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Abstract. Previously we proposed the stochastic point process model, which
reproduces a variety of self-affine time series exhibiting power spectral density
S(f) scaling as a power of the frequency f and derived a stochastic differential
equation with the same long-range memory properties. Here we present a
stochastic differential equation as a dynamical model of the observed memory
in the financial time series. The continuous stochastic process reproduces the
statistical properties of the trading activity and serves as a background model
for the waiting time, return and volatility. Empirically observed statistical
properties: exponents of the power-law probability distributions and power
spectral density of the long-range memory financial variables are reproduced with
the same values of few model parameters.
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1. Introduction

Stochastic volatility models of the financial time series are fundamental to investment,
option pricing and risk management [1, 2]. The volatility serves as a quantitative
price diffusion measure in the widely accepted stochastic multiplicative process known
as geometric Brownian motion (GBM). Extensive empirical data analysis of big price
movements in the financial markets confirms the assumption that volatility itself is a
stochastic variable or more generally the function of a stochastic variable [3]. By analogy
with physics, we can assume that speculative prices p(t) change in a ‘random medium’
described by the random diffusion coefficient. Such an analogy may be reversible from the
point of view that the complex models of stochastic price movements can be applicable for
the description of complex physical systems such as stochastic resonance, noise induced
phase transitions and high energy physics applications. This analogy contributes to further
development of statistical mechanics—a non-extensive one and superstatistics have been
introduced [4, 5].

Additive–multiplicative stochastic models of the financial mean-reverting processes
provide a rich spectrum of shapes for the probability distribution function (PDF)
depending on the model parameters [6]. Such stochastic processes model the empirical
PDFs of volatility, volume and price returns with success when the appropriate fitting
parameters are selected. Nevertheless, it is necessary to select the most appropriate
stochastic models to describe volatility as well as other variables under the dynamical
aspects and the long-range correlation aspects. There is empirical evidence that
trading activity, trading volume, and volatility are stochastic variables with long-range
correlation [1, 7, 8] and this key aspect is not accounted for in widespread models.
Moreover, often there is evidence that the models proposed are characterized only by
short-range time memory [9].

Phenomenological descriptions of volatility, known as heteroscedasticity, have proven
to be of extreme importance in the option price modelling [10]. Autoregressive
conditional heteroscedasticity (ARCH) processes and more sophisticated structures,
GARCH, are proposed as linear dependencies on previous values of squared returns and
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variances [10, 11]. These models based on empirically fitted parameters fail in reproducing
power-law behaviour of the volatility autocorrelation function. We believe that stochastic
models with a limited number of parameters and minimum stochastic variables are possible
and would better reflect the market dynamics and its response to external noise.

Recently we investigated analytically and numerically the properties of stochastic
multiplicative point processes [12], derived a formula for the power spectrum and related
the model with the general form of the multiplicative stochastic differential equation [13].
Preliminary comparison of the model with the empirical data of the spectrum and
probability distribution of stock market trading activity [14] stimulated us to work on
the definition of a more detailed model. The extensive empirical analysis of the financial
market data, supporting the idea that the long-range volatility correlations arise from
trading activity, provides valuable background for further development of the long-range
memory stochastic models [7, 8]. We will present the stochastic model of trading activity
with long-range correlation and will investigate its connection to the stochastic modelling
of volatility and returns.

2. Stochastic model of interevent time

Previously we proposed the stochastic point process model, which reproduced a variety
of self-affine time series exhibiting the power spectral density S(f) scaling as a power of
the frequency f [12, 14]. The time interval between point events in this model fluctuates
as a stochastic variable described by the multiplicative iteration equation

τk+1 = τk + γτ 2μ−1
k + στμ

k εk. (1)

Here interevent time τk = tk+1 − tk between subsequent events k and k + 1 fluctuates due
to the random perturbation by a sequence of uncorrelated normally distributed random
variables {εk} with zero expectation and unit variance, σ denotes the standard deviation
of the white noise and γ � 1 is a coefficient of the nonlinear damping. It has been shown
analytically and numerically [12, 14] that the point process with stochastic interevent
time (1) may generate signals with power-law distributions of the signal intensity and
1/fβ noise. The corresponding Ito stochastic differential equation for the variable τ(t) as
a function of the actual time can be written as

dτ = γτ 2μ−2 dt + στμ−1/2 dW, (2)

where W is a standard random Wiener process. Equation (2) describes the continuous
stochastic variable τ(t) which can be assumed as slowly diffusing mean interevent time
of the Poisson process with the stochastic rate 1/τ(t). We put the modulated Poisson
process into the background of the long-range memory point process model.

