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Abstract. A theoretical analysis of the collisional broadening and shift of Rydberg levels: 
with angular momenta J 1 taking into account the anisotropy of the Rydberg-perlurber 
potential is presented. The symmetry of the problem is used far the calculation of the 
collision S matrix in a semiclassical approximation with rectilinear trajenories. The 
obtained expressions for the broadening and shift cross sections allow an explanation of 
the observed differences between the broadening and shift of the anisotropic np, nd and 
IIP,,~ levels in comparison with those for the spherical ns and "PI,, states 

Collisional processes involving Rydberg atoms remain the subject of active researches 
(Bielski et a/ 1991, Borodin ef a/ 1991, Kaulakys 1991, Lebedev 1991, Lukaszewski 
and Jackowska 1991, Sun and West 1990, Sun et al 1991). During the last fifteen years 
there has been considerable progress in the studies of interaction and collisions between 
Rydberg atoms and neutral perturbers, especially in the theory of collisional processes. 
Thus, broadening and shift of Rydberg levels by  elastic collisions with rare-gas atoms 
may be described for low gas pressures by the impact theory and in a first approximation 
taking into account only the isotropic part of the interaction potential (Kaulakys 1984). 
However, later experimental and theoretical investigations (Borstel et a/ 1988, Hermann 
1988, Kaulakys 1991) indicate the influence of the anisotropy of the Rydberg-perturber 
potential on the collisional processes of Rydberg atoms with neutral perturbers. 

It is the purpose of this letter to present a theoretical analysis of the collisional 
broadening and shift of the degenerate Rydberg levels with angular momenta .I> 1 
taking into account the anisotropy of the Rydberg-perturber potential and to explain 
the experimentally observed differences (Kachru el a /  1980, Thompson er a/ 1987, 
Borstel et a/ 1988, Bielski et a/  1991) between the broadening and shift of the np, nd 
and nP,,2 levels in comparison with those of the ns and n P l j l  levels. 

The broadening and shift of an optical line corresponding to the transition between 
a low-lying (e.g. ground state) and a Rydberg state is mostly determined by the 
perturbation of the Rydberg state. The impact broadening and shift cross sections U' 
and U" of the degenerate level with angular momentum J in the semiclassical theory 
are defined by expressions (Omont 1977, Sobelman et a/ 1981) 

( i j  

(2) 

u,-iv, ,=2T r,,,,, a L  

J " ~ v J v  uu 

ll= 1 -(25+1)-' Tr S ( b )  
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where S is the collision S matrix which connects the wavefunctions before collision 
and after collision + and +' by the relation +'= S+ ( b  is the impact parameter). Thus, 
the main problem in the theory of broadening and shift of spectral lines associated 
with transitions between the ground and highly excited states is the calculation of the 
collision matrix for the Rydberg states. 

The S-matrix elements are asymptotic solutions of the standard coupled-channel 
equations of the time-dependent perturbation theory. It should be mentioned that the 
coupled-channel calculations for the angular momentum mixing of Rydberg states 
have been presented in the work of Hickman (1978,1979,1981). Recently the coupled 
equations have been derived and used for the calculations of self-broadening of singlet 
and triplet lines of helium (Mullamphy et al 1991, Leo et al 1992). Note that, in 
general, due to the dependence of the interaction potential on the projection of the 

collision process, the system of coupled-channel equations is bulky and complicated. 
Therefore, the investigation of dependences of solutions on the parameters of the 
problem or analytical solution of the equations even in the first-order perturbation 
theory is, as a rule, inaccessible. In this letter in order to simplify the problem and to 
obtain analytical expressions for the cross sections we make use of the symmetry of 
the problem and properties of the coupling terms. 

As the expressions (I)  and (2) are rotation invariant, the matrix elements of S may 
be expressed in any frame of reference. The most convenient is a collision frame of 
reference with the z-axis directed opposite to the collision velocity U and the y-axis 
opposite to the impact parameter b (see figure 1). Then, introducing the wavefunctions 
of the Rydberg atom symmetrized over the sign of projection of the angular momentum 
(Kaulakys 1979) 

angu!ar momentun on the diatomic axis and rotation of the diatomic axis in the 

M > O  
(3) 

X : J M  =&mJM * x m J - M )  

+ 
x m J O = x a J O  x i J O = o  

one can simplify the solution of the problem. Here J and M label the total angular 

state. Using the properties of the rotation matrix for rotation through an angle p about 
-..A :er ---&.-+:-.. ,.- r h n  - rlpnntpC +ha -thnr ; m r l ; + a ~  nf' tha 

..,",.l~A.,Y,.I a.," II,, yL",b.',,"" "1. I,.* l - m l a ,  Y.." U " I . . Y L I I  *..I "L.I*I I.. " L I I I  ". L.L1 

t ; - m  

Flpm 1. Description of collision between the Rydberg atom 0 and penurber P, with 
velocity Y and impact parameter b. in terms of the fixed frame Oxy2 and rotating frame 
OX'Y'Z'. 
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the x-axis (Jucys and Badzaitis 1965) 

DcL(p) = D!!A-,.(/3) = D:L(P) 

