
Models for generation 1=f noise
B. Kaulakys a,b,*, T. Me�skauskas a,c

a Institute of Theoretical Physics and Astronomy, A. Go�stauto 12, LT-2600 Vilnius, Lithuania
b Department of Physics, Vilnius University, Saul _etekio al. 9, LT-2040 Vilnius, Lithuania

c Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-2006 Vilnius, Lithuania

Received 15 November 1999; received in revised form 28 February 2000

Abstract

Simple analytically solvable models are proposed exhibiting 1=f spectrum in a wide range of frequency. The signals

of the models consist of pulses (point process), interevent times of which ¯uctuate about some average value, obeying an

autoregressive process with very small damping. The power spectrum of the process can be expressed by the Hooge

formula. The proposed models reveal possible origin of 1=f noise, i.e., random increments of the time intervals between

pulses or interevent time of the process (Brownian motion in the time axis). Ó 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Widespread occurrence of signals exhibiting power

spectral density with 1=f behavior suggests that a gen-

eral mathematical explanation of such an e�ect might

exist. However, physical models of 1=f noise in some

physical systems are usually very specialized and they do

not explain the omnipresence of the processes with 1=f d

spectrum. Mathematical algorithms and models for the

generation of the processes with 1=f noise cannot, as a

rule, be solved analytically and they do not reveal the

origin as well as the necessary and su�cient conditions

for the appearance of 1=f type ¯uctuations.

History of the progress in di�erent areas of physics

indicates the crucial in¯uence of simple models on the

advancement of the understanding of the main points of

the new phenomena. We note here only the decisive

in¯uence of the Bohr model of hydrogen atom on the

development of the quantum theory, the role of the

Lorentz model as well as the logistic and standard

(Chirikov) maps for an understanding of the determin-

istic chaos and the quantum kicked rotator for revealing

the quantum localization of classical chaos.

Here, we present simple models of 1=f noise which

may essentially in¯uence the understanding of the origin

and main properties of the e�ect. Our models are the

result of a search for necessary and su�cient conditions

for the appearance of 1=f ¯uctuations in simple systems

a�ected by the random external perturbations, which

where initiated in Refs. [1,2] and originated from the

observation of the transition from chaotic to nonchaotic

behavior in the ensemble of randomly driven systems

[3,4].

2. Simple model

The simplest version of our model corresponds to

one particle moving along some orbit. The period of this

motion ¯uctuates (due to external random perturbations

of the system's parameters) about some average value �s.

So, a sequence of the transit times tkf g when the particle

crosses some point of the orbit is described by the iter-

ative equations

tk � tkÿ1 � sk ;
sk � skÿ1 ÿ c�skÿ1 ÿ �s� � rek :

�
�1�

Here, c is the coe�cient of the relaxation of the period to

the average value �s, ekf g denotes the sequence of ran-

dom variables with zero expectation and unit variance

and r is the standard deviation of the noise. Due to the
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contribution of a large number of random variables to

the transit times, model (1) represents a long-memory

random process.

Power spectral density S f� � of the signal or current

of the model (1), I t� � � a
P

k d t ÿ tk� � (with a being a

contribution to the signal of one pulse or contribution to

the current of one particle when it crosses the section of

observation), may be calculated according to equation

S f� � � lim
T!1

2a2

T

Xkmax

k�kmin

eÿi2pftk

�����
�����
2* +
; �2�

where T is the whole observation time interval, kmin and

kmax are minimal and maximal values of index k in the

interval of observation and the brackets � � �h i denote the

averaging over the realizations of the process. Eq. (2)

may be rewritten in the form

S f� � � lim
T!1

2a2

T

X
k;q

ei2pf D k;q� �
* +

; �3�

where D k; q� � � tk�q ÿ tk is the di�erence of transit times

tk�q and tk .

At k � cÿ1, we have the stationary process [5,6]: the

expectation skh i � �s and the variance r2
s � s2

k


 �ÿ
skh i2 � r2=2c of the recurrence time sk do not depend on

the time while D k; q� � is a normally distributed random

variable with the expectation lD q� � � hD 1; q� �i � q�s
and the variance r2

D q� � � hD 1; q� �2i ÿ hD 1; q� �i2 ex-

pressed as [5,6]

r2
D q� � � r

c

� �2

q
�
ÿ 1ÿ 1ÿ c� �q� �

c

�
: �4�

For the normal distribution of D k; q� � � D q� �, Eq. (3)

yields

S f� � � 2�Ia
X

q

ei2pf lD q� �ÿ2p2f 2r2
D q� �; �5�

where �I � lim
T!1

a kmax ÿ kmin � 1� �=T � a=�s is the average

current.

