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Abstract

Signals consisting of a sequence of pulses show that inherent origin of the 1=f noise is a
Brownian 1uctuation of the average interevent time between subsequent pulses of the pulse
sequence. In this paper, we generalize the model of interevent time to reproduce a variety of
self-a5ne time series exhibiting power spectral density S(f) scaling as a power of the frequency
f. Furthermore, we analyze the relation between the power-law correlations and the origin of
the power-law probability distribution of the signal intensity. We introduce a stochastic multi-
plicative model for the time intervals between point events and analyze the statistical properties
of the signal analytically and numerically. Such model system exhibits power-law spectral den-
sity S(f)∼1=f� for various values of �, including � = 1

2 , 1 and 3
2 . Explicit expressions for the

power spectra in the low-frequency limit and for the distribution density of the interevent time
are obtained. The counting statistics of the events is analyzed analytically and numerically, as
well. The speci<c interest of our analysis is related with the <nancial markets, where long-range
correlations of price 1uctuations largely depend on the number of transactions. We analyze the
spectral density and counting statistics of the number of transactions. The model reproduces
spectral properties of the real markets and explains the mechanism of power-law distribution
of trading activity. The study provides evidence that the statistical properties of the <nancial
markets are enclosed in the statistics of the time interval between trades. A multiplicative point
process serves as a consistent model generating this statistics.
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1. Introduction

Complex collective phenomena usually are responsible for the power laws which are
universal and independent of the microscopic details of the phenomenon. Examples in
physics are numerous. Power laws are intrinsic features of the economic and <nan-
cial data, as well. The aim of this contribution is to analyze a relationship between
the origin of the power-law distribution and the power-law correlations in <nancial
time series.
There are numerous studies of power-law probability distributions in various

economic systems [1–15]. The key result in recent <ndings is that the cumulative
distributions of returns and trading activity can be well described by a power-law
asymptotic behavior, characterized by an exponent �≈3, well outside the stable Levy
regime 0¡�¡ 2 [13–15]. Empirical studies con<rm the power-law asymptotic behav-
ior with stable exponent for diHerent time scales. Since these empirical distributions are
neither Levy stable nor invariant under addition, new stochastic models with long-range
correlations and power-law asymptotic behavior are of great interest [14].
The random multiplicative process built into the model of wealth distribution yields

Pareto power law [2]. The generalized Lotka–Volterra dynamics is in the use for
various systems including <nancial markets [9]. However, these models generically
lead to non-universal exponents and do not explain the power-law autocorrelations
and observable spectral density of <nancial time series [11]. The time correlations in
the <nancial time series are studied extensively as well [13–17]. Recent investigations
[13–16] provide empirical evidence that the long-range correlations for volatility are
due to the trading activity, measured by a number of transactions N . Therefore, various
stochastic models of trading activity or for waiting time between transactions have to
be analyzed for reproduction of the statistics of volatility in <nancial markets.
Recently, we tried to adapt the model of 1=f noise based on the Brownian motion of

time interval between subsequent pulses, proposed in Refs. [18–21], to model the share
volume traded in the <nancial markets [22]. The idea to transfer long-time correlations
into the stochastic process of the time interval between trades or time series of trading
activity is in consistence with the detailed studies of the empirical <nancial data [13,16]
and can reproduce the spectral properties of the <nancial time series [22]. However, the
investigation of the model revealed, that the simple additive Brownian model of time
interval between trades failed to reproduce the power-law probability density function
(pdf) of the trading activity [23].
On the other hand, several authors have shown empirically that the 1uctuations of

various <nancial time series possess multifractal statistics [24–28]. Therefore, in this
paper, we introduce the stochastic multiplicative model for the time interval between
trades and analyze the statistical properties of the trading activity analytically and
numerically. The model is in consistence with the results of statistical analysis of
the empirical <nancial time series and reveals the relationship between the power-law
probability distribution and the power-law spectral density of the <nancial time series.
Moreover, the analytically solvable model [18–21] results only in exact 1=f noise while
in the papers [22,23] essentially only numerical analysis has been undertaken. Here,
we generalize the model de<ning the time series exhibiting the power spectral density
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1=f� with 0:5. �. 1:5 and the power-law probability density of the trading activity.
Explicit analytical expressions for the power spectra and for pdf of the trading activity
N are obtained and analyzed.

