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Abstract. The motion of an electron of a classical hydrogenic atom in an oscillating electric 
field is studied theoretically. An analysis is provided, based on the iterative (mapping) 
forms of the classical equations of motion in perturbation theory and the adiabatic 
approximation. This greatly facilitates the numerical investigation of stochasticity and the 
ionisation process and allows the approximate analytical estimation of the threshold field 
strengths for the onset of chaos and of the diffusion coefficient of the electron in energy 
space. The method is asymptotically exact at high field frequencies and gives a good 
approximation for medium and low frequencies. The adiabatic approximation describes 
well the approach of the stochastic ionisation threshold field strength to the static field 
ionisation threshold. 

From the quantum mechanical point of view the ionisation is a result of the great 
number of one-photon transitions in the strongly perturbed spectrum of the atom. This 
results in the diffusion of the electron in energy space identical to the diffusion due to 
stochastic classical motion. The estimation of the mean time of diffusive ionisation is also 
given. 

1. Introduction 

In the last ten years remarkable progress has been made in the study of non-linear 
dynamical systems. The theory of simple classical non-linear systems with irregular, 
apparently random, behaviour, known as chaos, has been developed (see, e.g., Lichten- 
berg and Lieberman 1983, Zaslavskii 1984). The quantum description of such systems 
is far from complete (see, e.g., Casati 1985). It should be noted that theoretical analysis 
of the stochastic behaviour of non-linear dynamical systems is mostly carried out for 
model systems. A highly excited hydrogen atom in the microwave field is one of the 
simplest real non-linear systems with stochastic behaviour. That is why great attention 
is devoted at present to the experimental and theoretical investigation of the dynamics 
of the electron of the Rydberg atom in the strong microwave field (for a review see 
Delone et a1 1983, Bayfield 1986, Jensen 1986 and references therein). A long series 
of experiments on non-linear microwave ionisation and transitions in highly excited 
hydrogen atoms has been performed by Bayfield and Koch (1974), Bayfield and 
Pinnaduwage (1985a, b), van Leeuwen et a1 (1985) and Bardsley et a1 (1986) in the 
low-frequency limit (relative frequency so = w/SZod 1, where w is the microwave 
frequency and S Z ,  = Z’/ n: is the electron orbital frequency of the atom with principal 
quantum number no and core charge 2). These observations of excitation and ionisation 
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rates, which depend strongly on the intensity of the microwave field, provide evidence 
for stochastic behaivour of weakly bound electrons. The ionisation of Rydberg atoms 
exhibits a threshold dependence on the electric field amplitude Fo and appears as a 
diffusion-like process. The classical calculations carried out for so< 1 using the Monte 
Carlo method (Leopold and Percival 1978, Jensen 1984, Leopold and Richards 1985, 
1986) are in agreement with experiment (van Leeuwen et a1 1985, Jensen 1986). For 
so >> 1 the field strengths required for stochastic ionisation of hydrogen atoms and the 
diffusion coefficient of an electron in the space of the principal quantum numbers of 
the hydrogen atom can be estimated analytically from the resonance overlap criterion 
(Delone et a1 1983, Jensen 1984). On the other hand, at so< 1 the resonance overlap 
criterion for the scaled critical field amplitude for stochastic ionisation gives the 
dependence (Shepelyansky 1982, Delone et a1 1983) 0; = F;ni /Z3 - s:’~ which dis- 
agrees with numerical calculations and experiments and does not explain the increase 
and approach of the critical field 0; to the static field ionisation threshold 0; = 0.130 
(Jensen 1984) when so+O. Thus up to now the theory for stochastic ionisation of 
highly excited hydrogen atoms is developed for the case so+ 1 only, while the experi- 
ments and numerical calculations have been performed at so< 1. The quantum descrip- 
tion of this process has only just begun (Casati et a1 1984, 1986a, b, Bardsley et a1 
1986, Bardsley and Comella 1986, Jensen 1986). 

