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Abstract. We present and analyze stochastic nonlinear differential equations
generating signals with the power-law distributions of the signal intensity, 1/fβ

noise, power-law autocorrelations and second-order structural (height–height
correlation) functions. Analytical expressions for such characteristics are derived
and a comparison with numerical calculations is presented. The numerical
calculations reveal links between the proposed model and models where signals
consist of bursts characterized by power-law distributions of burst size, burst
duration and interburst time, as in the case of avalanches in self-organized critical
models and the extreme event return times in long-term memory processes.
The approach presented may be useful for modeling long-range scaled processes
exhibiting 1/f noise and power-law distributions.
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1. Introduction

Inverse power-law distributions, autocorrelations and spectra of signals, including 1/f
noise (also known as 1/f fluctuations, flicker noise and pink noise), as well as scaling
behavior in general, are ubiquitous in physics and in many other fields, including natural
phenomena, spatial repartition of faults in geology, human activities such as the traffic in
computer networks and financial markets. This subject has been a hot research topic for
many decades (see, e.g., [1]–[10] and references herein). An up-to-date bibliographic list
on 1/f noise of more than 1300 papers was composed by Li [11].

The widespread occurrence of signals exhibiting such a behavior suggests that a
generic, at least mathematical explanation of the power-law distributions might exist.
Note that the origins of two popular noises, i.e., the white noise—no correlation in
time, with the power spectrum S(f) ∼ f 0—and the integral of the white noise, the
Brownian noise (Wiener process)—no correlation between increments, with the power
spectrum S(f) ∼ f−2—are very well known and understood. 1/fβ noise with 0 < β < 2,
however, cannot be realized and explained in a similar manner and, therefore, no generally
recognized explanation of the ubiquity of 1/f noise has yet been proposed.

Despite the numerous models and theories proposed since its discovery more than 80
years ago [1], the intrinsic origin of 1/f noise still remains an open question. Although in
recent years about 100 papers have been published annually with the phrase ‘1/f noise’,
‘1/f fluctuations’ or ‘flicker noise’ in the title, there is no conventional picture of the
phenomenon and the mechanisms leading to 1/f fluctuations are not often clear. Most
of the models and theories have restricted validity because of the assumptions specific to
the problem under consideration. Categorization and summarizing for the contemporary
stage of theories and models of 1/f noise are rather problematic: on one hand, due to the
abundance and variety of the proposed approaches, and on the other hand, because of the
absence of a recent comprehensive review of the wide-ranging ‘problem of 1/f noise’ and
because of the lack of a survey summarizing the current theories and models of 1/f noise.
We can cite only a pedagogical review of the 1/f noise subject by Milotti [12]. Li presents
a kind of classification by category of publication related to 1/f noise up to 2007 [13].
In the peer-reviewed encyclopedia Scholarpedia [14], there is also a short current review
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on the subject under the consideration. Thus, we present here only a short and partial
categorization of 1/f noise models with a restricted list of references.

Until recently, probably the most general and common models, theories and
explanations of 1/f noise have been based on some formal mathematical description such
as fractional Brownian motion, the half-integral of the white noise, or some algorithms for
generation of signals with scaled properties [15] and the popular modeling of 1/f noise as
the superposition of independent elementary processes with the Lorentzian spectra and a
proper distribution of relaxation times, e.g., a 1/τrelax distribution [16]. The weakness of
the latter approach is that the simulation of 1/fβ noise with the desirable slope β requires
finding the special distributions of parameters of the system under consideration; at least
a wide range of relaxation time constants should be assumed in order to allow correlation
with experiments (see also [5, 6, 10, 17]).

Models of 1/f noise in some particular systems are usually specific and do not explain
the omnipresence of processes with the 1/fβ spectrum. Predominantly, the 1/f noise
problem has been analyzed for conducting media, semiconductors, metals, electronic
devices and other electronic systems [1, 5, 6, 16, 18]. The topic of 1/f noise in such systems
has been comprehensively reviewed [5], even recently [6]. Nevertheless, despite numerous
suggested models, the origin of flicker noise even there still remains an open issue: ‘more
and more studies suggest that if there is a common regime for the low frequency noise, it
must be mathematical rather than the physical one’ [6]. Here we can additionally mention
the disputed quantum theory [19] of 1/f noise and 1/f noise satisfactorily interpreted in
quantum chaos [20].