2. The model

We consider a signal I(t) as a sequence of the random correlated pulses

I(t) =
∑
k

ak
(t − tk) ; (1)

where ak is a contribution to the signal of one pulse at the time moment tk , e.g.,
a contribution of one transaction to the <nancial data. Signal (1) represents a point
process used in a large variety of systems with the 1ow of point objects or subsequent
actions. When ak= Ka is constant, the point process is completely described by the set of
times of the events {tk} or equivalently by the set of interevent intervals {�k=tk+1−tk}.
Various stochastic models of �k can be introduced to de<ne a stochastic point process.
In papers [18–21], it has been shown analytically that the relatively slow Brownian
1uctuations of the interevent time �k yield 1=f 1uctuations of the signal (1).
Power spectral density of the signal I(t) is

S(f) = lim
T→∞

〈
2 Ka2

T

∣∣∣∣
∫ tf

ti
I(t) exp(−i2�ft) dt

∣∣∣∣
2
〉

= lim
T→∞

〈
2 Ka2

T

kmax∑
k=kmin

kmax−k∑
q=kmin−k

exp(−i2�f�(k; q))

〉
; (2)

where the brackets 〈· · ·〉 denote the averaging over the realizations of the process,
T = tf − ti is the observation time, �(k; q) = tk+q − tk is the time diHerence between
the pulses occurrence times tk+q and tk , while kmin and kmax are minimal and maximal
values of the index k in the interval of observation T .
We adapt and generalize the model of 1=f noise previously proposed in Refs. [18–

21] to model the share volume traded in the <nancial markets [13,16]. It is useful to
de<ne a discrete time series with equal time intervals �d. Integration of the signal I(t)
over subsequent time intervals of length �d results in a discrete time series and, by
analogy with <nancial time series, we will call it the volume Vj,

Vj =
∫ tj+�d

tj
I(t) dt =

∑
tj¡tk¡tj+�d

ak ; tj = j�d : (3)

The number of trades Nj in the time interval [tj; tj + �d] is de<ned by the same Eq.
(3) with ak ≡ 1 and Nj ≡ Vj. Then the power spectral density S(fs) of the discrete
signal Nj may be calculated by the FFT as

S(fs) =

〈
2
�dn

∣∣∣∣∣∣
n∑
j=1

Nj exp(−i2�(s− 1)(j − 1))

∣∣∣∣∣∣
2〉

: (4)
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Here, the discrete frequencies fs=(s−1)=T , s=1; 2; : : : ; n and T =�dn. For frequencies
fs�1=�d the power spectral density de<ned by Eq. (4) coincides with that given by
Eq. (2).
In this paper, we investigate the statistical properties of the time series Nj, when

the sequence of interevent time �k is generated by a multiplicative stochastic process.
First of all the multiplicativity is an essential feature of processes in economics [1,7].
Multiplicative stochastic processes yield multifractal intermittency and are able to pro-
duce power-law probability distribution functions. We base our study on the generic
multiplicative process for the interevent times, written as

�k+1 = �k + ��2�−1
k + ��k��k : (5)

Here, the interevent time �k 1uctuates due to the external random perturbation by a
sequence of uncorrelated normally distributed random variable {�k} with zero expec-
tation and unit variance, � denotes the standard deviation of the white noise and ��1
is a damping constant.
We will restrict the diHusion of the interevent time according to Eq. (5) to the

<nite interval [�min ; �max], i.e., 0¡�min¡�k ¡�max. The most simple case is the pure
multiplicativity of �k , i.e., when �=1. Other values of � reproduce the power laws as
well and explicit expressions can be derived without the loss of generality.
The iterative relation (5) can be rewritten as Langevine stochastic diHerential equa-

tion in k-space.
d�k
dk

= ��2�−1
k + ��k��(k) : (6)

Here, we interpret k as continuous variable while

〈�(k)�(k ′)〉 = 
(k − k ′) :

The steady state solution of the corresponding stationary Fokker–Planck equation
with zero 1ow gives the probability density function for �k in the k-space (see, e.g.,
Ref. [29])

Pk(�k) = C�!k ; != 2�=�2 − 2� (7)

and C has to be de<ned from the normalization∫ �max

�min

Pk(�) d�= 1 :

The solution (7) assumes Ito convention involved in the relation between expressions
(5)–(7).
As the probability distribution function (7) follows a power law, we expect that this

would result in the power-law behavior in other statistics, as well. In the next Section,
we will obtain the power spectral density de<ned by Eq. (2).