The purpose of this paper is to develop the method based on the modern mathemati- 
cal apparatus for studying classical non-linear dynamical systems (described by maps) 
(Lichtenberg and Lieberman 1983, Zaslavskii 1984) suitable for the approximate 
description of regular and stochastic dynamics of a highly excited hydrogenic atom 
in the microwave field. In addition, the relation of the classical ionisation process to 
the quantum description of the system will be investigated. On the basis of classical 
perturbation theory we describe the dynamics of the electron of the Rydberg atom in 
the microwave field by maps ( 5  2). This greatly facilitates the numerical investigation 
of stochasticity and the ionisation process and enables the analytical estimation of the 
threshold field strength and diffusion coefficient. For low relative frequency the 
dynamical behaviour of the electron may be described in the adiabatic approximation 
(0 3). Section 4 is devoted to the quantum description of the ionisation process. Note 
that such modelling has been undertaken in a brief report by Gontis and Kaulakys 
(1987). We mainly restrict our consideration to the one-dimensional model of the 
hydrogenic atom. That is why the analysis of the one-dimensioinal atom is much more 
tractable than for the three-dimensional hydrogenic atom but the one-dimensional 
atom reproduces well the stochastic ionisation process of the hydrogen atom (van 
Leeuwen et a1 1985, Jensen 1986). On the other hand the one-dimensional model 
describes the surface-state electrons bound to the surface of liquid helium by its image 
charge (Jensen 1984). 

2. Classical perturbation theory 

The equations of motion of the one-dimensional hydrogenic atom electron in the 
oscillating electric field are generated by the Hamiltonian (Jensen 1984) 

{ i 2 - - z / x +  V ( X ,  t )  x > o  
x c o .  H ( x ,  P, t )  = 

In the dipole approximation 
V ( x ,  t )  = xF(  t )  F ( t )  = Fo cos (of + cp) 
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where x and p are the coordinate and momentum of the electron and F, F,, w and (o 

are the electric field strength, strength amplitude, angular frequency and phase of the 
electric field, respectively. 

The unperturbed motion of the electron is given by the parametric equations 
(Landau and Lifshiftz 1975) 

where E is the electron energy, Z is the charge of the core and [(--CO < 6 < -CO) is the 
parameter. The motion of the electron taking into account the perturbation ( 2 )  may 
be represented by the maps for the energy E and the phase difference 8 between the 
phase of the electric field and phase of the electron's motion (Lichtenberg and Lieber- 
man 1983) 

It is convenient to choose the period of electron oscillation as a scale of discrete time, 
i.e. t k + l -  t k  = Tktl = ~ I T Z / ( - ~ E ~ + ~ ) ~ ' ~ .  Evidently in this case PO - UTktl and AE may 
be evaluated from the equation of motion 

E = FX ( 5 )  

according to classical perturbation theory (Lichtenberg and Lieberman 1983). The 
substitution of equations ( 2 )  and ( 3 )  into equation ( 5 )  and integration over 6 in the 
interval -T s 6 s l~ yields 

Here JL(z) is the derivative of the Anger function 

J : ( z )  = j: sin(sx - z sin x) sin x dx. ( 7 )  
lT 

The limiting forms of the function J : ( s )  are (Watson 1958, Abramowitz and Stegun 
1972) 

where 

1 +&s2 
27.4 1 - 2)  J j ( s )  = sin sn- S G l  

Accordingly representations ( 4 )  in the first approximation are of the following form: 



5054 V Gontis and B Kaulakys 

Here E = = ( - 2 E ) / ( ~ z ) ~ ” ,  Oo = FoZ/4Ei ,  Eo = -Z2/2ni  with no being the initial 
principal quantum number of the highly excited atom. Equations (10) represent the 
iterative form of the classical equations of motion for the electron. At s >> 1 J : ( s )  = 
b/s2’3 and the maps (10) are the area-preserving ones: 

