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Abstract

The problem of the intrinsic origin of 1=f noise is considered. Currents and signals consisting of a sequence of pulses

are analyzed. It is shown that the intrinsic origin of 1=f noise is a random walk of the average time between subsequent

pulses of the pulse sequence, or the interevent time. This results in the long-memory process for the pulse occurrence

time and in 1=f type power spectrum of the signal. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Ubiquitous signals and processes with 1=f power

spectral density at low frequencies has led to specula-

tions that there might exist some generic mechanism

under the production of 1=f noise. The generic origins

of two popular noises, white noise (no correlation in

time, S�f � / 1=f 0� and Brownian noise (no correlation

between increments, S�f � / 1=f 2� are very well known.

It should be noted that Brownian motion is the integral

of white noise and that the operation of integration of

the signal increases the exponent by 2 while the inverse

operation of di�erentiation decreases it by 2. Therefore,

1=f noise cannot be obtained by the simple procedure of

integration or di�erentiation of the convenient signals.

There are no simple, even stochastic, equations gener-

ating signals with 1=f noise. Also, note the concept of

the fractional Brownian motion and the half-integration

of white noise signals used for the generation of pro-

cesses with 1=f noise [1] in this context. These and

similar mathematical algorithms, procedures and models

for the generation of the processes with 1=f noise [2,3]

are, however, su�ciently speci®c, formal or unphysical.

They cannot, as a rule, be solved analytically and they

do not reveal the origin as well as the necessary and

su�cient conditions for the appearance of 1=f type

¯uctuations. Physical models of 1=f noise in some

physical systems are usually very specialized and com-

plicated and they do not explain the internal origin of

the omnipresent processes with 1=f d spectrum.

A lot of contributions are available in the literature

concerning the origin of 1=f noise. On the web (),

Wentain Li is the collective bibliography of ¯icker noise.

Su�ciently comprehensive bibliography of the contri-

butions concerning the modeling of 1=f noise may be

found in Refs. [3±10].

This work is a continuation of series of papers de-

voted to modeling 1=f noise in simple systems [4±6] and

searches the necessary conditions for the appearance of

the signals with power spectrum at low frequencies like

S�f � / 1=f d �d ' 1� [7±12]. In the Refs. [4±6], an anal-

ysis of the necessary conditions for the appearance of

1=f type ¯uctuations in the simple systems consisting of

few or even one particle and a�ected by random per-

turbations is presented. Later, a simple, analytically

solvable model of 1=f noise has been proposed [7,8],

analyzed [9,10] and generalized [11]. The model reveals

the main features and the parameter dependencies of the

power spectrum of 1=f noise.

Here, considering signals and currents as consisting

of pulses, generalizations and development of the model

[7,8] are presented. The paper includes derivation of the

expression for the correlation function, analysis of the

examples of di�erent signals and exhibition of the nec-

essary conditions for the appearance of 1=f type power

spectrum in the signals consisting of pulses. It is shown

that the intrinsic origin of 1=f noise is a Brownian

motion of the pulse interevent time.
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2. The model

Let us consider currents or signals represented as

sequences of random (but correlated) pulses Ak�t ÿ tk�.
Function Ak�t ÿ tk� represents the shape of the k-pulse of

the signal in the region of the pulse occurrence time tk .

The signal or intensity of the current of particles in some

space cross-section may, therefore, be expressed as

I�t� �
X

k

Ak�t ÿ tk�: �1�

It is easy to show that the shapes of the pulses mainly

in¯uence the high frequency, f PDtp with Dtp being the

characteristic pulse length, power spectrum while ¯uc-

tuations in the pulse amplitudes result, as a rule, in the

white or Lorentzian but not 1=f noise [13]. Therefore,

we restrict our analysis to the noise due to the cor-

relations between the pulse occurrence times tk . In such

an approach, we can replace the function Ak�tÿ
tk� by ad�t ÿ tk�. Here d�t ÿ tk� is the Dirac delta func-

tion, a � hR�1ÿ1 Ak�t ÿ tk�dti is the average area of the

pulse and the brackets h� � �i denote the averaging over

realizations of the process. In such an approach, signal

(1) may be expressed as

I t� � � a
X

k

d t� ÿ tk�: �2�

This model also corresponds to the ¯ow of identical

point objects such as electrons, photons, cars and so on.

On the other hand, ¯uctuations in the amplitudes Ak

may result in the additional noise but cannot reduce 1=f
noise we are looking for.

2.1. Power spectrum

Power spectral density of the signal I�t� is

S�f � � lim
T!1

2

T

Z tf

ti

I�t�eÿi2pftdt

���� ����2
* +

; �3�

where T � tf ÿ ti is the observation time.

