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Abstract

Starting from the developed generalized point process model of 1=f noise [B. Kaulakys et al., Phys. Rev. E 71 (2005)

051105] we derive the nonlinear stochastic differential equations for the signal exhibiting 1=f b noise and 1=xl distribution

density of the signal intensity with different values of b and l. The processes with 1=f b are demonstrated by the numerical

solution of the derived equations with the appropriate restriction of the diffusion of the signal in some finite interval. The

proposed consideration may be used for modeling and analysis of stochastic processes in different systems with the power-

law distributions, long-range memory or with the elements of self-organization.
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1. Introduction

The entirely uncorrelated in time stochastic signals exhibit white noise—the power spectral density Sðf Þ as a
function of the frequency f is constant, while the Brownian motion of the signal intensity without correlations
between increments results in 1=f 2 and in the Lorentzian power spectra. The widespread occurring signals and
processes with 1=f spectrum (see, e.g. [1–5] and references therein) cannot be understood and modeled in such
a way.

‘‘1=f noise’’ is a type of stochastic processes in which power spectral density at low frequencies behaves like
Sðf Þ�1=f b, where the exponent b is close to 1. In contrast to the Brownian motion and 1=f 2 noise generated
by the linear stochastic equation, simple systems of differential equations, even linear stochastic equations,
generating signals with 1=f noise are not known.

Recently, starting from the simple point process model of 1=f noise [6,7], we derived the nonlinear
stochastic differential equation

dx

dts

¼ x4 þ x5=2xðtsÞ, (1)
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for the signal intensity x generating processes with pure 1=f noise and the inverse cubic, PðxÞ�1=x3,
distribution of the signal intensity [8]. Here ts is the scaled time and xðtsÞ is a Gaussian white noise satisfying
the standard condition

hxðtsÞxðt0sÞi ¼ dðts � t0sÞ, (2)

with the brackets h. . .i denoting the averaging over the realizations of the process.
The aims of this paper are the derivation of the class of the stochastic nonlinear differential equations

exhibiting 1=f b noise and 1=xl distribution density of the signal with different values of the exponents b and l,
and the numerical demonstration of the proposed model for the generation of the long-range fractal processes.

2. The model

We start from the point process as a sequence of correlated pulses or series of events

IðtÞ ¼ a
X

k

dðt� tkÞ. (3)

Here dðtÞ is the Dirac d-function and a is a contribution to the signal or current of one pulse at the time
moment tk. We consider the stochastic multiplicative process for the interevent time tk ¼ tkþ1 � tk [5,9]

tkþ1 ¼ tk þ gt2m�1k þ stmk�k, (4)

where the (average) interevent time fluctuates due to the random perturbation by a sequence of uncorrelated
normally distributed random variables f�kg with zero expectation and unit variance, s denotes the standard
deviation of this white noise and g51 is a coefficient of the nonlinear damping. It has been shown analytically
and numerically [5,9] that the process (3) and (4) may generate signals with the power-law distributions of the
signal intensity and 1=f b noise.

Transformation of Eq. (4) to the Itô stochastic differential equation in k-space is

dtk

dk
¼ gt2m�1k þ stmkxðkÞ. (5)

Transition from the occurrence number k to the actual time t according to the relation dt ¼ tk dk yields

dt
dt
¼ gt2m�2 þ stm�1=2xðtÞ. (6)

The standard transformation [10] of the variable from t to the averaged over the time interval tk intensity of
the signal x ¼ a=t by analogy with Ref. [8] yields the stochastic nonlinear differential equation

dx

dt
¼ ðs2 � gÞ

x4�2m

a3�2m þ
sx5=2�m

a3=2�m
xðtÞ. (7)

Introducing the scaled time

ts ¼
s2

a3�2m t, (8)

and the new parameters

Z ¼
5

2
� m; G ¼ 1�

g
s2

, (9)

we obtain the class of Itô stochastic differential equations

dx

dts

¼ Gx2Z�1 þ xZxðtsÞ. (10)

Eq. (10), as far as it corresponds to the analyzed in Refs. [5,9] point process (3)–(4), should generate the signals
with the power-law distributions of the signal intensity,

PðxÞ�
1

xl ; l ¼ 2ðZ� GÞ, (11)
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and 1=f b noise,

Sðf Þ�
1

f b ; b ¼ 2�
2Gþ 1

2Z� 2
. (12)

According to the general theory [10], the exponentially restricted diffusion with the distribution densities

PðxÞ�
1

xl exp �
xmin

x

� �m

�
x

xmax

� �m� �
(13)

may be generated by the stochastic differential equations

dx

dts

¼
m

2

xm
min

xmþ1�2Z �
xm�1þ2Z

xm
max

� �
þ Gx2Z�1 þ xZxðtsÞ, (14)

where m is some parameter.

3. Numerical analysis

For the numerical solution of Eq. (14), we can take the integration steps hi from the equation x
Z
i

ffiffiffiffi
hi

p
¼ kxi,

with k51 being a small parameter. This corresponds to the case when the change of the variable xi in one step
is proportional to the value of the variable. As a result, we obtain the system of equations

xiþ1 ¼ xi þ k2xi Gþ
m

2

xm
min

xm
i

�
xm

i

xm
max

� �� 	
þ kxi�i; tiþ1 ¼ ti þ

k2

x
2Z�2
i

. (15)

In Fig. 1 the typical examples of the signals as solutions of Eqs. (14) and (15) are shown. The distribution
densities PðxÞ of the variable x, obtained by the numerical simulation of Eq. (15), are shown in Figs. 2(a) and
(c). The power spectral densities Sðf Þ are shown in Figs. 2(b) and (d). Numerical simulations of distribution
densities and power spectral densities are in good agreement with approximate expressions, Eqs. (11) and (12),
respectively.

4. Conclusions

We derived and analyzed a class of stochastic nonlinear differential equations for the signal exhibiting 1=f b

noise and 1=xl distribution density of the signal in any desirable wide range of frequency and of the signal
intensity. The proposed technique may be used for modeling of the stochastic processes in different systems
(e.g., in financial systems [9,11,12] and the Internet [13,14]) with the power-law statistics of the signal
characteristics.
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Fig. 1. Typical examples of the solutions of Eqs. (14) and (15): (a) with the parameters G ¼ 0:75, Z ¼ 2, and k ¼ 0:1 and (b) with the

parameters G ¼ �0:2, Z ¼ 1:5, and k ¼ 0:01.
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Fig. 2. (a) Numerically simulated distribution density of the variable x according to Eqs. (15), open circles, compared with the expected

distribution density (11), solid line; and (b) power spectral density, obtained from the numerical solution of Eq. (15), open circles. Solid

line in (b) represents the analytical power spectral density slope (12). Parameters used are xmin ¼ 1, xmax ¼ 103, m ¼ 1, G ¼ 0:75, Z ¼ 2,

and k ¼ 0:1. The signal was calculated from Nx ¼ 106 points and averaged over n ¼ 100 realizations. (c) and (d) represent the distribution

density and the power spectral density, respectively, with the parameters m ¼ 1, G ¼ �0:2, Z ¼ 1:5, and k ¼ 0:01.
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