Substitution of the expansions of the variance (4) at

qj j � cÿ1 in powers of c qj j,
r2

D q� � � r2
sq2;

into Eq. (5) yields 1=f -like power spectrum,

S f� � � �I2 aH

f
; �6a�

for su�ciently small parameters r and c in any desirably

wide range of frequencies, f1 � c=prs < f < f2 � 1=prs.

Here aH is a dimensionless constant (the Hooge pa-

rameter),

aH � 2���
p
p KeÿK2

; K � �s���
2
p

rs

: �7�

We see that the power of 1=f noise except the squared

average current �I2 depends strongly on the ratio of the

average recurrence time �s to the standard deviation of

the recurrence time rs.

Therefore, the process (1) containing only one re-

laxation time cÿ1 can for su�ciently small damping

c produce an exact 1=f -like spectrum in a wide range of

frequency f1; f2� �, with f2=f1 ' cÿ1.

The model is free from the unphysical divergency of

the spectrum at f ! 0. So, using for f < f1 an expan-

sion of expression (4) at qj j � cÿ1, r2
D�q� � r=c� �2 qj j ÿ�

1=c�, we obtain from Eq. (5) the Lorentzian power

spectrum [5,6]

S f� � � �I2 4srel

1� s2
relx

2
: �8�

Here x � 2pf and srel � Dt � r2=2�sc2 is the ``di�usion''

coe�cient of the time tk . For f � f0 � �sc2=pr2 �
1=2psrel we have the white noise

S�f � � �I2 2r2=�sc2
� �

; f � min f1; f0f g:

This is in agreement with the statement [7] that the

power spectrum of any pulse sequence is white at low

enough frequencies.

Eqs. (6a)±(8) describe quite well the power spectrum

of the random process (1) for perturbation by the

Gaussian white noise and even for perturbations by the

non-Gaussian sequence of random impacts ekf g in Eq.

(1) (illustrative examples in Refs. [5,8]).

3. Generalizations and numerical analysis

This simple exactly solvable model can easily be

generalized in di�erent directions: for large number of

particles moving in similar orbits with coherent (identi-

cal for all particles) or independent (uncorrelated for

di�erent particles) ¯uctuations of the periods, for non-

Gaussian or continuous perturbations of the systems'

parameters and for spatially extended systems. So, when

an ensemble of Nc particles moves on closed orbits and

the period of each particle ¯uctuates independently, (due

to the perturbations by uncorrelated sequences of ran-

dom variables fev
kg, di�erent for each particle v) the

power spectral density of the collective current I of all

particles can be calculated by the above method [5] too

and it is expressed as the Hooge formula [9,10]

S f� � � �I2 aH

Ncf
; Nc � Vnc: �6b�

This expression with the factor 1=Nc is in agreement

with the Hooge [10,11] statements that summation of

spectra is only allowed if the processes contributing to

the spectrum are isolated from each other and that only

isolated traps yield 1=f spectrum.
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It should be noted that in many cases the intensity of

signals or currents can be expressed as a sequence of the

pulse occurrence times tkf g, i.e., as I t� � � a
P

k d t ÿ tk� �.
This expression represents exactly the ¯ow of identical

point objects: cars, electrons, photons and so on. More

generally, instead of the Dirac delta function one should

introduce time dependent pulse amplitudes Ak t ÿ tk� �.
The low frequency power spectral density, however,

depends weakly on the shapes of the pulses [7], while

¯uctuations of the pulses amplitudes result, as a rule,

in white or Lorentzian, but not 1=f , noise. Model (1)

in such cases represents ¯uctuations of the averaged in-

terevent time sk between the subsequent occurrence

times of the pulses.

The model may also be generalized for the nonlinear

relaxation of the interevent time sk . In such a case Eq.

(1) can be written in the form

tk � tkÿ1 � sk ;

sk � skÿ1 ÿ dV �skÿ1�
dskÿ1

� rek :

(
�9�

Here, the function V �sk� represents the e�ective ``po-

tential well'' for the Brownian motion of the interevent

time sk . The steady state distribution density of the in-

terevent time sk generated by Eq. (9) is of the form

wst
s �sk� � C exp

�
ÿ 2V �sk�

r2

�
; �10�

where a constant C may be obtained from the normal-

ization. For the power-law ``potential well''

V �sk� � 1

2
c�sk ÿ �s�2n �11�

with integer n we have a generalization of Eq. (1)

tk � tkÿ1 � sk ;
sk � skÿ1 ÿ cn�skÿ1 ÿ �s�2nÿ1 � rek :

�12�

The steady state distribution density of the interevent

time sk in such a case is

wst
s �sk� �

c=r2� �1=2n
exp ÿ c skÿ�s� �2n

r2

� �
2C 1� 1=2n� � : �13�

For su�ciently large n� 1 Eqs. (12) and (13) represent

Brownian motion of the interevent time sk in almost

rectangle ``potential well'' (square-well potential) re-

stricting movement of sk mostly in the interval

�sÿ h; �s� h� � with h ' r2=c� �1=2n
. At h < �s, such a re-

striction prevents the emergence of the negative inter-

event times sk and, consequently, from the clustering of

the particles or of the signal pulses.