3. Power spectral density

The power spectral density is a well-established measure of long-time correlations
and is widely used in stochastic systems. As it has been already shown [18–21] the
point process with the Brownian interevent time exhibits 1=f noise.
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We will derive the formula for the power spectral density of the multiplicative
stochastic point process model, de<ned by Eqs. (5) and (6) for the interevent time.
Let us rewrite Eq. (2) as [21]

S(f) = lim
T→∞

2 Ka2

T

∑
k;q

"�(k:q)(2�f) ; (8)

where "�(k:q)(2�f) is the characteristic function for the probability distribution of
�(k; q). For the normal distribution of �(k; q) formula (8) takes the form

S(f) = lim
T→∞

2 Ka2

T

∑
k;q

exp{i2�f〈�(k; q)〉 − 2�2f2�2�(k; q)} ; (9)

where �2� is the variance of �(k; q), the time diHerence between the pulses occurrence
times tk+q and tk . For � = 1 the time diHerence �(k; q) may be expressed from the
solution of multiplicative stochastic equation (6) as

�(k; q) =
q∑
l=1

�k exp




(
�− 1

2
�2

)
l+ �

l∑
j=1

�j


 : (10)

Averaging over the normal distributions of uncorrelated �j results in explicit expres-
sions for the mean 〈�(k; q)〉 and variance �2�(k; q).
In general, for any �, the perturbative solution of Eq. (6) yields

〈�(k; q)〉 = �kq+
�
2
�2�−1
k q2 + o(�2) ;

�2�(k; q) = �2�k
�2

3
q3 : (11)

In the low-frequency limit f��−1
k we can replace the summation over k and q

by the integration and take into account only the <rst-order terms of Eq. (11) in the
expression for the power spectral density (9). This yields

S�(f) =
4C Ka2

K�
Re

∫ �max

�min

d��!
∫ ∞

0
exp

{
i2�f

(
�q+

�
2
�2�−1q2

)}
dq ;

=
2C Ka2√

� K�(3 − 2�)f

(
�
�f

)!=(3−2�)

Ierf (xmin ; xmax) ; (12)

Ierf (xmin ; xmax) = Re
∫ xmax

xmin

exp
{

−i
(
x − �

4

)}
erfc(

√−ix)x!=(3−2�)−1=2 dx ; (13)

where

K�= 〈�k〉 = T
kmax − kmin
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Fig. 1. The power spectral density S(f) of the signal I(t) versus frequency f calculated from the model
described by Eqs. (1), (2) and (5) with � = 1. The sinous curves represent the results of the numerical
simulations averaged over 5 realizations of 100 000 impulse sequences with �=0:1, the straight lines represent
the analytical approximation given by integral formula (12) with �min =10−6; �max =1 and the dashed lines
show results of explicit formula (14). (a) � = 0:008, (b) � = 0:01 and (c) � = 0:0125.

is the expectation of �k . Here, we introduce the scaled variable x = (�f=�)�3−2� and

xmin =
�f
�
�3−2�
min ; xmax =

�f
�
�3−2�
max :

Expression of the power spectral density (12) is appropriate for the numerical cal-
culations of the generalized multiplicative point process de<ned by Eqs. (1) and (5).
In the limit �min → 0 and �max → ∞ we obtain an explicit expression for S�(f)

S�(f) =
C Ka2√

� K�(3 − 2�)f

(
�
�f

)!=(3−2�) &(1=2 + !=(3 − 2�))
cos(�!=2(3 − 2�))

: (14)

Eq. (14) reveals that the multiplicative point process (5) results in the power spectral
density S(f)∼1=f� with the scaling exponent

� = 1 +
2�=�2 − 2�
3 − 2�

: (15)

Let us compare our analytical results (12)–(14) with the numerical calculations of
the power spectral density according to Eqs. (2) and (5). In Fig. 1, we present the
numerically calculated power spectral density S(f) of the signal I(t) for � = 1 and
!=2�=�2−2=0, −0:4 and +0.5. Numerical results con<rm that the multiplicative point
process exhibits the power spectral density scaled as S(f)∼1=f�. Eq. (12) describes
the model power spectral density very well in a wide range of parameters. The explicit
formula (14) gives a good approximation of power spectral density for the parameters
when � 
 1. In Fig. 2 we present numerical results of the power spectral density
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Fig. 2. The same as in Fig. 1 but for �=0:5. (a) �=0:001, (b) �=0:0025, (c) �=0:005 and (d) �=0:0075.

calculated for the multiplicative point process with � = 0:5. In this case analytical
expressions (12)–(14) describe power spectral density very well in a wide range of the
parameter �. These results con<rm the earlier <nding [18–21] that the power spectral
density is related to the probability distribution of the interevent time �k and 1=f noise
occurs when this distribution is 1at, i.e., when != 0.
It is likely that such a stochastic model with parameters in the region 0:56 �6 1:5

may be adaptable for a wide variety of diHerent systems. In this paper, we will inves-
tigate applicability of the model for the <nancial market.