In 1987 Bak et al [21, 22] introduced the notion of self-organized criticality (SOC) with
one of the main motivations being that of explaining the universality of 1/f noise. SOC
systems are non-equilibrium systems driven by their own dynamics to a self-organization.
Fluctuations around this state, the so-called avalanches, are characterized by power-
law distributions in time and space, criticality implying long-range correlations. The
distributions of avalanche sizes, durations and energies are all seen to be power laws.

Two types of correlation should be distinguished in SOC: the scale-free distribution
of their avalanche sizes and temporal correlations between avalanches, bursts or (rare,
extreme) events. In the standard SOC models the search for 1/fβ noise is based on the
observable power-law dependence of the burst size as a function of the burst duration and
the power-law distribution of the burst sizes, with Poisson distributed interevent times.
Such power laws usually result in relatively high frequency power law, 1/fβ, behavior of
the power spectrum with the exponent 1.4 � β � 2 [23, 24]. This mechanism for the
power-law spectrum is related to the statistical models of 1/fβ noise representing signals
as consisting of different random pulses [25]–[27].

It should also be mentioned that originally SOC was suggested as an explanation of
the occurrence of 1/f noise and fractal pattern formation in the dynamical evolution of
certain systems. However, recent research has revealed that the connection between these
and SOC is rather loose [28]. Though an explanation of 1/f noise was one of the main
motivations for the initial proposal of SOC, time dependent properties of self-organized
critical systems have not been studied much theoretically so far [29].

It is of interest to note that the paper [21] is the most cited paper in the field of 1/f
noise problems, but it was shown later on [23, 24] that the mechanism proposed in [21]
for SOC systems results in 1/fβ fluctuations with 1.5 � β � 2 and does not explain the
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omnipresence of 1/f noise. On the other hand, we can point to a recent paper [30] where
an example of 1/f noise in the classical sandpile model has been provided.

It should be emphasized, however, that another mechanism of 1/fβ noise, based on
the temporal correlations between avalanches, bursts or (rare, extreme) events, may be
the source of the power-law 1/fβ spectra with β � 1 [31]. Moreover, SOC is closely
related to the observable 1/fβ crackling noise [32], Barkhausen noise [33], fluctuations
of the long-term correlated seismic events [34] and 1/fβ fluctuations for non-equilibrium
phase transitions [35].

Ten years ago we proposed [8, 9], analyzed [36] and later on generalized [10] a simple
point process model of 1/fβ noise and applied it to financial systems [37]. Moreover,
starting from the point process model we derived stochastic nonlinear differential
equations, i.e., general Langevin equations with a multiplicative noise for the signal
intensity exhibiting 1/fβ noise (with 0.5 ≤ β ≤ 2) in any desirable wide range of frequency
f [38]. Here we analyze the scaling properties of the signals generated by the particular
stochastic differential equations. We obtain and analyze the power-law dependences of the
signal intensity, power spectrum, autocorrelation functions and the second-order structural
functions. The comparison with the numerical simulations is presented.

Moreover, the numerical analysis reveals a second (recall that we start from the point
process) structure of the signal composed of peaks, bursts, clusters of events with the
power-law distributed burst sizes S, burst durations T and the interburst time θ, while
the burst sizes are approximately proportional to the squared durations of the bursts,
S ∼ T 2. Therefore, the proposed nonlinear stochastic model may simulate SOC and
other similar systems where the processes consist of avalanches, bursts or clustering of the
extreme events [21]–[24], [28]–[35], [39].

2. The model

We start from the point process

x(t) = a
∑

k

δ(t − tk), (1)

representing the signal, current, flow, etc, x(t), as a sequence of correlated pulses or series
of events. Here δ(t) is the Dirac δ-function and a is a contribution to the signal x(t) of one
pulse at the time moment tk. Our model is based on the generic multiplicative process
for the interevent time τk = tk+1 − tk,

τk+1 = τk + γτ 2μ−1
k + στμ

k εk, (2)

generating the power-law distributed

Pk(τk) ∼ τα
k , α =

2γ

σ2
− 2μ (3)

sequence of the interevent times τk [10, 37].
Some motivations for equation (2) were given in papers [8, 10, 36, 37]. Additional

comments are presented below, after equation (6).
Therefore, in our model the (average) interevent time τk fluctuates due to the random

perturbations by a sequence of uncorrelated normally distributed random variables {εk}
doi:10.1088/1742-5468/2009/02/P02051 4
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with zero expectation and unit variance; σ is the standard deviation of the white noise
and γ � 1 is a coefficient of the nonlinear damping.