The diffusion of τ must be restricted at least from the side of high values. Therefore,
we introduce a new term −(m/2)σ2(τ/τ0)

mτ 2μ−2 into equation (2), which produces the
exponential diffusion reversion in the equation

dτ =

[
γ − m

2
σ2

(
τ

τ0

)m]
τ 2μ−2 dt + στμ−1/2 dW, (3)

doi:10.1088/1742-5468/2006/10/P10016 3

http://dx.doi.org/10.1088/1742-5468/2006/10/P10016


J.S
tat.M

ech.
(2006)

P
10016

Long-range memory model of trading activity and volatility

where m and τ0 are the power and value of the diffusion reversion, respectively. The
associated Fokker–Plank equation with the zero flow will give the simple stationary PDF

P (τ) ∼ τα+1 exp

[
−
(

τ

τ0

)m]
(4)

with α = 2(γσ −μ), where γσ = γ/σ2. We define the conditional probability of interevent
time τp in the modulated Poisson point process with stochastic rate 1/τ as

ϕ(τp|τ) =
1

τ
exp

[
−τp

τ

]
. (5)

Then the long time distribution ϕ(τp) of interevent time τp has the integral form

ϕ(τp) = C

∫ ∞

0

exp
[
−τp

τ

]
τα exp

[
−
(

τ

τ0

)m]
dτ, (6)

with C defined from the normalization,
∫ ∞
0

ϕ(τp) dτp = 1. In the case of pure exponential
diffusion reversion, m = 1, PDF (6) has a simple form

ϕ(τp) =
2

Γ(2 + α)τ0

(
τp

τ0

)(1+α)/2

K(1+α)

(
2

√
τp

τ0

)
, (7)

where Kα(z) denotes the modified Bessel function of the second kind. For m > 1,
more complicated structures of distribution ϕ(τp) expressed in terms of hypergeometric
functions arise.

3. Stochastic model of flow of points or events

The introduced stochastic multiplicative model of interevent time, the interval between
trades in the financial market, defines the model of event flow n. First, we apply Ito
transformation of variables introducing flow of events n(t) = 1/τ(t). The stochastic
differential equation for n follows from equation (3),

dn = σ2
[
(1 − γσ) +

m

2

(n0

n

)m]
n2η−1 dt + σnη dW, (8)

where η = 5
2
− μ and n0 = 1/τ0. Equation (8) describes stochastic process n with PDF

P (n) ∼ 1

nλ
exp

{
−

(n0

n

)m}
, λ = 2(η − 1 + γσ), (9)

and power spectrum S(f) [12]–[14]

S(f) ∼ 1

fβ
, β = 2 − 3 − 2γσ

2η − 2
. (10)

Note that in the proposed model only two parameters, γσ and η (or μ), define exponents
λ and β of two power-law statistics, i.e. of the PDF and power spectrum. Time scaling
parameter σ2 in equation (8) can be omitted adjusting the timescale.

Stochastic variable n denotes the number of events per unit time interval. One has
to integrate the stochastic signal equation (8) in the time interval τd to get the number of
events in the selected time window. In this paper, we will denote the integrated number
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of points or events as

N(t, τd) =

∫ t+τd

t

n(t′) dt′ (11)

and will call it trading activity in the case of the financial market. Flow of points or events
arises in different fields, such as physics, economics, cosmology, ecology, neurology, the
Internet, seismology, i.e., electrons, photons, cars, pulses, events, and so on, or subsequent
actions, like seismic events, neural action potentials, transactions in the financial markets,
human heart beats, biological ion-channel openings, burst errors in many communication
systems, the Internet network packets, etc. We will discuss possible application of the
proposed stochastic model to model the trading activity in the financial markets.