-i*-M - [(J+M)!(J-M)!(J+p)!(l-p)!]1'2 7 (-')' r ! ( p  - M + I )  ! ( J  + M - r ) !  ( J  - p - r ) !  (4) 

x (sinifi)2'-M+' (cos +p)ZJ--2r+M-* 

we obtain the transformation equations for the wavefunctions (3) 

( 5 )  
* * 

q a i M =  1 D ~ L * ( P % ~  X = J M =  1 [ D ! ~ ? ( P ) ] * P ~ J ~  
'-0 * -0  

where 

De:@) = D%!+(p)*D!!A+(p) Mp#O 

D E + @ )  = fiDi:(P) P # O  

Dk%(P) = f i D E b ( p )  M#O (6) 

Dg."(P) = D$'(p)  M,p=O 

DKL-(/3t-(p) = 0 M p  = 0. 

If angle P is the angle between the z-axis and the direction to the perturber, 
i.e. P =cos-' ( u t / R ( t ) )  (forthe rectilinear trajectory R = (b2+ u2t2)'"), then equations 
( 5 )  and (6) represent the transformations of the wavefunctions x : ~ ~  in the fixed 
(laboratory) frame to the wavefunctions cp:JM in the rotating (molecular) frame and 
backwards. 

The eigenfunction $ ( t )  of the Hamiltonian Ho+ V satisfying the initial condition 
$( to )  =,y2JM can be written in the form 

$ ( t )  = 1 S&.MX& s&%4(tO)= aM'.M (7) 
M' 

where the coefficients of expansion S&,M satisfy the system of equations (Kaulakys 
1979) 

i s h  = S&"M 1 D ~ ~ E ( B ) [ D ~ ! = ( P ) ~ * ( P ~ J * ~ ~ ~ P ~ J ~ , )  ( 8 )  
M" II 

without coupling between symmetric and antisymmetric wavefunctions. Therefore, the 
system of equations for the matrix elements of S split into two subsystems which 
simplify the solution of the dynamical part of the problem. Note, that 

= S,., *SS-M.M SL,o=&SM,o STM =&So, M,M'#O 

(9) s- -s- - S& = s, M'O- OM-0  

Tr S = Tr S++Tr S- to+-oo, t++oo. 

In the following we mainly restrict our consideration to the collisional process 
described by the Fermi potential VF= 2?rL6(r -R)  for the interaction of the perturber 
with the Rydberg electron, where L is the scattering length for the electron-perturber 
scattering. From the rotational properties of the Rydberg atom's wavefunctions we 
have for the one-electron Inlm) state 

V.im(R) =(PPniml V~lPdm) (P;i,l V F I P ; ~  = 6,,0(21+ 1) V d R )  (10) 
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and for the one-electron Injm,) state 

Vnjmi = a,,,,~Z(i+f) V X R )  
where V.,(R) =$LR.:(R) is the isotropic part of the Fermi potential with Rnf(r) being 
the radial part of the Rydberg electron wavefunction (see Kaulakys 1984, Hermann 
1988). It follows from equations (6) and (8) that there is no perturbation of the xlfm 
states while the perturbation of the states does not depend on the symmetry of 
the wavefunctions, i.e. Si, = 1 and = S&,, . This allows the reduction of equation 
(2) into 

and equations (8) into 

is',.,= (21+ l)Vnl(R) 2 D~?~(p)[D~)~(p)I*S'm., 

is&, = ( j + f )  V d R )  1 D~~;,(P)[D(n~:/2(P)I*SLim,. 

(13) 

(14) 

We see that, in general, there is a coupling between the matrix elements S+M.M with 
different M' and, therefore, the calculation of the S+ matrix is a complicated problem. 
However, the coupling coefficients of the matrix elements S+M.M and S+M1lM with 
M"# M' are, as a rule, oscillating functions of the angle p and so the transitions 
between different M' are ineffective and less important than the adiabatic perturbations 
of the diagonal matrix elements. In such an approximation the matrix elements S+MM 
may be written in the following form 

S+MM =e-'"i: vf .=Af . (2[+  I)v.(b) vi, = + f ) ve ( b )  (15) 

where ve(b)  = -L/(2un*'fi) is the semiclassical phaseshift due to the isotropic part 
of the Fermi potential V,,,(R) (Kaulakys 1984), with n* being the effective principal 
quantum number of the Rydberg state. The coefficients A', satisfy the normalization 
conditions X M  A', = 1 and according to equations (13) and (14) in a stationary phase 
approximation may be expressed as 

(16) 
Here the angle p (in general a function of the impact parameter b) is some characteristic 
angle of the trajectory from the region of the effective Rydberg-perturber interaction. 