Transition from the occurrence number k to the actual time t in equation (2) according
to the relation dt = τk dk yields the Itô stochastic differential equation for the variable
τ(t) as a function of the actual time,

dτ = γτ 2μ−2 dt + στμ−1/2 dW, (4)

where W is a standard Wiener process. Equation (4) generates the stochastic variable τ ,
power-law distributed,

Pt(τ) =
Pk(τ)

〈τk〉 τ ∼ τα+1, (5)

in the actual time t. Here 〈τk〉 is the average interevent time. τ(t) may be interpreted as
the average time dependent interevent time of the modulated Poisson-like process with
the distribution of the interevent time

Pp(τp) =
1

τ (t)
e−τp/τ(t) = n (t) e−n(t)τp, (6)

where n(t) = 1/τ(t) is the time dependent rate of the process [37].
Additional support for the stochastic model (1)–(6) of the scaled processes and 1/fβ

noise is the following. The fluctuations of the intensity of the signals, currents, flows, etc,
consisting of discrete objects (electrons, photons, packets, vehicles, pulses, events, etc),
are primarily and basically defined in terms of fluctuations of the (average) interevent,
interpulse, interarrival, recurrence, or waiting time. Equation (4) is a special case of the
general nonlinear Langevin equation

dτ = d(τ) dt + b(τ) dW (t), (7)

with the drift coefficient d(τ) and a multiplicative noise b(τ)ξ(t) for the (average)
interevent time τ(t), with ξ(t) being a white nose defined from the relation dW (t) =
ξ(t) d(t). Equation (7) is a straight analogy of the well-known Langevin equation for
the continuous random variable x. For the process consisting of the discrete objects the
intensity of the signal fluctuates due to fluctuations of the rate, i.e., density of the objects
in the time axis, which is a consequence of fluctuations of the interarrival or interevent
time. Equation (7) in reality represents (in the simplest form) such fluctuations due to
random perturbations by white noise.

In papers [8]–[10] it has been shown that the small interevent times and clustering of
the events make the greatest contribution to 1/fβ noise, low frequency fluctuations and
exhibiting of long-range scaled features. Therefore, it is straightforward to approximate
the nonlinear diffusion coefficient b(τ) and the distribution of the interevent time Pt(τ) in
some interval of small interevent times τ by the power-law dependences or expansions

b(τ) = στμ−(1/2), (8)

Pt(τ) ∼ τα+1. (9)

The power-law distribution of the interevent, recurrence, or waiting time is observable
in different systems from physics and seismology to the Internet, financial markets
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and neural spikes (see, e.g., [10, 37, 39]). It should be noted that the multiplicative
equations with the drift coefficient d(τ) proportional to the Stratonovich correction for the
drift, leading the transformation from the Stratonovich to the Itô stochastic differential
equation [40], i.e., when

d(τ) ∼ 1
2
b(τ)b′(τ), (10)

with the power-law dependent, like (8), diffusion coefficient b(τ), generate the power-
law distribution of the stochastic variable. Equations (2) and (4) are definitely of such
a kind. Therefore, equation (4) is one of the simplest multiplicative equations for the
interevent time, modeling scaled processes, while equation (2) is just the lowest order
difference equation following from equation (4) when the step of integration Δtk equals
the interevent time τk.