We can also introduce the autocorrelation function,

U�s� � 1

T

Z tfÿs

ti

I�t�I�t
�

� s�dt
�

�4�

and use the Wiener±Khintchine relations,

S�f � � 4 lim
T!1

Z T

0

U�s� cos�2pfs�ds;

U�s� �
Z 1

0

S�f � cos�2pfs�df :
�5�

Substitution of Eq. (2) into Eq. (3) results in the

power spectral density of the signal expressed as se-

quence of pulses,

S�f � � lim
T!1

2a2

T

Xkmax

k�kmin

eÿi2pftk

�����
�����
2* +

� lim
T!1

2a2

T

Xkmax

k�kmin

Xkmaxÿk

q�kminÿk

ei2pf D�k;q�
* +

; �6�

where D�k; q� � tk�q ÿ tk is the di�erence of pulse oc-

currence times tk�q and tk while kmin and kmax are mini-

mal and maximal values of index k in the interval of

observation T � tf ÿ ti.

For a stationary process, Eq. (6) yields

S f� � � 2a2

T

XN

q�ÿN

N� � 1ÿ qj j� ei2pf D q� �
 �
:

Here N � kmax ÿ kmin, the brackets � � �h i denote the av-

eraging over realizations of the process and over the

time (index k) and a de®nition D q� � � ÿD ÿq� � � D k; q� �
is introduced. To abbreviate the equations, we have

omitted the mark of the limit ``limT!1'' here and fur-

ther, in expressions for the power spectrum S f� �.
The average over the distribution of D q� � may be

expressed as

ei2pf D q� �
 � � Z �1

ÿ1
ei2pf D q� �WD D q� �� �dD q� � � vD q� � 2pf� �:

Here WD D q� �� � is the distribution density of D q� � and

vD q� � 2pf� � is the characteristic function of the distribu-

tion WD D q� �� �. Therefore,

S f� � � 2a2
XN

q�ÿN

m

�
ÿ qj j

T

�
vD q� � 2pf� �; �7�

where m � limT!1�N � 1�=Th i is the mean number of

pulses per unit time.

When the sum
PN

q�ÿN qj jvD q� � 2pf� � converges and

T !1, we have the power spectrum from Eq. (7) in the

form

S f� � � 2aI
XN

q�ÿN

vD q� � 2pf� �: �8�

Here I � hI t� �i � ma is the average current.

2.2. Correlation function

Substitution of Eq. (2) into Eq. (4) yields the corre-

lation function of signal (2)

U s� � � a2

T

X
k;q

d tk�q

ÿ*
ÿ tk ÿ s

�+
:

After summation over index k, we have

U s� � � �Ia
X

q

d D q� ��h ÿ s�i;
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where the brackets � � �h i denote again the averaging over

realizations of the process and over the time (index k) as

well. Such averaging coincides with the averaging over

the distribution of the time di�erence D q� �.

U s� � � �Ia
X

q

Z �1

ÿ1
wD�D�d D� ÿ s�dD;

U s� � � �Iad s� � � �Ia
X
q6�0

wD�s�:
�9�

Here wD�D� is the distribution density of D q� �. Substi-

tution of Eq. (9) into Eq. (5) yields expressions (7) and

(8).

3. Examples

Consider some examples of the signals represented by

Eq. (2).

(i) Periodic signal expressed as I t� � � a
P

k d t ÿ ks� �
generates the power spectrum

S f� � � 2a2 lim
T!1

sin2 p N�1� �sf� �
T sin2 psf� �

) 2I
2
d f� �; f � sÿ1:

(ii) Perturbed periodic signal represented by Eq. (2)

with the times series expressed as recurrence equations

tk ÿ tkÿ1 � sk � s� rek with ekf g being a sequence of

uncorrelated normally distributed random variables

with zero expectation and unit variance and r being the

standard deviation of this white noise [5,6]. For this

model, we have D q� � � qs� r
Pk�q

l�k�1 el and the char-

acteristic function,

vD q� � 2pf� � � exp i2pf D q� �h i
�

ÿ 1

2
2pf� �2r2

D

�
; �10�

where D q� �h i � qs and the variance r2
D of the time dif-

ference D�q�equalsr2
D � D q� �2

D E
ÿ D q� �h i2 � r2 qj j. Sub-

stitution of Eq. (10) into Eq. (8) yields the Lorentzian

spectrum,

S f� � � I
2 4srel

1� s2
relx

2
; �11�

where x � 2pf andsrel � r2=2s.