4. Power-law probability distribution function

The statistics of the trading activity N , i.e., the number of trades per time interval
�d is the major task of this paper. The consistency of any model of <nancial markets
depends on its ability to reproduce empirically measured probability distribution of the
number of trades N , de<ned by Eq. (3). Intuitively, the pdf of N is related with pdf
of the rate '=1=� and with pdf of �. The pdf of �k in k-space is given by expression
(7). It is obvious that in the actual time t the pdf of � may be written as

Pt(�) = Pk(�)�= K�= C′�!+1 ; (16)

where C′ = C= K� is a new normalization constant.
For the pure multiplicative model with �=1, Eqs. (10) and (11) de<ne a relationship

between N and � after the substitution 〈�(k; q)〉 → �d, �k → � and q → N , i.e.,

�d = �N +
�
2
�N 2 : (17)
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Fig. 3. Amplitude versus rank, N (n), plot de<ning cumulative distribution P¿(N )∼1=N� with the param-
eters of the model � = 1, � = 0:1 and � = 0:0085. Dashed line represents asymptotic plot N (n)∼n−1=�

with � = 3:4.

This relationship may be used for de<nition of pdf P(N ) from the relation P(N ) dN=
Pt(�) d�. We have

P(N ) =
C′�2+!d (1 + �N )

N 3+!(1 + �=2N )3+!
: (18)

This equation yields limiting cumulative distributions for N ,

P¿(N ) =
∫ +∞

N
P(N ) dN ∼




1
N 2+! ; N��−1 ;

1
N 4+2! ; N��−1 :

(19)

Let us compare probability distribution function for N obtained from the numerical
simulation of the model with the analytical results (18) and (19). It is convenient to
use the amplitude versus rank plot (see, e.g., [30]) for de<nition of the exponent � of
the cumulative distribution P¿(N )∼1=N�. We plot the value of the nth rank variable
N (n) as a function of its rank n. If P¿(N ) behaves asymptotically when n → 0 as a
power law, one gets a straight line in log–log coordinates of N and n, with the slope
equal to −1=�. In Fig. 3 we present the plot for N (n) calculated numerically for pure
multiplicative model (� = 1) with the parameters yielding the best <t to the empirical
data.

5. Discussion and conclusions

We have introduced a multiplicative stochastic model for the time intervals between
events of point process. Such a model of time series has only a few parameters de<ning
the statistical properties of the system, i.e., the power-law behavior of the distribution
function and the scaled power spectral density of the signal. The ability of the model
to simulate 1=f noise as well as to reproduce signals with the values of power spec-
tral density slope � between 0.5 and 1.5 promises a wide variety of applications of
the model.
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Let us present shortly the possible interpretations of the empirical data of the trading
activity in the <nancial markets. With a very natural assumption of transactions in the
<nancial markets as point events we can model the number of transactions Nj in equal
time intervals �d as the outcome of the described multiplicative point process. We
already know from available studies [13] that the empirical data exhibit power spectral
density in the low-frequency limit with the slope � 
 0:7. For the pure multiplicative
model �=1 this corresponds to the case when !=2�=�2−2� 
 −0:3. The corresponding
cumulative distribution of N in the tail of high values (see Eq. (19)) has the exponent
� = 4 + 2! = 3:4. This is in an excellent agreement with the empirical cumulative
distribution exponent 3.4 de<ned in Ref. [13] for 1000 stocks of the three major US
stock markets.
The numerical results con<rm that the multiplicative stochastic model of the time

interval between trades in the <nancial market is able to reproduce the main statis-
tical properties of trading activity N and its power spectral density. The power-law
exponents of the pdf of the interevent time, !, and the cumulative distribution of the
trading activity, �, as well as the slope of power spectral density, �, are de<ned just
by one parameter of the model 2�=�2. The model suggests a simple mechanism of the
power-law statistics of trading activity in the <nancial markets. We expect that multi-
plicative model of the time interval between the trades with more speci<c restrictions
for the diHusion and more precisely adjusted parameters lies in the background of the
<nancial markets statistics and may be useful in the <nancial time series analysis.
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