4. Stochastic model of trading activity

It is widely accepted that in high-frequency financial data not only the returns but also
the waiting times between the consecutive trades are random variables [15]. Waiting
times between trades do not follow the exponential distribution and the related point
process is not the Poisson one. The extensive empirical analysis provides evidence that the
related stochastic variable trading activity defined as flow of trades is a stochastic variable
with long-range memory [16]. We will investigate how the proposed modulated Poisson
stochastic point process can be adjusted to model trading activity with the empirically
defined statistical properties. Detrended fluctuation analysis [16] is one of the methods to
define the second-order statistics, the autocorrelation of trading activity. The histogram
of the detrended fluctuation analysis exponents ν obtained by fits for each of the 1000 US
stocks shows a relatively narrow spread of ν around the mean value ν = 0.85 ± 0.01 [16].
We use the relation between the exponents of the detrended fluctuation analysis and the
exponents of the power spectrum β = 2ν−1 [17] and in this way define the empirical value
of the exponent for the power spectral density β = 0.7. Our analysis of the Lithuanian
stock exchange data confirmed that the power spectrum of trading activity is the same for
various liquid stocks even for the emerging markets [18]. The histogram of the exponents
obtained by fits to the cumulative distributions of the trading activities of 1000 US
stocks [16] gives the value λ = 4.4 ± 0.05 describing the power-law behaviour of the
trading activity. Empirical values of β = 0.7 and λ = 4.4 confirm that the time series
of the trading activity in real markets are fractal with power-law statistics. Time series
generated by the stochastic process (8) are fractal in the same sense.

Nevertheless, we face serious complications trying to adjust model parameters to the
empirical data of the financial markets. For the pure multiplicative model, when μ = 1
or η = 3/2, we have to take γσ = 0.85 to get β = 0.7 and γσ = 1.7 to get λ = 4.4, i.e. it is
impossible to reproduce the empirical PDF and power spectrum with the same relaxation
parameter γσ and exponent of multiplicativity μ. We have proposed a possible solution to
this problem in our previous publications [14, 18], deriving PDF for the trading activity
N

P (N) ∼

⎧⎪⎨
⎪⎩

1

N3+α
, N � γ−1,

1

N5+2α
, N � γ−1.

(12)
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Figure 1. Power spectral density S(f) calculated with parameters γ = 0.0004;
σ = 0.025; ε = 0.07; τ0 = 1; m = 6. Straight lines approximate power spectrum
S ∼ 1/fβ1,2 with β1 = 0.33 and β2 = 0.72: (a) S(f) calculated by a fast Fourier
transform of the n series generated by equation (13), (b) S(f) averaged over 20
series of 100 000 iterations of the flow I(t) =

∑
k δ(t − tk) with the interevent

time τk = tk+1 − tk generated by equation (14).

When N � γ−1, this yields exactly the required value of λ = 5 + 2α = 4.4 and
β = 0.7 for γσ = 0.85.

Nevertheless, we cannot accept this as a sufficiently accurate model of the trading
activity because the empirical power-law distribution is achieved only for very high
values of trading activity. Probably this reveals the mechanism of how the power-law
distribution converges to normal distribution through the growing value of the exponent,
but the empirically observed power-law distribution in a wide area of N values cannot
be reproduced. Let us note here that the desirable power-law distribution of the trading
activity with the exponent λ = 4.4 may be generated by model (8) with η = 5/2 and
γσ = 0.7. Moreover, only the smallest values of τ or high values of n contribute to the
power spectral density of trading activity [13]. This suggests that we should combine the
point process with two values of μ: (i) μ � 0 for the main area of diffusing τ and n and
(ii) μ = 1 for the lowest values of τ or highest values of n. Therefore, we introduce a new
stochastic differential equation for n combining two powers of multiplicative noise,

dn = σ2
[
(1 − γσ) +

m

2

(n0

n

)m] n4

(nε + 1)2
dt +

σn5/2

(nε + 1)
dW, (13)

where a new parameter ε defines crossover between two areas of n diffusion. The
corresponding iterative equation of form (1) for τk in such a case is

τk+1 = τk +

[
γ − m

2
σ2

(
τk

τ0

)m]
τk

(ε + τk)2
+ σ

τk

ε + τk
εk. (14)

Equations (13) and (14) define related stochastic variables n = 1/τ and τ , respectively,
and they should reproduce the long-range statistical properties of the trading activity and
of waiting time in the financial markets. We verify this by numerical calculations. In
figure 1, we present the power spectral density calculated for the equivalent processes (13)
and (14) (see [14] for details of calculations). This approach reveals the structure of the
power spectral density in a wide range of frequencies and shows that the model exhibits
not one but rather two separate power laws with the exponents β1 = 0.33 and β2 = 0.72.
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Figure 2. Cumulative PDF P>(n) calculated from the histogram of N/τd

generated by equation (14) with the increasing time interval τd from the above
curve: τd = 1, 10, 50 and 250. Other parameters are as in figure 1.