In such a case maps (10) may be transformed to the standard map 

by the linearisation procedure, &k = &,+A&, in the vicinity of the integer so = &i3’= = m 
(Lichtenberg and Lieberman 1983). In equations (12) I k  = - ~ ~ T A E ~ / E ~ ”  and K = 
127r2b00. The standard map (12) plays an important role in the consideration of 
dynamical problems involving instability and the theory of this map has been extensively 
developed (see Chirikov 1979, Lichtenberg and Lieberman 1983, Zaslavskii 1984, Zheng 
1986 and references therein). The criterion of stochasticity for the standard map is 
K a 1 (Lichtenberg and Lieberman 1983). Accordingly the stochastic ionisation takes 
place if 

which is identical to the result of Delone et a1 (1983). 
At s 6 1 the maps (10) are not area-preserving and are not suitable for numerical 

investigation. However, increasing the accuracy of the iterative expression for the 
phase 0 we can construct the area-preserving maps. The iterative equations on the 
basis of the classical perturbation theory can be rewritten in the following form 
(Lichtenberg and Lieberman 1983): 

where by analogy with equations (10) we obtain 

f ( & k + l ,  0,) =4Ek:1J:k+l(Sk+l). (15) 
The function g( 0,) may be obtained from the equation 

which is a consequence of the Liouville theorem for Hamiltonian systems (Lichtenberg 
and Lieberman 1983). For the analytical construction of the function g( &k+l, e,) we 
can use analytical approximations for the function J l ( s ) ,  e.g. 

J : ( s )  =is -0.1774 s ~ ’ ~ ~ ~  s =s 1.133 (17) 
and equation (9) for s > 1.133. These approximations are consistent with the limiting 
forms (8) and (9) and represent sufficiently well the function J : ( s )  for any s. Accord- 
ingly from equations (15)-(17) we have 

(2E-5/2 k + l  -0+7iE-4.5625 k + l  & k + l  a 0.92 
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Note that functions (18) and (19) are smoothly varying functions and do not cause 
the additional stochasticity of the system (14). Thus, maps (14) with equations ( 1 8 )  
and (19) are suitable for the numerical investigation of the stochastic ionisation of the 
highly excited one-dimensional hydrogenic atom in the microwave field. It should be 
noted that the variable & k + ]  in the first of equations (14) is in implicit form but for 
numerical investigation this is not significant. That is why the quantity & k + l  may be 
easily obtained by Newton’s method of successive approximations. 

An approximate criterion for the beginning of local instability for systems ( lo) ,  
(12), (14) according to Zaslavskii (1984) may be written in the form 

where max means the maximum with respect to Ok. Substitution of equations (10) 
into equation (20) yields 

0 0 3  @ E  = /127r2sOJ:,(s,)~-’. (21) 
Here it was taken into account that in the limits of perturbation theory / & k + l -  << c k .  
Note that for system (14) criterion (20) gives a result which is close to (21) if ~ ~ ~ 0 . 3 .  
For so>> 1 equation (21) turns into equation (13). This supports the criterion (20). At 
so< 1 equation (21) overestimates the critical field (see figure 1) .  However, it is easy 
to remark that the change of energy of the electron during the period of motion may 
be greater if the beginning of the motion is x = 0, i.e. when 6 in equations (3) change 
from 0 to 27r. In such a case instead of equation (6) we have 

TZFO 
E 

AE0,271 = - JL,(s) sin( 8 + ST) 
and criterion (20) gives 

o0 3 @: = I 1 ~ T ~ S ~ J : , , (  so) I -’ 
The limiting forms of this function are 

37 2 3 -T;is 

27r(l- s2) 
JL,( s) = - sin s7r s a 1  

JL,(s) = ( 2 b / & ~ ~ ’ ~ )  COS(ST+ ~ / 6 )  s >> 1 .  (24) 
In fact the stochasticity may begin if either of the criteria (21) or (23) is satisfied. 