In the paper by Hermann (1988) it was assumed that only states with m = O  and 
m, = *f are perturbed and the rotation of the interatomic axis was not taken into 
account. This results in the relatively large broadening and shift difference between 
"PI,, and nP3/, states with intermediate principal quantum numbers. Note, that such 
an approximation corresponds to the assumption p= 0. However, in our coordinate 
frame the Rydberg-perturber interaction potential is significant when the angle /3 is 
intheinterval n/2-cosK1 (b/2n*')<p < T / ~ + c o s - '  (b/2n*2),andmostofthecontri- 
hution to the phase vMJ is from the region of the trajectory where p-r /2 .  The 
coefficients Af. (b)  and Aif  (b) may be calculated from equations (4), (6) and (16). 
For instance we have 

m" 

m i  

A' = D"'+ 
m, I m,l/z(P)12. ( I ) +  - 2 Af. = I D m o  (P)I 

(2-8, , ,o)( / -m-l)!!( l+m-l)!!  
P[$( / - m)l![i( I +  m ) ]  ! 

I - m = 2 k  
(17) I - m = 2 k + l , k = O , 1 , 2  ,... 

A!&) = 
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and the special values 

The whole potential of the interaction between the Rydberg atom and the neutral 
atomic particle consists of the polarization attractions and the short-range interaction 
between the Rydberg electron and perturber. Therefore, according to Kaulakys (1984) 
the total phaseshift may be written as 

?Ab)+ d A b )  b s n * 2  
T;db)= TAb) b a  n*’, Ah = 0 (19) 

where T ~ =  ?ra/4ub3 is the phaseshift due to the polarization attraction between the 
perturber and core of the Rydberg atom with a being the polarizability of the perturber. 
Note, that for the xi,,,, states the phase due to the Fermi potential 7; = 0 and 
S;, =exp (-ivc), m > 0 .  As a result from equations ( l ) ,  (Z),  (9), (12), (15)  and (19) 
we have the expressions for the broadening or shift cross sections 

i 9h(b) b >  n*2, Ah # O  

I 

u ( n l ) = -  luc+ u(a, (21+ ])ALL) 
21+1 

where uc= u(a, 0 )  is the broadening or  shift cross section due to the polarization 
interaction, i.e. u6=5.7 (a/2u)’” or U:= -du; and u(a, CL) is the broadening or 
shift cross section due to the superposition of polarization potentials and the Fermi 
pseudopotential calculated according to equations (26)-(29) from Kaulakys (1984), 
replacing L by CL. Moreover, U‘ in the above-mentioned paper and U” in  the paper 
by Thompson er al (1987) are averaged over a Maxwellian velocity distribution while 
the cross sections for a modified Fermi potential taking into account the finite size of 
the perturber may by estimated as well (Hermann 1988). 

It should be noted that expressions (20) and (21) describe the broadening and shift 
of the levels when I-s coupling may be neglected in the collision process and the 
contribution from the fine-structure mixing to the broadening is negligible, respectively. 
From analysis of equations (20) and (21) we can easily draw some conclusions. For 
instance, the broadening cross sections of the anisotropic nd states for collisions with 
noble gas atoms may be as much as half those of spherical ns or “PI/, states if 
n*S1.4n: and higher if n * a n f ,  where n:=(IL1/4~)’/~ and nf=(ILl/a”6us’6 ) ,  ’I3 
This is in agreement with the experimental observations of Kachru er al (1980) and 
Bielski er al (1991). A similar effect may be observed for np  and nP,/, states as well. 
The absolute values of the shift cross sections for the anisotropic np, nd and nP3/, 
states with n*81 .2  nf are lower than that of the spherical n s  and nP,/, states. The 
curves representing the shift cross sections as functions of n* are shifted to the higher 
n* by a factor 1.3 n* for np and nd states and by a factor 1.07 n* for nP,/, states in 
comparison with those for n s  and nP,/2 states. This agrees with the experimental results 
of Thompson et al (1987) and Bontel et a/ (1988). According to equations (15) .  (17) 
and ( Z O ) ,  the broadening cross sections of nl states due to the electron-perturber 
interaction for n* >> n: increase logarithmically with I ,  which coincides with the con- 
clusion of Kaulakys (1991) for the elastic cross sections. 
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Fipre 2. Broadening rates for Rb(nS) and Rb(nd) perturbed by Kr. The symbols indicate 
the experimental results ofThompson el a1 (1987) for nS(A) and nD(0) states ( T  = 530 K). 
The full and chain curves shown the theoretical calculations according to equation (20) 
with L =  -4.0 and (I = 16.74 au, for n S  and nD states respectively. 

Figure 2 illustrates the results of calculations and comparison with experiment. 
Note that for high principal quantum numbers n the influence of the inelastic collisions 
tn the broadening is important but not taken into account in the present theory. From 
the side of small n the theory is valid until the Fermi potential approximation for the 
interaction of the perturber with the Rydberg electron is suitable (see also the discussion 
by Kaulakys 1984 and Hermann 1988). 

In addition, the S matrix obtained in this letter may be used for the calculations 
of the collisional relaxation of the polarization of the Rydberg states. 

Summarizing, a consistent approach for the theoretical analysis of the collisional 
broadening and shift of the degenerate Rydberg levels with angular momenta J a  1 
which simplify the solution of the problem is presented. The calculated cross sections 
with allowance for the anisotropy of the Rydberg perturber potential explain the 
experimental observations for the broadening and shift of the anisotropic np, nd and 
nP,,, Rydberg levels. 
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