1 1984) 

while the probability of the relaxation of the Rydberg atom to the ground state is 

The substitution of equsltions (22) into equations (29) and (30) gives 

r - s + l > O  
r - - s + l < O  

(32) p = 1 -- p. 
1 .  

Thus, if c2 >> E~ and r - s + 1 > 0, the relative probability of ionisation is close to 1 and 
equations (26)-(28) reduce to equations (21), (23) and (24). 

4. Discussion and relation with experiments 

The theoretical cross sections for the direct ionisation of a Rydberg atom by a collision 
with a neutral atomic particle obtained on the bases of quasimolecular states (Duman 
and Shmatov 1980, Mihajlov and Janev 1981) and in the impulse approximation 
(Kaulakys 1985) are small for n - 20-100. The efficient collisional ionisation of the 
alkali-metal Rydberg atoms with n - 20-60 observed in experimental studies (Svedas 
and StakiSaitis 1984, Niemax 1983) cannot be explained on the bases of these theoretical 
approaches, and the diffusive mechanism for collisional ionisation of Rydberg atoms 
has been presented as an interpretation of the experimental results (Kaulakys et a1 
1984). However, the experiments on the collisional ionisation of the Rydberg atoms 
were performed under stationary conditions and the ionisation delay time was not 
measured, Therefore, in the paper by Kaulakys et al (1984) the stationary Fokker- 
Planck equation 

(33) 

was solved, where B ( E )  and fO(&) are given by equation (22) and the quenching rate 
of the Rydberg atoms is of the power-type form 

W ( E )  = f ( E ) E 4 / 7 .  (34) 

Mere y is the rate of generation of Rydberg atoms with energy cO,  and 7 and q are 
constants. Equation (34) represents radiative relaxation of the Rydberg atoms if q = 5 
and quenching of the Rydberg atoms on the surfaces of the cell if q = 0. The efficiency 
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(probability) of the diffiusive ionisation of the Rydberg atoms under stationary condi- 
tions is the ratio of the diffusive ionisation flow to the rate of generation of the Rydberg 
atoms 

The solution of equation (33) with boundary conditions f(0) = f ( ~ ~ )  = 0 according to 
equations (22 ) ,  (34) and (35) gives (see Kaulakys et al 1984) 

where 

r - s + l  
v=------ > O  m = 2 - s + q  > O .  

2 & y 2  
i = 0 , 2  

m (AT) m Yi = 

I,, and K ,  are modified Bessel functions of the first and second kind, respectively, and 
r is the gamma function. If >> equation (36) reduces to 

and for yo<< 1 we have 

Equations (36)-(38) allow one to explain qualitatively the experimental results of the 
stationary collisional ionisation of the Rydberg atoms (see Kaulakys et a1 1984) while, 
for a quantitative interpretation, it is necessary to know the rate of quenching of the 
Rydberg atoms. 

On the other hand, it may be shown that the quantity T - ' ( E ~ )  characterises the 
mean rate of diffusive ionisation of the Rydberg atom. When the quenching rate of 
the Rydberg atoms does not depend on the energy ( q  = 0 in equation (34)) the efficiency 
of the diffusive ionisation may be evaluated as 

P,= T - ' ( E O ) / ( r - ' ( E O ) + ~ - l ) l .  1-  T ( E ~ ) / T  T (  EO) << 7. (39) 

The substitution of equation (23) when >> .so into equation (39) gives equation (38). 
This shows that the quantity 7'-'( E ~ )  is indeed an appropriate rate of diffusive ionisation. 

Under the impulsive excitation of an atom to a Rydberg state, the flow of diffusive 
ionisation depends on the time and the quantity characterises the rate of 
diffusive ionisation of the Rydberg atom at time t - T ( E ~ )  after the excitation. Note 
that the mean-square deviation or the variance u2 = T2 - T 2  is a measure of the scatter 
of the distribution of diffusive ionisation times. 

It should be noted, however, that the direct experimental proof of the diffusive 
collisional ionisation of Rydberg atoms is lacking and time-resolved experimental 
measurements of the collisional ionisation of the Rydberg atoms in gas are desirable. 
The experimental distribution of the ionisation times may be analysed on the basis of 
the present theory. In particular, if diffusive ionisation takes place, the mean delay 
time of the ionisation of the Rydberg atoms after the impulsive excitation to a Rydberg 
state with energy must be equal to T (  E ~ )  (obtained from equations (6), (7) and ( 2 3 ) ) :  

T(E,)  = !57~,?,/~/(2'/~Nu~u:) (40) 
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An analogous situation is found in the field of experiments on the microwave 
ionisation of highly excited hydrogen atoms. The experimental studies performed until 
now were devoted either to the measurement of the field strengths at which the ionisation 
of the atoms appears or to the investigation of the dependence of ionisation on the 
frequency of the microwave field. As noted in the review paper by Delone et aZ(1983), 
there is no direct experimental evidence of the microwave diffusive ionisation of the 
Rydberg atoms and a time-resolved experiment is desirable. 

The mean time of the diffusive ionisation given according to equations (9), (10) 
and (23) 

T ( E J  = 5.3F,*(W4Z)”3E”* 0 

is in agreement with the experimental data (van Leeuwen et al 1985). Nevertheless, 
measurement of the time dependence of the microwave ionisation of the hydrogen 
Rydberg atoms is much needed if the theoretical model of the ionisation process is to 
be perfected. 

To summarise, the time-dependent diff usion-like ionisation of the Rydberg atoms 
has been investigated theoretically. Analytical expressions for the mean time and 
higher moments of the distribution of diffusive ionisation times of the Rydberg atoms 
have been obtained and the conditions necessary for the occurrence of diffusive 
ionisation have been established. The analysis of the time-dependent ionisation process 
presented here establishes a theoretical basis for the direct experimental confirmation 
and investigation of the diffusion-like mechanism of the ionisation of Rydberg atoms. 
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