From many numerical calculations performed with the multiplicative point processes, we
can conclude that combination of two power laws of spectral density arises only when
multiplicative noise is a crossover of two power laws, see (13) and (14). We will show
in the next section that this may serve as an explanation of two exponents of the power
spectrum in the empirical data of volatility for S&P 500 companies [19].

Empirical data of the trading activity statistics must be modelled by the integrated
flow of event N defined in the time interval τd � τ0. In figure 2, we demonstrate
the cumulative probability distribution functions P>(n) calculated from the histogram
of N/τd generated by equation (14) with increasing time interval τd. This illustrates how
distribution of the integrated signal N converges to the normal distribution (the central
limit theorem) through the growing value of the exponent of the power-law distribution
and provides evidence that the empirically observed exponent λ = 4.4 of the power-law
distribution of N [7, 8] can be explained by the proposed model with the same parameters
suitable for description of the power spectrum of the trading activity.

The power spectrum of the trading activity N can be calculated by a fast Fourier
transform of the generated numerical series. As illustrated in figure 3, the exponents
β = 0.7 of the power spectrum are independent of τd and reproduce the empirical results
of the detrended fluctuation analysis [7, 8].

The same numerical results can be reproduced by continuous stochastic differential
equation (13) or iteration equation (14). One can consider the discrete iterative equation
for the interevent time τk (14) as a method to solve numerically continuous equation

dτ =

[
γ − m

2
σ2

(
τ

τ0

)m]
1

(ε + τ)2
dt + σ

√
τ

ε + τ
dW. (15)

The continuous equation (13) follows from equation (15) after change of variables n = 1/τ .
We can conclude that the long-range memory properties of the trading activity in

the financial markets as well as the PDF can be modelled by the continuous stochastic
differential equation (13). In this model, the exponents of the power spectral density, β,
and of PDF, λ, are defined by one parameter γσ = γ/σ2. We consider the continuous
equation of the mean interevent time τ as a model of slowly varying stochastic rate 1/τ
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Figure 3. Power spectral density of the trading activity N calculated by a fast
Fourier transform of the N series generated with equation (13) for the same
parameters as in figures 1 and 2: (a) τd = 10; (b) τd = 50; (c) τd = 250. Straight
lines approximate power spectrum S ∼ 1/fβ, with β = 0.7.

Figure 4. Probability distribution function P (τp) calculated from the histogram
of τp generated by equation (16) with the rate calculated from equation (15).
Used parameters are γ = 0.0004; σ = 0.025; ε = 0.07; τ0 = 1 and m = 6. Dashed
line approximates power law P (τp) ∼ τ−0.15

p .

in the modulated Poisson process

ϕ(τp|τ) =
1

τ
exp

[
−τp

τ

]
. (16)

In figure 4, we demonstrate the probability distribution functions P (τp) calculated
from the histogram of τp generated by equation (16) with the diffusing mean interevent
time calculated from equation (15).

The numerical results show good qualitative agreement with the empirical data of
the interevent time probability distribution measured from a few years’ series of US stock
data [20]. This enables us to conclude that the proposed stochastic model captures the
main statistical properties including PDF and the long-range correlation of the trading
activity in the financial markets. Furthermore, in the next section we will show that
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this may serve as a background statistical model responsible for the statistics of return
volatility in widely accepted GBM of the financial asset prices.

