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Abstract

Simple analytically solvable model exhibiting 1=f spectrum in any desi-

rably wide range of frequency is analysed. The model consists of pulses

(point process) whose interevent times obey an autoregressive process

with small damping. Analysis and generalizations of the model indicate

to the possible origin of 1=f noise, i.e. random increments between the

occurrence times of particles or pulses resulting in the clustering of the

pulses.

INTRODUCTION

Fluctuations of signals and physical variables exhibiting behavior characterized

by a power spectral density S(f) diverging at low frequencies like 1=fÆ (Æ ' 1)

have been discovered in large diversity of uncorrelated systems, such as processes

in condensed matter, traÆc ow, quasar emissions, music, biological, evolution

and arti�cial systems, human cognition and even distribution of prime numbers

(see [1{3] and references herein). 1=f noise is an intermediate between the well

understood white noise with no correlation in time and the random walk (Brownian

motion) noise with no correlation between increments.

The widespread occurrence of signals exhibiting power spectral density with

1=f behavior suggests that a general mathematical explanation of such an e�ect

might exist. However, except for some formal mathematical treatments like \frac-

tional Brownian motion" or half-integral of a white noise signal [4] no generally

recognized physical explanation of the ubiquity of 1=f noise is still proposed.



Physical models of 1=f noise are usually very specialized and they do not explain

the omnipresence of the processes with 1=fÆ spectrum [5, 6].

Here we present the simplest analytically solvable model of 1=f noise which

can inuence on the understanding of the origin, main properties and parameter

dependences of the intensity of the icker noise. Our model is a result of the

search for necessary and suÆcient conditions for the appearance of 1=f uctuations

in simple systems a�ected by random external perturbations initiated in [7] and

originated from the observation of a transition from chaotic to nonchaotic behavior

in an ensemble of randomly driven systems [8]. Contrary to the McWhorter model

[9] based on the superposition of large number of Lorentzian spectra and requiring

a very wide distribution of relaxation times, our model contains only one relaxation

rate and can have an exact 1=f spectrum in any desirably wide range of frequency.

MODEL AND SOLUTION

The simplest version of our model consists of one particle moving along some

orbit. The period of this motion uctuates (due to external random perturbations

of the system's parameters) about some average value �� . So, a sequence of transit

times t
k
at which the particle crosses some Poincar�e section L

m
is described by

the recurrence equations�
t
k
= t

k�1 + �
k
;

�
k
= �

k�1 �  (�
k�1 � ��) + �"

k
:

(1)

Here  � 1 is the period's relaxation rate, f"
k
g denotes a sequence of uncorrelated

normally distributed random variables with zero expectation and unit variance (the

white noise source) and � is the standard deviation of the white noise.

Note that the recurrence times �
k
= t

k
� t

k�1 follow an autoregressive AR(1)

process with o�set �� > 0, regression coeÆcient 1 �  and noise variance �2. So,

introducing new variables �
k
= �

k
� �� and a = 1 �  we can rewrite the second

relation of Eqs. (1) in the form

�
k
= a�

k�1 + �"
k

(1a)

The intensity of the current of particles through the section L
m

is

I (t) =
X
k

Æ (t� t
k
) (2)
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where Æ (t) is the Dirac delta function. The power spectral density of the current

(2) is

S(f) = lim
T!1

*
2

T

�����
kmaxX

k=kmin

e�i2�ftk

�����
2+

=

lim
T!1

*
2

T

X
k

kmax�kX
q=kmin�k

ei2�f(tk+q�tk)

+
:

(3)

Here T is the whole observation time interval, kmin and kmax are minimal and

maximal values of index k in the interval of observation and the brackets h� � �i
denote the averaging over realizations of the process.