The Itô transformation in equation (4) of the variable from τ to the intensity averaged
over the time interval τ of the signal x(t) = a/τ(t) [38] yields the class of Itô stochastic
differential equations

dx =
(
η − 1

2
λ
)
x2η−1 dts + xη dW (11)

for the signal as a function of the scaled time

ts =
σ2

a3−2μ
t. (12)

Here the new parameters

η = 5
2
− μ, λ = 3 + α =

2γ

σ2
+ 2(η − 1) (13)

have been introduced.
The Fokker–Planck equation associated with equation (11) gives the power-law

distribution density of the signal intensity

P (x) ∼ 1

xλ
, (14)

with the exponent λ.
For λ > 1, distribution (14) diverges as x → 0, and, therefore, the diffusion of x

should be restricted at least from the side of small values, or equation (11) should be
modified. Thus, further on, we will consider the modified equation for x > 0 only,

dx =
(
η − 1

2
λ
)
(xm + x)2η−1 dts + (xm + x)η dW, (15)

with the additional small parameter xm restricting the divergence of the power-law
distribution of x at x = 0.

Equation (15) for small x � xm represents the linear additive stochastic process
generating the Brownian motion with the steady drift, while for x � xm it reduces to the
multiplicative equation (11).

doi:10.1088/1742-5468/2009/02/P02051 6
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3. Analysis of the model

The Fokker–Planck equation associated with equation (15) gives the steady-state solution
for the distribution of x,

P (x) =
(λ − 1)xλ−1

m

(xm + x)λ
, x > 0, λ > 1. (16)

We can obtain the power spectral density of the signal generated by equation (15) from
equation (28) derived in paper [10]. After some algebra we can write

S(f) =
A

fβ
, f � f1 =

2 + λ − 2η

2π
x2(η−1)

m , (17)

with

A =
(λ − 1)Γ(β − 1/2)xλ−1

m

2
√

π(η − 1) sin(πβ/2)

(
2 + λ − 2η

2π

)β−1

(18)

and

β = 1 +
λ − 3

2(η − 1)
(19)

for 0.5 < β < 2, 4−η < λ < 1+2η and η > 1. Note that the frequency f in equation (17)
is the scaled frequency matching the scaled time ts (12).

The autocorrelation function C(s) of the process can be expressed according to
Wiener–Khinchin theorem as the inverse Fourier transform of the power spectrum,

C(s) = 〈x(t)x(t + s)〉 =

∫ ∞

0

S(f) cos(2πfs) df. (20)

A pure 1/fβ power spectrum is physically impossible because the total power would
be infinity. Depending on whether β is greater or less than 1, it is necessary to introduce
a low frequency cutoff fmin or a high frequency cutoff fmax [41, 42]. For calculation of the
autocorrelation function according to equation (20), when β > 0 it is not necessary to
introduce the high frequency cutoff.

Usually one introduces a discontinuous transition to the flat spectrum at the lower
cutoff fmin [41, 42]. Here at low frequencies we will insert the smooth transition to the flat
spectrum in the vicinity of f0 ∼ fmin, i.e., we will approximate the power spectrum (17)
as

S(f) =
A

(f 2
0 + f 2)β/2

=

{
A/fβ

0 , f � f0,

A/fβ, f � f0.
(21)

Inserting (21) into equation (20) we obtain

C(s) =
A
√

π

Γ(β/2)fβ−1
0

(z

2

)h

Kh(z), (22)

where Kh(z) is the modified Bessel function, z = 2πf0s and h = (β − 1)/2.
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The first two terms of the expansion of equation (22) in powers of z are

C(s) =
A
√

π

2Γ(β/2)fβ−1
0

[
Γ

(
β − 1

2

)
+ Γ

(
1 − β

2

)
(πf0s)

β−1

]
(23)

for h 
= 0, i.e., β 
= 1, and

C(s) = AK0(2πf0s) � A[−γ − ln(πf0s)] = const − A ln s (24)

for h = 0, i.e., for the pure 1/f noise with β = 1. Here γ � 0.577 216 is Euler’s constant.
The leading terms of expression (23) differ depending on whether β < 1 or β > 1.