5. Modelling returns and volatility

We follow an approach developed in [7, 8, 16] to analyse the empirical data of price
fluctuations driven by the market activity. The basic quantities studied for the individual
stocks are price p(t) and return

x(t, τd) = ln p(t + τd) − ln p(t). (17)

Return x(t, τd) over a time interval τd can be expressed through the subsequent
changes δxi due to the trades i = 1, 2 . . .N(t, τd) in the time interval [t, t + τd],

x(t, τd) =

N(t,τd)∑
i=1

δxi. (18)

We denote the variance of δxi calculated over the time interval τd as W 2(t, τd). If
δxi are mutually independent, one can apply the central limit theorem to sum (18). This
implies that for the fixed variance W 2(t, τd), return x(t, τd) is a normally distributed
random variable with the variance W 2(t, τd)N(t, τd),

x(t, τd) = W (t, τd)
√

N(t, τd)εt. (19)

An empirical test of conditional probability P (x(t, τd)|W (t, τd)) [7] confirms its
Gaussian form, and the unconditional distribution P (x(t, τd)) is a power law with the
cumulative exponent 3. This implies that the power-law tails of returns are largely due
to those of W (t, τd). Here we refer to the theory of price diffusion as a mechanistic
random process [21, 22]. For this idealized model, the short-term price diffusion depends
on the limit order removal and this way is related to the market order flow. Furthermore,
the empirical analysis confirms that the volatility calculated for the fixed number of
transactions has long-memory properties as well and it is correlated with real-time
volatility [23]. We accumulate all these results into a strong assumption that standard
deviation W (t, τd) may be proportional to the square root of the trading activity, i.e.,

W (t, τd) = k
√

N(t, τd). This enables us to propose a very simple model of return

x(t, τd) = kN(t, τd)εt (20)

and a related model of volatility v = |x(t, τd)| based on the proposed model of trading
activity (13). We generate series of trade flow n(t) numerically solving equation (13)
with variable steps of time Δti = hi = n0/ni and calculate the trading activity in

subsequent time intervals τd as N(t, τd) =
∫ t+τd

t
n(t′) dt′. This enables us to generate

series of return x(t, τd), of volatility v(t, τd) = |x(t, τd)| and of the averaged volatility

v = (1/m)
∑i=m

i=1 v(ti, τd).
In figure 5, we demonstrate cumulative distribution of v and the power spectral

density of v(t, τd) calculated from FFT. We see that the proposed model enables us to
capture the main features of the volatility: the power-law distribution with exponent 2.8
and power spectral density with two exponents β1 = 0.6 and β2 = 0.24. This is in good
agreement with the empirical data [19, 23].
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Figure 5. (a) Cumulative probability distribution function of the volatility,
P>(v), averaged over 10 intervals calculated from the series of n(t) generated by
equations (13) and (20), all parameters are the same as in previous calculations.
Dashed line approximates the power law P (v) ∼ 1/v2.8. (b) Power spectral
density S(f) of v calculated from FFT of the same series n(t). Straight lines
approximate power spectral density S ∼ 1/fβ1,2 with β1 = 0.6 and β2 = 0.24.

6. Conclusions

The stochastic point process model proposed previously [14, 18] as a possible model of
trading activity in the financial markets has to be elaborated. First, we define that the
long-range memory fluctuations of trading activity in financial markets may be considered
as a background stochastic process responsible for the fractal properties of other financial
variables. Waiting time in the sequence of trades is more likely to be a double stochastic
process, i.e., a Poisson process with the stochastic rate defined as a stand-alone stochastic
variable. We consider the stochastic rate as a continuous one and model it by the stochastic
differential equation, exhibiting long-range memory properties. We reconsider the previous
stochastic point process as a continuous process and propose a related nonlinear stochastic
differential equation with the same statistical properties [13]. One further elaboration of
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the model is needed to build up the stochastic process with the statistical properties
similar to the empirically defined properties of trading activity in the financial markets.
We combine the market response function to the noise as consisting of two different powers:
one responsible for the probability distribution function and the other responsible for the
power spectral density. The proposed new form of the continuous stochastic differential
equation enables us to reproduce the main statistical properties of the trading activity and
waiting time, observed in the financial markets. A more precise model definition enables
us to reproduce power spectral density with two different scaling exponents. This provides
evidence that the market behaviour is dependent on the level of activity and two stages:
calm and excited must be considered. We proposed a very simple model to reproduce the
statistical properties of return and volatility. A more sophisticated approach has to be
elaborated to account for the leverage effect and other specific features of the market.
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