(iii) Time di�erence D q� � �Pk�q
l�k�1 sl as a sum of

uncorrelated interevent times sl. According to Eqs. (6)±

(8), we have in this case

S f� � � 2aI 1

"
� 2Re

XN

q�1

ei2pf s

 �q

#
;

S f� � � 2aI 1

�
� 2Re

vs x� �
1ÿ vs x� �

�
:

�12�

For instance, substitution at f � sÿ1 andf � rÿ1 of Eq.

(10) with q � 1 into Eq. (12) results in Eq. (11).

(iv) For the Poisson process,

vs 2pf� � � 1

1ÿ i2pf s
; Re

vs x� �
1ÿ vs x� � � 0;

and we have from Eq. (12) only the shot noise,

S f� � � 2aI � Sshot: �13�
(v) Brownian motion of the interevent time sk with

some restrictions, e.g., with the relaxation to the average

value s,

sk � skÿ1 ÿ c�skÿ1 ÿ �s� � rek ; �14�
when the pulse occurrence times tk are expressed as

tk � tkÿ1 � sk : �15�
According to Eq. (6), the power spectrum of signal

(2) with the pulse occurrence times tk generated by Eqs.

(14) and (15) for su�ciently small parameters randc in

any desirably wide range of frequencies, f1 � c=prs <
f < f2 � 1=prs, is 1=f -like [7±12], i.e.,

S f� � � �I2

���
2

p

r
�s exp ÿ s2=2r2

s

ÿ �
rsf

: �16�

Here r2
s � r2=2c is the variance of the interevent time sk .

4. Origin of 1=f noise

The origin for appearance of 1=f ¯uctuations in the

model described in Eqs. (14) and (15) is related with the

relatively slow, Brownian, ¯uctuations of the pulse in-

terevent time. For this reason, the variance r2
D of the

time di�erence D k; q� � for qj j � cÿ1 is a quadratic func-

tion of the time di�erence and, consequently, of the

di�erence q of the pulse serial numbers k [7±12], i.e.,

r2
D k; q� � � r2

s k� �q2: �17�
Substitution of Eqs. (10) and (17) into Eq. (8) yields

1=f spectrum (16).

4.1. Generalization

For slowly ¯uctuating interevent time, the time dif-

ference D k; q� � may be expressed as [7±12]

D q� � �
Xk�q

l�k�1

sl ' qs; �18�

where s � tk�q ÿ tk

ÿ �
=q is the average interevent time in

the time interval tk ; tk�q

ÿ �
, a slowly ¯uctuating function

of the arguments k and q. In such an approach, the

power spectrum according to Eq. (6) is

S f� � � 2�Ia
X

q

ei2pfqs

 �

; �19�
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where

ei2pfqs

 � � Z �1

ÿ1
ei2pfqsws s� �ds � vs 2pfq� �

is the characteristic function of the distribution density

ws�s� of the interevent time s. Therefore, the power

spectrum according to Eq. (19) may be expressed as

S f� � ' 2I
2
sWs 0� �=f : �20�

Here, the property
R�1
ÿ1 vs x� �dx � 2pWs 0� � of the char-

acteristic function has been used.

4.2. Correlation function of 1=f noise

The correlation function of 1=f noise in approxi-

mation (18) may be calculated according to Eq. (9), i.e.,

U s� � � �Ia
X

q

Z �1

ÿ1
ws�s�d qs� ÿ s�ds

� �Iad s� � � �Ia
X
q6�0

ws

s
q

� �
1

qj j : �21�

For the Gaussian distribution of the interevent time s,

ws s� � � 1������
2p
p

rs

exp

 
ÿ sÿ s� �2

2r2
s

!
;

the correlation function (21) reads as

U s� � �
�Ia������
2p
p

rs

X
q

eÿ sÿq�s� �2=2r2
s q2 1

qj j : �22�

It should be noted that the deviation of the variance

r2
D for large q from the quadratic dependence (17) and

the approach to the linear function r2
D � 2Dtk qj j ensures

the convergence of sums (21) and (22) and, conse-

quently, results in the Lorentzian power spectrum (11) at

f ! 0 [7±12]. Here Dtk is the ``di�usion'' coe�cient of

the pulse occurrence time tk , related with the variance r2
tk

of the pulse occurrence time as r2
tk
� 2Dtk k. For models

(14)±(15), Dtk � r2=2c2. The power spectra calculated

according to Eq. (5) with the correlation functions (21)

and (22) are expressed as Eqs. (20) and (16), respectively.

5. Conclusions

From the above analysis, we can conclude that the

intrinsic origin of 1=f noise is the Brownian ¯uctuations

of the interevent time of the signal pulses, similar to the

Brownian ¯uctuations of the signal amplitude resulting

in 1=f 2 noise. The random walk of the interevent time

in the time axis is a property of the randomly perturbed

or complex systems with the elements of self-organiza-

tion.
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