Thus for h < 0, i.e., when 0 < β < 1,

C(s) =
AΓ(1 − β)

(2πs)1−β
sin

(
πβ

2

)
∼ 1

s1−β
, (25)

while for h > 0, i.e., for 1 < β < 3,

C(s) = C(0) − Bsβ−1. (26)

Here

C(0) = 〈x2〉 =

∫ ∞

0

S(f) df =
A
√

πΓ ((β − 1)/2)

2fβ−1
0 Γ (β/2)

(27)

and

B =
Aπβ+(1/2)

2Γ (β/2) Γ ((β + 1)/2) sin (π(β − 1)/2)
= −A(2π)β−1Γ(1 − β) sin

(
πβ

2

)
. (28)

For β = 2 equations (22) and (26)–(28) yield

C(s) = C(0)e−2πf0s =
Aπ

2f0
e−2πf0s = C(0) − Aπ2s ± · · · . (29)

It should be noted that particular cases (24)–(29) of the general expressions (22)
and (23) are in agreement with the results of papers [41]–[43] obtained with the non-
uniform cutoff of the spectrum at low frequency. On the other hand, the parameter h
introduced for β ≥ 1 coincides with the Hurst exponent H [42],

H =

⎧
⎪⎨

⎪⎩

0, 0 < β ≤ 1,
1
2
(β − 1), 1 < β < 3,

1, 3 ≤ β < 4.

(30)

The exponent H is associated with the scaling of the second-order structural function,
or height–height correlation function [41]–[44],

F (s) = F 2
2 (s) = 〈|x(t + s) − x(t)|2〉 ∼ s2H . (31)

The exponent H characterizes the power-law diffusion rate, as well. This variance of the
differenced time series (delayed signal) may be expressed as

F (s) = 〈x2(t + s)〉 + 〈x2(t)〉 − 2〈x(t + s)x(t)〉 = 2[C(0) − C(s)]. (32)
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Figure 1. Examples of the numerically computed signals according to
equations (37) and (38) with the parameters η = 2, xm = 10−2 and different
values of β and λ: β = 1/2 when λ = 2, β = 1 when λ = 3 and β = 3/2 when
λ = 4, and the interburst time θj as a function of the occurrence number j of the
events peaking above the threshold value xth = 0.1 for the pure 1/f noise with
β = 1 when λ = 3.

Substituting expressions (20) and (27) into (32) we have

F (s) = F 2
2 (s) = 4

∫ ∞

0

S(f) sin2(πsf) df. (33)

For the convergence of the integral in (33) at β ≤ 1 we need to cut off the power-
law spectrum (17) at high frequency fmax. Then the leading terms of the height–height
correlation function (33) are

F (s) = 2A ×
⎧
⎨

⎩

f 1−β
max

1 − β

[
1 − Γ(2 − β)

(2πfmaxs)1−β
sin

(
πβ

2

)]
, 0 < β < 1,

[ln(πfmaxs) − γ], β = 1.

(34)

For 1 < β < 3 the integral in (33) may be integrated exactly and we have

F (s) = −2AΓ(1 − β) sin

(
πβ

2

)
(2πs)β−1 = 2Bsβ−1, 1 < β < 3. (35)

doi:10.1088/1742-5468/2009/02/P02051 9
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Figure 2. Distribution density, P (x), power spectral density, S(f),
autocorrelation function, C(s), and the second-order structural function, F2(s),
for solutions of equation (15) with η = 2, xm = 10−2 and different values
of the parameter λ: λ = 2 (circles), λ = 2.5 (squares) and λ = 3
(triangles) in comparison with the analytical results (solid lines) according to
equations (16), (18)–(22), (34) and (35), respectively.

The spatial power spectrum and the height–height correlation function (31) are used
for analysis of rough self-affine surfaces and assessing the growth mechanism of thin
films [45]–[49], as well. There sometimes the violation of the scaling relation β = 2H + 1
is observable [46, 47, 50].

4. Numerical analysis

For the numerical analysis we have to solve equation (15) and analyze the numerical
solutions obtained. We can solve equation (15) using the method of discretization with
the variable step of integration

hi = Δti =
κ2

(xm + xi)
l
, (36)

where κ is a small parameter while the exponent l rules the dependence of the integration
step on the value of the variable x. Thus, l = 0 corresponds to the fixed step, for l = 1

doi:10.1088/1742-5468/2009/02/P02051 10
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Figure 3. As figure 2 but for the parameters λ = 3 (circles), λ = 3.5 (squares)
and λ = 4 (triangles).

we have an analogy with equation (2) when the step is proportional to the interevent
time τk, l = 2 (η − 1) matches the case when the change of the variable x in one step is
proportional to the value of the variable at the time of the step [38] and so on. As a result
we have the system of the difference equations

xi+1 = xi + κ2
(
η − 1

2
λ
)
(xm + xi)