From Eqs. (1) follows an expression for the period

�
k
= �� + (�0 � �� ) (1� )k + �

kX
j=1

(1� )k�j"
j
; (4)

where �0 is the initial period. We also can rewrite Eq. (1a) explicitly in the form

of autoregressive AR(1) process

�
k
= �0a

k + �

kX
j=1

ak�j"
j
: (4a)

After some algebra we easily obtain an explicit expression for the transit times

t
k
,

t
k
= t00 + k�� +

�



kX
l=1

�
1� (1� )k+1�l

�
"
l
: (5)

Here t00 is some constant for k � �1 or �0 = �� . In the later case t00 is the initial

time t0. At k � �1 Eq. (5) generates a stationary time series and the di�erence

of transit times t
k+q and tk in Eq. (3) is

t
k+q � t

k
= q�� +

�



(
[1� (1� )q]

kX
l=1

(1� )k+1�l"
l
+

k+qX
l=k+1

�
1� (1� )k+q+1�l

�
"
l

)
; q � 0:

(6)

Substitution of Eq. (6) into Eq. (3) and averaging over realizations of the process

or over the random variables "
l
yield [10]

S(f) = lim
T!1

2

T

X
k

X
q

ei2�f ��q��
2
f
2
�
2
g(q) ; (7)
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where

g(q) =
2

2

(
[1� (1� )q ]

2
kX
l=1

(1� )2l +

qX
l=1

�
1� (1� )l

�2)
;

q � 0:

(8)

Summations in Eq. (8) for k � �1 result in

g(q) =
2

2

�
q � 2

(1� ) [1� (1� )q ]

1� (1� )2

�
: (9)

Expansion of expression (9) in powers of q � 1 is

g(q) =
1


q2 � 1

3
q3 +

1

2
q2 + : : : ; q � 0: (10)

Note that the function g(q) is even, i.e., g(�q) = g(q). This follows from Eqs. (6) {

(8) at k � jqj � �1.

For f � f�� = (2��� )�1 and f < f2 = 2
p
=�� we can replace the summation

in Eq. (7) by the integration

S(f) = 2�I

Z +1

�1

ei2�f ��q��
2
f
2
�
2
g(q) dq: (11)

Here �I = lim
T!1

(kmax � kmin + 1) =T = (�� )�1 is the averaged current. Further-

more, at f � f1 = 3=2=�� it is suÆcient to take into account only the �rst term

of expansion (10). Integration in Eq. (11) yields to 1=f spectrum

S(f) =
�
�I
�2 �H

f
; f1 < f < min(f2; f�� ); (12)

where �
H

is a dimensionless constant (the Hooge parameter)

�
H
=

2p
�
Ke�K

2

; K =
��
p


�
: (13)

Using an expansion of the function g(q) according to Eq. (9) at q � 1, g(q) =

2q=2, we obtain from Eq. (11) the Lorentzian power spectrum density for f < f1

S(f) = 2�I
�2

��22
1

1 + (�f�2=��2)
2
: (14)

Therefore, the model containing only one relaxation time �1 can for suÆ-

ciently small parameter  produce an exact 1=f -like spectrum in wide range of

frequency. Furthermore, due to the contribution to the transit times t
k
of the
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large number of the random variables "
l
(l = 1; 2; : : : ; k), our model represents

a \long-memory" random process. As a result of the nonzero relaxation rate

( 6= 0) and, consequently, due to the �nite dispersion of the � period, �2
�
�


�2
k

�
� h�

k
i2 = �2=2(1� =2), 2k � 1, the model is free from the unphysical

divergency of the spectrum at f ! 0. So, we obtain from Eq. (14) the spectrum

density S(f) = (�I)2
�
2�2=�2

�
for f � f1, f0 = �2=��2.

GENERALIZATIONS AND NUMERICAL ANALYSIS

This simple exactly solvable model can easily be generalized in di�erent di-

rections: for large number of particles moving in similar orbits with coherent

(identical for all particles) or independent (uncorrelated for di�erent particles)

uctuations of the periods, for non-Gaussian or continuous perturbations of the

systems' parameters and for spatially extended systems. So, when an ensemble

of N particles moves on closed orbits and the period of each particle uctuates

independently (due to the perturbations by uncorrelated sequences of random

variables f"�
k
g, di�erent for each particle �) the power spectral density of the

collective current I of all particles can be calculated by the above method too and

is expressed as the Hooge formula [1]

S(f) = (�I)2
�
H

Nf
: (15)

It should be noticed that in many cases the intensity of signals or currents can

be expressed in the form (2). This expression represent exactly the ow of identical

objects: cars, electrons, photons and so on. More generally, in Eq. (2) instead of

the Dirac delta function one should introduce time dependent pulse amplitudes

A
k
(t� t

k
). However, the low frequency power spectral density depends weakly on

the shapes of the pulses, while uctuations of the pulses amplitudes result, as a

rule, in white or Lorentzian, but not 1=f , noise [11]. The model (1) in such cases

represents uctuations of the averaged interevent time �
k
between the subsequent

occurrence times of the pulses.

