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Abstract. The ionisation of highly excited Rydberg atoms in collisions with ground-state 
atoms is considered. The stationary diffusion-like mechanism of the ionisation is presented. 
The investigation is based on the Fokker-Planck equation. Analytical expressions for the 
probabilities of stationary diffusive ionisation are obtained and applied for the explanation 
of experimental results on the ionisation of highly excited Rydberg states of caesium in 
collisions with ground-state Cs atoms. It is concluded that the diffusive mechanism is the 
main mechanism for collisional ionisation of Rydberg atoms with n 3 25-30. 

Recently ionisation probabilities of high-Rydberg atoms ( n  3 20) in thermal collisions 
with ground-state atoms have been measured (Niemax 1983, Svedas and StakiSaitis 
1984, Weiner and Boulmer 1986, Herrmann et a1 1986, Svedas 1987). Contrary to the 
collisional ionisation of states with small and moderate principal quantum numbers 
( n  s 15) (Devdariani et a1 1978, Klucharev et a1 1980, Boulmer et a1 1983, Zagrebin 
and Samson 1985), recent results cannot be explained by the theory of direct collisional 
ionisation (Duman and Shmatov 1980, Mihajlov and Janev 1981). In the present work 
we show that the multistep (diff usion-like) mechanism for collisional ionisation of 
high-Rydberg atoms (Kaulakys et a1 1984) can explain experimental results on the 
ionisation of caesium with n b 20 in collisions with ground-state Cs atoms (Herrmann 
et a1 1986, Svedas 1987). 

The ionisation rate constants Ki of alkali Rydberg atoms with n 3 20 by thermal 
collisions with ground-state parent atoms are of the order of or less than cm3 s-', 
i.e. Ki s 0.2 au (Weiner and Boulmer 1986, Svedas 1987). Thus the ionisation rate 
constants are considerably smaller than the 1-mixing rate constants of alkali Rydberg 
atoms, which are of the order of 100 au (see Hugon el a1 1983 and references therein). 
Collisions of ground-state atoms with the Rydberg atom may also induce transitions 
between the hydrogenic manifolds n +  n'. For 2un2<< 1 (i.e. nS30-50 for thermal 
collisions) the dominant transitions are n + n * 1, and the rate constant of such transi- 
tions was given by Kaulakys (1986) as 

K n , n * l  = 4 7 4 p , ) W 4 n 7  2vn2<< 1 (1) 

where (U) is the average collision velocity and a&) is the cross section for elastic 
scattering of an electron given an impulse p b pt = (2un3)- '  by the ground-state atom. 
The rate constant K,,fl+l as a function of n reaches its maximum value KTY+l= 
0 . 1 3 ~ ~ ~ ( p J ( u ) ~ ~ ~  at the point nmax = ( v ) - ' / ~  (Kaulakys 1986). The cross sections for 
elastic scattering of slow electrons by alkali atoms are of the order of (0.5-1) X lo4 au 
(see Hugon er a1 1983, Kaulakys 1986). According to equation ( l ) ,  Kn,f l+l  B Ki if 
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n 3 20 and Kn,,=, exceeds K,  by about two orders of magnitude if n - 40-80. In such 
a case collisional redistribution of the population of the Rydberg levels is strong and 
the process of multistep transitions between the Rydberg states is diffusion-like. In 
such a manner, some of the Rydberg electrons can reach the ionisation continuum and 
give rise to the ionisation of Rydberg atoms. 

Under the stationary conditions the diffusive ionisation flow is (see e.g. Lifshitz 
and Pitayevsky 1979) 

where f o (  E )  = C5’* exp( E /  T )  is the Boltzmann distribution with T the temperature of 
the gas, D ( E )  = B( E & ( & )  and B ( E )  is the diffusion coefficient of electrons in the energy 
space of the Rydberg atom, given by 

n 

Here N is the density of the ground-state atoms, AE,,, .  = E ’ -  E and E is the 
binding energy of the Rydberg electron. In stationary conditions the probability density 
f ( E )  of the electrons in the energy space of the Rydberg atom is the solution of the 
stationary Fokker-Planck-type diffusion equation (Lifshitz and Pitayevsky 1979, 
Kaulakys et a1 1984) 

where y is the rate of generation of Rydberg atoms with energy 
quenching rate of the Rydberg atoms. 