We have also performed numerical investigation of the transition to the chaos in 
system (14) with equations (18 )  and (19). The results of this investigation are shown 
in figures 1-3. We see that analysis of equations (14) allows us to estimate the threshold 
field strengths for the onset of chaos (figure 1 ) .  The dependence of the critical field 
on the relative frequency is not smooth but has a rather complicated structure. Such 
a structure is related to the resonance island structure visible in figures 2 and 3, where 
we can see not only the resonance corresponding to the integer values of the relative 
frequency (first-order resonances) but also the resonances corresponding to the frac- 
tional frequencies (second-order resonances). The overlap of such resonances is the 
reason for global stochasticity. Figure 2 illustrates making distinct and broadening 
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Figure 1. Scaled threshold field strengths for the onset of chaos @:= F 3 4 / Z 3  against 
relative microwave frequency so = w n : / Z 2 .  The open circles represent the experimental 
values for 10% ionisation (van Leeuwen et al 1986, Jensen 1986); curve 1, classical 
calculations of electron trajectories (Jensen 1986); curve 2, numerical investigation of map 
(14) with equations (18) and (19); curve 3, equation (21); curve 4, equation (23); curve 5 ,  
adiabatic approximation (equation (41)); curve 6, numerical investigation of equation (43). 
Parts ( a ) ,  ( b )  and (c)  show extent of curves. 

the fractional resonances for s 6 1 with increase of the electric field strength. In figure 
3 we see an overlap of resonances corresponding to s = 7 and s = 8 and distinct 
second-order resonances at s = y, y, . . . . 

Analytical estimation of the critical field according to criterion (20) gives the smooth 
dependence of the threshold field strengths on frequency (equation (21)). This analyti- 
cal estimation gives a good fit at so >> 1, but overestimates the critical field at so< 1. It 
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Figure 1. (continued). 

is interesting to note that criterion (23 )  considerably specifies the threshold field 
strengths for so - 1. 

To conclude this section we shall present the derivation of expressions for the 
diffusion coefficient of the electron in energy space and the mean time of the diffusive 
ionisation. Using the random-phase assumption for global stochasticity (Lichtenberg 
and Lieberman 1983) from equations ( 6 )  and (22) ,  by definition (see e.g. Lifshitz and 
Pitayevsky 1979, Kaulakys and &%inas 1987), we have 

( A E ) 2  T Z F ~  { [JLS(s ) ] ’  s=sl B ( E )  =-- - 
2Tk 2 ( -2E) ’ l2  [ J : ( s ) ] *  S B  1 .  

The diffusion coefficient in the space of the principal quantum numbers when /An1 << n 
is related to the diffusion coefficient in energy space as 

If s >> 1 J : ( s )  = b / s 2 l 3  (equation ( 9 ) )  and equations ( 2 5 )  and (26 )  give the expression 
B, = B ( E ) ~ ~ / ~ ~  E = - Z 2 / 2 n 2 .  (26 )  

B, = ~ T ~ ’ F ~ ~ ~ / ( W Z ) ~ / ~  w n 3 z P 2  >> 1 (27)  
which agrees with the result of Delone et a1 (1983) and Jensen (1984).  

Kaulakys and Ciiiiinas (1987): 
The expressions for the mean time of diffusive ionisation have been derived by 

This means that the ionisation takes place on average after 

field oscillations. Here K = Fo/ F: = Qo/@: with @: given by equation ( 1 3 ) .  Expression 
(29 )  is in reasonable agreement with the findings of the numerical investigation of 
system (14 )  and the results of the paper by Leopold and Richards (1985). Note that 
the mean ionisation time increases strongly with the increase of the initial relative 
frequency of the field if the field strengths are close to the threshold field strengths. 

V = ( 12T)‘S:/ K == 1421 .Si/ K 2  so+ 1 ( 29 )  
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Figure 2. Trajectories for the map (14) with equations (18) and (19) on the phase plane 
(0, E ) .  ( a )  T E ~ @ , ,  = 0.06; ( b )  = 1.7-0.05i := 0.12. The initial conditions are Bo = 0, 
( i = O ,  1,2,. . .). 