The model may also be generalized for the nonlinear relaxation of the interevent

time �
k
. In such a case Eq. (1) can be written in the form

8<
:

t
k
= t

k�1 + �
k
;

�
k
= �

k�1 � dV (�
k�1)

d�
k�1

+ �"
k
:

(16)

Here the function V (�
k
) represent the e�ective \potential well" for the Brownian

motion of the interevent time �
k
. The steady state distribution density of the
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interevent time �
k
described by Eq. (16) is of the form

 (�
k
) = C exp

�
�2V (�

k
)

�2

�
; (17)

where a constant C may be obtained from the normalization. For the power-law

\potential well"

V (�
k
) =

1

2
 (�

k
� �� )

2n
(18)

with integer n we have a generalization of Eq. (1)�
t
k
= t

k�1 + �
k
;

�
k
= �

k�1 � n (�
k�1 � �� )

2n�1
+ �"

k
:

(19)

For suÆciently large n� 1 Eqs. (18) and (19) represent Brownian motion of the

interevent time �
k
in the almost rectangle \potential well" restricting movement

of �
k
mostly in the interval (�� � h; �� + h) with h '

�
�2=

�1=2n
.

We can generate, of course, the stationary time series of the occurrence times

t
k
also for other restrictions for the interevent time �

k
, e.g., with the reecting

boundary conditions at some values of the interevent time �min and �max.

Numerical analysis of the models like (1), (16) and (19) shows that power

spectral density of the current (2) is 1=f in large interval of frequency only when

the distribution density of the interevent times �
k
in the point �

k
= 0 is nonzero,

i.e.,  (0) 6= 0 according to Eq. (17). In such a case the power spectral density may

be expressed as (see also [10])

S(f) = 2(�I)2��
 (0)

f
: (20)

For models with  (0) = 0 or  (0) very close to zero we observe in numerical

simulations the power spectral density S(f) / 1=f3=2 (see Fig. 1).

It should be noticed that in general analytical results are in good agreement

with the numerical simulations and Eqs. (11) { (14) describe quite well the power

spectrum of the random process (1). Theoretical results predict not only the

slope and intensity of 1=f noise but the frequency range f1 � f2; f�� of 1=f noise

and intensity of the very low frequency, f � f0, white noise as well. As an

illustrative example in Fig. 1 the numerically calculated power spectral density

averaged over nine realizations of the process is presented for di�erent parameters

and conditions. We see in Fig. 1(a) the power spectral density S(f) / 1=f when

 (0) 6= 0 and S(f) / 1=f3=2 if variation of �
k
is restricted in the interval with

�min > 0 and, consequently,  (0) = 0. Fig. 1(b) illustrates transition from 1=f to
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Fig. 1. Power spectral density vs frequency of the current generated by

Eqs. (1) { (3) with the Gaussian distribution of the random increments f"kg.
The sinuous curves represent the averaged over nine realizations results of

numerical simulations (a) according to Eq. (1) with parameters � = 0:01, �� = 1,

 = 0 and with reecting boundary conditions for �k at �k = 0 and �k = 2

(�ne curve) or at �k = 0:1 and �k = 1:9 (heavy curve) and (b) according to

Eq. (19) with parameters � = 0:04, �� = 1:3,  = 0:0016 and n = 1 (�ne curve)

or n = 10 (heavy curve).

1=f3=2 spectrum with increasing of the power n of the potential (18) and, as a

result, due to the natural restriction of the variation of �
k
and obstruction of the

pulses clustering.
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Apie 1=f triuk�smo gavima� ir kilm�e

B.Kaulakys, T.Me�skauskas

I�stirtas paprastas analizi�skai sprend�ziamas dinaminis modelis, kurio signalo spek-

tras pla�ciame da�zniu� intervale yra 1=f pob�ud�zio. Signalas modeliuojamas ta�skiniu

procesu sudarytu i�s trumpu� impulsu�. Impulsu� atsikartojimo laiku� seka� apra�so

autoregresinis procesas su l_eta relaksacija. Modelio analiz_e ir apibendrinimai

atskleid�zia galima� vidin�e 1=f triuk�smo kilm�e { atsikartojimo laiku� atsitiktiniu�

poky�ciu� sa�lygota� impulsu� klasterizacija�.
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