We can evaluate the power spectrum of the processes

(9) and (12) as well [5,6,12]. The power spectral density

(3) may be rewritten in the form

S f� � � 2�Ia
X

q

ei2pf sk q� �q
* +

; �14�

where the occurrence times tk�q and tk di�erence D k; q� �
is expressed as

D k; q� � � tk�q ÿ tk �
Xk�q

l�k�1

sk � sk q� �q; q P 0

with sk q� � � tk�q ÿ tk

ÿ �
=q being the average interevent

time in the time interval (tk ; tk�q) and the brackets in Eq.

(14) denote averaging over time (index k) and over re-

alizations of the process. At 2pf sk q� � � 1 the summa-

tion in Eq. (14) may be replaced by the integration

S f� � � 2�Ia
Z �1

ÿ1
ei2pf sk q

 �

dq:

Here, the averaging over k and over realizations of the

process coincides with the averaging over the distribu-

tion of the interevent times sk , i.e.,

ei2pfqs

 � � Z �1

ÿ1
ei2pfqsws s� �ds � vs 2pfq� �;

where ws sk� � is the distribution density of the interevent

times sk and vs #� � is the characteristic function of this

distribution.

Taking into account the property of the characteristic

functionZ �1

ÿ1
vs #� �d# � 2pws 0� �;

we obtain the ®nal expression for the power spectrum

S f� � � 2�I2�sws 0� �=f : �15�
For Gaussian distribution of the interevent times sk ,

ws 0� � � exp
�
ÿ �s2=2r2

s

�. ������
2p
p

rs;

and according to Eq. (15), we recover expressions (6)

and (7) obtained from the analysis of the dynamical

process.

Therefore, according to Eqs. (6a), (7) and (15), the

dimensionless parameter aH � 2�sws 0� � is proportional

to the distribution density ws 0� � of the interevent time sk

in the point sk � 0, i.e., to the probability of the clus-

tering of the signal pulses. The pulse clustering results in

the large variance of the signal ± the condition necessary

for appearance of stationary 1=f noise in the wide range

of frequency.

It should be noted, however, that Eq. (15) represents

an idealized 1=f noise. The real systems have ®nite re-

laxation time and, therefore, expression of the noise

intensity in the form of Eqs. (14) and (15) is valid only

for f > 2psrel� �ÿ1
with srel being the relaxation time of

the interevent time's sk ¯uctuations. On the other hand,
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due to the deviations from the approximation

tk�q ÿ tk � skq at large q, for su�ciently low frequency

we can obtain the ®nite intensity of 1=f d (d ' 1) noise

even in the case w 0� � � 0 but for the signals with ¯uc-

tuations resulting in the dense concentrations of the

pulse occurrence times tk .

We can generate, of course, the stationary time series

of the occurrence times tk also for other restrictions for

the interevent time sk , e.g., with the re¯ecting boundary

conditions at some values sk � smin and sk � smax. The

process like Eq. (1) with the re¯ecting condition for sk at

smin � ss may also be generated by the recurrent equa-

tions

tk � tkÿ1 � ss � sk ;
sk � jskÿ1 ÿ c�skÿ1 ÿ �s� � rek j:

�
�16�

Numerical analysis of the models like Eqs. (1), (9),

(12) and (16) as well as with other restrictions for the

interevent time sk shows that power spectrum of the

current is 1=f -like in large interval of frequency only

when the distribution density of the interevent times sk

in the point sk ' 0 is nonzero, i.e., ws�sk ' 0� 6� 0. For

models with ws�0� � 0 or ws�0� very close to zero, we

observe in numerical simulations the power spectrum

S f� � / 1=f 3=2 (Ref. [8] and Fig. 1).

4. Conclusions

Simple analytically solvable models of 1=f noise are

proposed. The models reveal main features, parameter

dependences and possible origin of 1=f noise, i.e., ran-

dom increments of the time intervals between the pulses

or interevent times of the elementary events of the pro-

cess. The conclusion that 1=f d noise with d ' 1 may

result from the clustering of the signal pulses, particles

or elementary events can be drawn from the analysis of

the simple, exactly solvable models. The mechanism of

the clustering depends on the system.
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