Thus the time corresponding to 300 oscillations of the microwaves (van Leeuwen 
et a1 1985, Jensen 1986) is insufficient for the estimation of threshold field strengths 
for the onset of chaos at s,B 1. That is why the threshold field strengths obtained in 
the present paper by carrying out 2000 iterations of system (14) are slightly smaller 
than those of Jensen (1986) (see figure 1). 

3. Adiabatic approximation 

Classical perturbation theory does not explain the approach of the critical field @: to 
the static field ionisation threshold @:t = 0.130 when so-, 0. As follows from the above 
consideration the main information about the transition to chaos is contained in the 
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Figure 3. As for figure 2, but here n - ~ @ ~ = 0 . 0 3 5  and the initial conditions are B o = O ,  
E~ = 0.3-0.0031 

iterative relation for the phase. More exactly, the map for the phase may be written 
in the form 

where R( n, 6,) and T (  n, 6,) are the frequency and period of the motion of the electron 
taking into account the influence of the electric field. If the perturbation is sufficiently 
slow then the action of the perturbed oscillator will remain an adiabatic invariant 
(Landau and Lifshitz 1973): 

J = T - I  fi‘ p ( x )  dx p(x)  = [ 2 ( E  + Z / x +  Fx)]”~ (31) 

where x1 is the classical turning point, p(xl)  = 0. Since j is assumed to be an adiabatic 
invariant, it is equal to the initial action which coincides with the initial principal 
quantum number no (Jensen 1984). By evaluating the integral (31) we have 

1/2 1 - (1 - 4ZFE -2)1’2 
no = Z(  2) F(+, -5; 2; y )  

= 1 + (1 - 4ZFE-2)’/2 (32) 

where F ( a ,  b; c ;  y )  is a hypergeometric function. Thus equations (32) define the 
relation between the initial principal quantum number of the highly excited hydrogenic 
atom and the energy of the electron in the electric field, if the field is turned on slowly. 
From equations (32) we have 

E = - ( 8 2 / 3 ~ n , ) ~  F = Fst = E2/4Z. (336) 

For F = Fst the turning point x1 coincides with the maximum of the potential barrier 
(Jensen 1984). Thus the threshold for classical ionisation in an adiabatically varying 
electric field is F” = 210Z3/(3rno)4 = 0.130Z3/n;. 
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The period of motion of the electron in the Coulomb and static electric fields may 
be obtained from equation (31) according to Landau and Lifshitz (1973): 

Here we have used the Gauss relations among the contiguous hypergeometric functions 
(Abramowitz and Stegun 1972). From equation (34) it follows that 

l + y  3'2 
T = 4 2 (  -) [4 In 2 -2 - ln( l  - y)] F + F S ' ( y + l ) .  (35b) 

-2 E 
In this way T + CO by a logarithmic law when F + F". 

moving in the slowly varying field if F = Fo cos 6k. From equations (32) we have 
Equations (30), (32), (34) define the iterative relation for the phase 8 of the electron 

An approximate criterion for stochasticity for the map (30) is given by equation (20). 
Substitution of equations (30) and (34) into equation (20) gives 

Phase f& must be chosen from the requirement of the minimum of the field a0 given 
by equation (36). Note that according to equation (37) y +  1 if so+O and y +  
4/15vs0 tan 6k if s o d  1. This allows us to simplify equation (37) keeping the main 
terms only: 

15 T S o  d =-. yd tan ek I 1-y l = 1  4 

According to equations (36) and (38) we have 

cos Ok + 2d sin t)k 
Q , O  =  C COS 6k + d Sin 8k)" (39) 

Here we have used an approximation 

[F(f ,  -$; 2; y) l4= 1 -fy y s  1. (40) 

From equation (39) it follows that Q,; = @Yi" =it at ek = 0 if d < 2-'/'. If d 3 2-'/' 0 0  

is minimal when tan e k  = (2d ' -  1)/3d and 

15 T S o  
d=- 3 1/2'/'. 

(4d2+ 1) (4d4+5d2+ 1)1/2 
32d(d2+1)'  4 

0; = 

Approximately, we have 

?The  difference of this value of the critical field from the static field threshold @;'=0.130 is due to 
approximation (40) only. 
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The adiabatic critical field for stochastic ionisation as a function of relative 
frequency is shown in figure 1. 