2η−1−l + κ (xm + xi)
η−l/2 εi, (37)

ti+1 = ti +
κ2

(xm + xi)
l
, xi > 0. (38)

Here εi is a set of uncorrelated normally distributed random variables with zero
expectation and unit variance. In the Milstein approximation, equation (37) should be
replaced by the equation

xi+1 = xi +
κ2

2
(η − λ) (xm + xi)

2η−1−l + κ (m + xi)
η−l/2 εi +

κ2η

2
(xm + xi)

2η−1−l ε2
i . (39)

Numerical analysis indicates that the variable of equation (15) exhibits some peaks,
bursts or extreme events, corresponding to the large deviations of the variable from the
appropriate average value. As examples, in figure 1 we show the illustrations of the signals
generated according to equation (15) for different slopes of the signal distributions and

doi:10.1088/1742-5468/2009/02/P02051 11
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Figure 4. Dependence of the burst size S as a function of the burst duration
T : traces from the top of the figure for size S above the threshold value
xth = 0.02, 0.1 and 0.5, respectively, distributions of the burst size, P (S), burst
duration, P (T ), and interburst time, P (θ), for the peaks above the threshold
value xth = 0.1. Calculations are as in figures 2 and 3 with the parameters
η = 2, xm = 10−2 and different values of the parameter λ: λ = 2 (circles), λ = 3
(squares) and λ = 4 (triangles).

the dependence of the interburst time θj on the burst occurrence number j. We see that
the computed signal is composed of bursts of different sizes with a wide-range distribution
of the interburst time. In figures 2 and 3 the numerical calculations of the distribution
density, P (x), power spectral density, S(f), autocorrelation function, C(s), and second-

order structural function, F2(s) =
√

F (s), for solutions of equation (15) with η = 2,
xm = 10−2 and different values of the parameter λ, are presented. We see rather good
agreement between the numerical calculations and the analytical results except for the
structural function F2(s) when λ > 3. Numerical evaluation of the structural function in
the case of a steep power-law distribution is problematic, because in the calculation one
needs to average (squared) small differences of the rare large fluctuations.

In figure 4 we demonstrate numerically that the size of the generated bursts S
is approximately proportional to the squared burst duration T , i.e., S ∝ T 2, and
asymptotically approximately power-law distributions of the burst size, P (S) ∼ S−1.3,
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burst duration, P (T ) ∼ T−1.5, and interburst time, P (θ) ∼ θ−1.5, for the peaks above the
threshold value xth of the variable x(t).

It should be noted that the parameter η = 2 yields in equation (4) the additive noise
and the linear relaxation of the signal x = a/τ , i.e., the simple (pure) Brownian motion
in the actual time of the interevent time with the linear relaxation of the signal.

5. Conclusions

Starting from the multiplicative point process we obtain stochastic nonlinear differential
equations which generate signals with power-law statistics, including 1/fβ fluctuations.
We derive analytical expressions for the probability density of the signal, the power
spectral density, the autocorrelation function, and the second-order structural function
and demonstrate that the analytical results are in agreement with the results of numerical
simulations. The numerical analysis of the equations reveals the secondary structure of the
signal composed of peaks or bursts, corresponding to the large deviations of the variable
x from the proper average fluctuations. The burst sizes are approximately proportional
to the squared duration of the burst. According to the theory [24, 27] such dependence
for the uncorrelated bursts should result in 1/fβ noise with β ≈ 2 in the relatively high
frequency region. The power-law distribution P (θ) of the interburst time θ indicates
correlation of the burst occurrence times and may result in 1/fβ noise with β < 2,
similarly to the point process model [8]–[10]. On the other hand, the proposed model not
only reproduces 1/f noise models and the processes in SOC and crackling systems, but
also is related to the clustering Poisson process [51], 1/f noise due to diffusion of defects or
impurity centers in semiconductors [52], 1/f noise in nanochannels, single-channel and ion
channel currents [53], etc. Therefore, the model presented and analyzed may be used for
simulation of the long-range scaled processes exhibiting 1/f noise, power-law distributions
and self-organization.
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