For Rydberg atoms with sufficiently high n, the dependences 
the energy are the power-type dependences 

(4) 

E~ and W ( E )  is the 

of fo, B and W on 

Yo(&) = CE-r B (  E )  = W(E)  ‘ f ( & ) E 4 / 7  ( 5 )  

where C, A, T, r, s and q are constants. In reality, the exponential in the Boltzmann 
distribution may be neglected when E 6 T. The expression for the diffusion coefficient 
(3) reduces to the result of Pitayevsky (1962) (see Kaulakys 1986) 

E 6 v T =  (2Tlp))”’  (6) 2 3/2 B( E )  = (29’2/3 7 ~ )  N a , ( p , ) v , ~  

where ct( =ue) is the momentum transfer cross section for electron-perturber elastic 
collisions and p is the reduced mass of the colliding atoms. The quenching rate of 
the Rydberg atoms caused by radiative relaxation follows from the Kramers formula 
(see e.g. Sobel’man et a1 1981) and may be written as 

w( E )  =f( &)&5’2 /T  T = ~ J 1  64 27Tc3/1n(n2/nz). ( 7 )  

Here c = 137.036 au is the velocity of light, n,* and n2 are the effective principal quantum 
numbers of the ground state and a certain Rydberg state (see below), respectively. 

The substitution of equations ( 5 )  into equation (4) yields 
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where cp(  E )  =f( &)/fO( E ) .  The solution of the homogeneous equation may be written 
as (Kamke 1959) 

d E )  = C I E P W ) +  C2EPKy(Y). (9) 

Here C, and C,  are constants, 

y = ~ E ” ~ / ~ ( A T ) ’ / ~  v = 2p/m p = ( r  - s +  1)/2 m = 2 - s + q (10) 

I ,  and K ,  are modified Bessel functions of the first and second kind, respectively. The 
general solution of equation (8) may be obtained in the usual way. Taking into account 
that the Wronskian W{K,(z), Z,(z)} = K,(z)Zl(z) - K:(z)Z,(z) = l / z  (Abramowitz 
and Stegun 1972) we have 

& S E 0  

( 1 1 )  
The solution ( 1  I )  must be suplemented by the boundary conditions corresponding to 
the process of ionisation of the Rydberg atom. The condition implying the absence 
of free electrons and, consequently, the absence of electrons with very small binding 
energy ( E  + 0), is cp(0) = 0. Using the limiting forms of the Bessel functions 

I , ( ~ )  = Y y / 2 ~ r ( v + i )  K , ( ~ )  = 2 ~ ’ ~ + 1 r ( ~ v ~ ) y - i u ~  Y + O  (12) 

we can show from equations (2) and ( 1  1 )  that the ionisation flow j # 0 only if p > 0 
and m > 0. In such a case the boundary condition cp(0) = 0 according to equations 
( 1 1 )  and (12) forces Cz=O. The probability (efficiency) Pi of diffusive ionisation 
of Rydberg atoms under stationary conditions is the ratio of the diffusive ionisation 
flow j to the rate of generation of the Rydberg atoms y. Substitution of equation ( 1  1 )  
into equation (2) according to equations (10) and (12) yields 

Pi = CIA/ y m ” - ’ r (  v) (AT)  (13 )  

The constant C, depends on the second boundary condition for certain values of 
E * >  E ~ .  The condition implying the absence of electrons with binding energy E 2 E ,  

due to quenching of Rydberg atoms with small principal quantum numbers is p( E , )  = 0. 
From equation ( 1  1 )  this condition yields 

2 E g 2  
m(AT)’/*‘ Y0,2 = 

The condition which implies the absence of a flow of electrons for certain values of 
> eo (as a consequence of the large intervals between neighbouring energy levels of 

the Rydberg atom) gives 
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Substitution of equations of (14) and (15) into equation (13) gives 

For y2 >> 1 or >> equations (16) and (17) reduce to 

Pi = 21-”y;K,(yo)/T(v). (18) 

Thus, the ionisation probability is not very sensitive to the second boundary condition. 
The limiting forms of Pi according to equation (18) are 

For the case considered above (equations (5)-(7)) we have r =;, s =;, q =;. Therefore, 
equations (10) give m = 3, p = 1, Y =: while equations (18)-(20) yield 

Pi = -3’ j3r($)Ai’(~)  7 = ( 3 ~ ~ ) ~ ’ ~  = E ~ / ( A T )  ‘I3 (21) 

P, = 1 - 1.18~:’~ + 0.75yi+. . . yo  =$&:/ ’ / (AT)  0.5 (22) 

Pi=1.17y~/6exp(-yo)(l+&y;1+. . .) y,a  1. (23) 

Here the relationship K2/3(~0) = - ~ 3 ’ / ~ 7 - ’ A i ’ (  7 )  between the Bessel function K,/,(y,) 
and the derivative of the Airy function Ai’( 7 )  was used (Abramowitz and Stegun 1972). 