It should be noted that the derivation of equation (37) was fulfilled by the variation 
of equation (30) over 6 k  according to equation (20) at the constant energy but not the 
action. Variation of equations (30), (34) over 6 k  at the constant action yields equations 
similar to (37)-(42) but then in equations (38)-(42) d =3mo/2. This means that the 
motion of the electron of the hydrogenic atom in the low-frequency field is more stable 
for adiabatic perturbations then for unadiabatic ones. 

For IFI<< Fst the iterative relation for the phase according to equations (30) and 
(35a) is 

ek+l=ek+2.?rso+qcos 4 = 15 VSo@o (43) 

which is the map of the circle onto itself. The theory of this map has been extensively 
developed (see e.g. Chirikov 1979, Martinez-Mekler et a1 1986, Umberger et a1 1986 
and references therein). Equation (43) may be used for evaluation of the critical field 
for stochastic ionisation at 0.3 s so% 0.7. Criterion (20) for such a case gives q = 1, 
which is consistent with equation (42). More precisely, the threshold field strengths 
for the onset of chaos for map (43) may be obtained numerically. The results of 
numerical analysis are also shown in figure 1. We see a rather complicated dependence 
of the threshold field strengths on the frequency. For so = $, i, i, 3 ,  $, . . . the ionisation 
is suppressed by the persistence of resonance island structures visible in figure 2. The 
positions of the islands of regular motion depend slightly on the field strength. We 
see that criterion (20) for map (43) is rather approximate. 

The comparison of the adiabatic critical field with numerical calculations, perturba- 
tion theory and experimental values shows that the adiabatic approximation may be 
used for the estimation of the critical field for sod 1. The adiabatic approximation 
overlaps with the perturbation approximation at 0.3 S s o S  0.7. 

4. Quantum dynamics for the electron 

Already early experiments on the microwave ionisation of highly excited hydrogen 
atoms have shown that this ionisation cannot be treated as a usual multiphoton process 
(see Delone et a1 1983) and a mechanism of quantum diffusion of the electron over 
the excited states has been suggested (Delone et a1 1978). The diffusion over the 
excited states is a result of the one-photon transitions among the strongly perturbed 
states. The one-photon transitions caused by the non-resonant field may occur if the 
broadening and shift of the atomic levels are comparable to the distance between the 
unperturbed levels. That is why we suppose that the broadening and shift of the atomic 
levels caused by the electromagnetic field are strong and the spectrum of the hydrogen 
atom in the microwave field is nearly continuous. The transition rate between the 
energy states E and E’ is (Landau and Lifshitz 1960) 

d W ( E ,  E’ )  = 2 ~ /  VE,E.12S(w * w ~ , ~ , )  dE’  (44) 

where wE,E, = E’-  E and VE,€, is the Fourier component of the matrix element of the 
perturbation operator (2) 

VE,E, = $ ( E / x l E ’ ) F o .  (45) 
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The matrix element (ElxIE’) is usually related to the matrix element between the 
discrete states: 

(46) 
The matrix element (nix1 n’) may be evaluated using the semiclassical wavefunctions 

I( Ejxl E’)/’ d E ‘  = I( n 1x1 n’)l’Z( -21?‘)-~/~ dE‘.  

p n  = ( ~ z / x  - ~ ~ / n ~ ) ” ~ .  
By analogy with papers by Davydkin and Zon (1982) and Goreslavsky er a1 (1982) 
we have 

(n/xlnr)=< [02’2~z-cos~(x)  X dx 

(47) 
rrn PI3 

~ ( x )  = [: ( p n  - p , , )  d x - $ s ~ ~ / ~ F ( f , : ;  2; U). 
- 

Here s = In’- nl<< n, ii = J n n ’  and U = Zx/2n2. The limiting forms of the matrix element 
(47) are 

3 nn’  c -  - s<c 1 

s >> 1 

where b is defined by equation (9’). From comparison of equation (48) with limiting 
forms of the derivatives of the Anger functions (9) and (24) it can be written 

Equation (49) may be treated as a combination of the results given by Davydkin and 
Zon (1981) and Goreslavsky et a1 (1982)t. 

Substitution of equations (45) and (46) into equation (44) gives 

The diffusion coefficient of the electron in energy space by analogy with equation (25 )  
is 

1 
B ( E )  =; [ d W=frrFil(nlxJn’)12s2( -2E)3/2/Z. 

L J  

Substitution of equation (49) into equation (51) gives equation (25). Thus the great 
number of uncorrelated one-photon transitions results in diffusion of the electron in 
the energy space identical to the diffusion due to the stochastic classical motion. 

For the three-dimensional hydrogenic atom in the linearly polarised electromagnetic 
field all considerations are the same but the matrix element /(n/x/n’)I2 must be replaced 
by 

1 I( nlm I zI n’l’m ‘ ) I 2  = 1 I(lm I ct’l Z’m‘)12( R : i “ ) 2  
I ’m’  I ’m’  

t One should notice some contradictions between the results of these papers, but the correctness of the 
limiting forms (48) are beyond doubt (see e.g. Bethe and Salpeter 1957, Landau and Lifshitz 1975). 
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where C;’ is the component of the spherical function and R:;” is‘the radial matrix 
element. The matrix element (Im1C:)lI’m’) is not equal to zero only if l‘= IT 1 arid 
m’= m and is given by the expression (Bethe and Salpeter 1957) 

Lx - m2 
(21+ 1)(21’+ 1 )  

I,,, = max( I ,  I ’ )  l ( I m l C ~ ) l I ~  1m)12= 

The radial matrix element R:;“ is exponentially small if s >> 1 and I - n (Goreslavsky 
et a1 1982).  For I<< n RZi” depends slightly on 1 and (R:;”)2= /(nlxln’)12 where (nlxln’) 
is given by equation (49) (Davydkin and Zon 1981, Goreslavsky et a1 1982).  Finally 
for m = 0 we have 

l(nIOjz1 n’I’m’)I2 = fl( nlxl nf)12. 
I ’m’  

So, the diffusion coefficient for the three-dimensional atom in the linearly polarised 
microwave field is approximately twice as small as for the one-dimensional atom. 

5. Conclusions 

We have studied theoretically the dynamics of hydrogenic atoms in an oscillating 
electric field. In classical perturbation theory and adiabatic approximations we have 
derived iterative (mapping) forms of the classical equations of motion. This allows 
us to analyse the regular and stochastic dynamics of the highly excited hydrogenic 
atom in a microwave field on the basis of modern mathematical apparatus for studying 
classical non-linear dynamical systems. Such a method considerably facilitates the 
numerical investigation of transition to chaotic motion and the ionisation process, and 
allows the analytical estimation of the threshold field for the onset of chaos and the 
diffusion coefficient of the electron in energy space. The iterative method, in contrast 
to the resonance-overlap theory, covers all frequencies of the microwave field (from 
the static field limit to high frequencies, where the resonance-overlap theory is suitable). 
We also have estimated the mean time of the diffusive ionisation and shown that, when 
the field strength is close to the threshold field strength, the ionisation time increases 
strongly with increasing relative frequency of the field. 

We have indicated that from the quantum mechanical point of view the ionisation 
of the atom is a result of the great number of accidental one-photon transitions in the 
strongly perturbed spectrum of the atom. Such a model results in the diffusion of the 
electron in energy space of the atom identical to the diffusion due to the stochastic 
classical motion. In addition, the diffusion coefficient for the three-dimensional hydro- 
genic atom is approximately twice as small as for the one-dimensional atom and the 
diffusion takes place mainly over states with small orbital momentum. 
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