From equation (6) we have A = Yd%r,p/ ~p with p being the pressure (in atomic 
units) of the ground-state atoms. Using equations (7) and (10) we can write 

yo = [ p  1 n ( n , / n , * ) / c ’ u , p ] ‘ / ’ / 3 ~ / ~ n t ~  

yo = io5[ p In( n2/ n,*)/ u,p] ‘I2nt-’ 

(24a 1 

(24b) 

in atomic units or 

where p is in mTorrs, is in atomic mass units, ut is in atomic units and n$ = ( 2 ~ ~ ) - ’ / ~  
is the initial effective principal quantum number. 

In figures 1 and 2 plots of theoretical ionisation probabilities for Rydberg states 
of caesium in collisions with ground-state Cs atoms are shown together with experi- 
mental results. The values of the parameters n,*, n2 and U, have been taken as follows. 
n,* = (2&J1/* = 1.87 with eg being the binding energy of the electron in the ground-state 
Cs atom. n2 = 20, hence the diffusive ionisation of the Rydberg states with n* s 20 is 
hardly probable. Note that the ionisation probability is very insensitive to n2 (see 
equations (21)-(24)). The momentum transfer cross section ut = 8.5 x lo3 au for elastic 
scattering of electrons by the ground-state Cs atom was chosen for fitting the theoretical 
ionisation probabilities of Rydberg atoms with n* B 30 to the experimental results of 
Herrmann et al (1986) and Svedas (1987). Such a value of U, is close to the value 
used by Hugon et a1 (1983) and Kaulakys (1986) for the description of inelastic 
collisions between Rydberg and ground-state Rb atoms. One can affirm that equations 
(21)-(24) describe rather well the dependences of the ionisation probabilities on the 
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Figure 1. Collisional ionisation probabilities Pi for Rydberg states of caesium in collisions 
with ground-state Cs atoms plotted against the binding energy of the Rydberg electron E,, . 
Experiment: V, nS,/, states; A,  nD,/, states, p=O.17 mTorr; x ,  n S , / ,  states; +, nD,/, 
states, p = 0.37 m'rorr; 0, n S , , ,  states; 0, nD,/, states, p = 5.4 mTorr, Herrmann et al 
(1986); 0, nP states, p=5.6mTorr, Svedas (1987). The curves A, B and C show the 
theoretical calculations of diffusive ionisation probabilities, equations (21)-(24), for p = 
0.17, 0.37 and 5.5 mTorr, respectively, with n: = 1.87, n2 = 20 and crt = 8.5 x lo3 au. 
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Figure 2. Collisional ionisation probabilities P, for diff erent binding energies of the Rydberg 
electron c0 plotted against p-'/' where p is the pressure of ground-state Cs atoms. 
( a )  130 cm-'; (c )  E~ = 290 cm-'. Experiment: x , nS,,, states; + , 
nD,,, states, Herrmann et al (1986); 0, n P  states, Svedas (1987). The curves show the 
theoretical calculations of diffusive ionisation probabilities, equations (21)-(24), with 
parameters as in figure 1. 

= 34 cm-'; ( b )  E,, 
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binding energy of the Rydberg electron as well as on the pressure of the ground-state 
atoms if n$ B 25-30. For n* S 25, direct ionisation of Rydberg atoms is efficient; and 
since observable ionisation is the sum of direct and diffusive ionisations the experimental 
values of the ionisation probabilities of states with n*G 25 are larger than the diffusive 
ionisation probabilities. In addition, direct collisional ionisation may also become 
important for states with n * +  100 (Kaulakys 1985). 

It should be noted that time-resolved experimental measurements of collisional 
ionisation of impulsive excited Rydberg atoms are desirable. Observation of the delay 
time for the ionisation of Rydberg atoms would be direct proof of the diffusive ionisation 
mechanism. Theoretical investigation of non-stationary diffusive ionisation of Rydberg 
atoms has been carried out by Kaulakys and &ifinas (1987). 

To summarise, the diffusion-like mechanism for the collisional ionisation of Rydberg 
atoms has been presented. Analytical expressions for the probabilities of stationary 
diffusive ionisation have been obtained and applied in order to explain experimental 
results for caesium. It has been concluded that the diffusive mechanism is the main 
mechanism for the collisional ionisation of Rydberg atoms with high principal quantum 
numbers. 
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