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Abstract

We propose a model of fractal point process driven by the nonlinear stochastic differential equation. The model is

adjusted to the empirical data of trading activity in financial markets. This reproduces the probability distribution function

and power spectral density of trading activity observed in the stock markets. We present a simple stochastic relation

between the trading activity and return, which enables us to reproduce long-range memory statistical properties of

volatility by numerical calculations based on the proposed fractal point process.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There are empirical evidences that the trading activity, the trading volume and the volatility of the financial
markets are stochastic variables with the power-law probability distribution function (PDF) [1,2] and the long-
range correlations [3–5]. Most of proposed models apply generic multiplicative noise responsible for the power-law
PDF, whereas the long-range memory aspect is not accounted in the widespread models [6]. The
additive–multiplicative stochastic models of the financial mean-reverting processes provide rich spectrum of
shapes for PDF, depending on the model parameters [7], however, do not describe the long-memory features.
Empirical analysis confirms that the long-range correlations in volatility arise due to those of trading activity [4].
On the other hand, trading activity is a financial variable dependant on the one stochastic process, i.e., interevent
time between successive market trades. Therefore, it can be modeled as event flow of the stochastic point process.

Recently, we investigated analytically and numerically the properties of the stochastic multiplicative point
processes, derived formula for the power spectrum [8,9] and related the model with the multiplicative
stochastic differential equations [10]. Preliminary comparison of the model with the empirical data of the
power spectrum and probability distribution of stock market trading activity [11] stimulated us to work on the
more detailed definition of the model. Here we present the stochastic model of the trading activity with the
long-range correlations and investigate its connection to the stochastic modeling of the volatility.
e front matter r 2007 Elsevier B.V. All rights reserved.
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The proposed stochastic nonlinear differential equations reproduce the power spectrum and PDF of the
trading activity in the financial markets, describe the stochastic interevent time as the fractal-based point
process and can be applicable for modeling of the volatility with the long-range autocorrelation.

2. Modeling fractal point process by the nonlinear stochastic differential equation

Trades in financial markets occur at discrete times t1; t2; . . . ; tk; . . . and can be considered as identical point
events. Such point process is stochastic and totally defined by the stochastic interevent time tk ¼ tkþ1 � tk.
A fractal stochastic point process results, when at least two statistics exhibit the power-law scaling, indicating
that represented phenomena contains clusters of events over all scales of time [12]. The dimension of the
fractal point process is a measure of the clustering of the events within the process and by the definition
coincides with the exponent of the power spectral density of the flow of events.

We can model the trading activity in financial markets by the fractal point process as its empirical PDF and
the power spectral density exhibit the power-law scaling [4,13]. In this paper, we consider the flow of trades in
financial markets as Poisson process driven by the multiplicative stochastic equation. First of all we define the
stochastic rate n ¼ 1=t of event flow by continuous stochastic differential equation

dt ¼ gt2m�2 dtþ stm�1=2 dW , (1)

where W is a standard random Wiener process, s denotes the standard deviation of the white noise, g51 is a
coefficient of the nonlinear damping and m defines the power of noise multiplicativity. The diffusion of t
should be restricted at least from the side of high values. Therefore we introduce an additional term
�ðm=2Þs2ðt=t0Þ

mt2m�2 into Eq. (1), which produces the exponential diffusion reversion in equation

dt ¼ g�
m

2
s2

t
t0

� �m� �
t2m�2 dtþ stm�1=2 dW , (2)

where m and t0 are the power and value of the diffusion reversion, respectively. The associated Fokker–Planck
equation with the zero flow gives the simple stationary PDF

PðtÞ�taþ1 exp �
t
t0

� �m� �
(3)

with a ¼ 2ðgs � mÞ and gs ¼ g=s2. Eq. (2) describes continuous stochastic variable t, defines the rate n ¼ 1=t
and, after the Ito transform of variable, results in stochastic differential equation

dn ¼ s2 ð1� gsÞ þ
m

2

n0

n

� �mh i
n2Z�1 dtþ snZ dW , (4)

where Z ¼ 5
2
� m and n0 ¼ 1=t0. Eq. (4) describes stochastic process n with PDF

PðnÞ�
1

nl exp �
n0

n

� �mn o
; l ¼ 2ðZ� 1þ gsÞ, (5)

and power spectrum Sðf Þ [8–10]:

Sðf Þ�
1

f b ; b ¼ 2�
3� 2gs
2Z� 2

. (6)

Noteworthy, that in the proposed model only two parameters, gs and Z (or m), define exponents l and b of
two power-law statistics, i.e., of PDF and of the power spectrum. Time scaling parameter s2 in Eq. (4) can be
omitted adjusting the time scale. Here we define the fractal point process driven by the stochastic differential
equation (4) or equivalently by Eq. (2), i.e., we assume tðtÞ as slowly diffusing mean interevent time of Poisson
process with the stochastic rate n. This should produce the fractal point process with the statistical properties
defined by Eqs. (5) and (6). Within this assumption the conditional probability of interevent time tp in the
modulated Poisson point process with the stochastic rate 1=t is

jðtpjtÞ ¼
1

t
exp �

tp
t

h i
. (7)
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Then the long-time distribution PkðtpÞ of interevent time tp in k-space [8] has the integral form

PkðtpÞ ¼ C

Z 1
0

exp �
tp
t

h i
ta�1 exp �

t
t0

� �m� �
dt, (8)

with C defined from the normalization,
R1
0

PkðtpÞdtp ¼ 1. In the case of pure exponential diffusion reversion,
m ¼ 1, PDF (8) has a simple form

PkðtpÞ ¼
2

Gð1þ aÞt0

tp
t0

� �a=2

Ka 2

ffiffiffiffiffi
tp
t0

r� �
, (9)

where KaðzÞ denotes the modified Bessel function of the second kind. For m41 more complicated structures of
distribution PkðtpÞ expressed in terms of hypergeometric functions arise.

3. Adjustment of the model to the empirical data

We will investigate how the proposed modulated Poisson stochastic point process can be adjusted to the
empirical trading activity, defined as number of transactions in the selected time window td. Stochastic
variable n denotes the number of events per unit time interval. One has to integrate the stochastic signal
equation (4) in the time interval td to get the number of events in the selected time window. In this paper we
denote the integrated number of events as

Nðt; tdÞ ¼
Z tþtd

t

nðt0Þdt0 (10)

and call it the trading activity in the case of the financial market.
Detrended fluctuation analysis [13] is one of the methods to analyze the second order statistics related to the

autocorrelation of trading activity. The exponents n of the detrended fluctuation analysis obtained by fits for
each of the 1000 US stocks show a relatively narrow spread of n around the mean value n ¼ 0:85� 0:01 [13].
We use relation b ¼ 2n� 1 between the exponents n of detrended fluctuation analysis and the exponents b of
the power spectrum [14] and in this way define the empirical value of the exponent for the power spectral
density b ¼ 0:7.

Our analysis of the Lithuanian stock exchange data confirmed that the power spectrum of trading activity is
the same for various liquid stocks even for the emerging markets [11]. The histogram of exponents obtained by
fits to the cumulative distributions of trading activities of 1000 US stocks [13] gives the value of exponent
l ¼ 4:4� 0:05 describing the power-law behavior of the trading activity. Empirical values of b ¼ 0:7 and
l ¼ 4:4 confirm that the time series of the trading activity in real markets are fractal with the power-law
statistics. Time series generated by stochastic process (4) are fractal in the same sense.

Nevertheless, we face serious complications trying to adjust model parameters to the empirical data of the
financial markets. For the pure multiplicative model, when m ¼ 1 or Z ¼ 3

2
, we have to take gs ¼ 0:85 to get

b ¼ 0:7 and gs ¼ 1:7 to get l ¼ 4:4, i.e., it is impossible to reproduce the empirical PDF and power spectrum
with the same relaxation parameter gs and exponent of multiplicativity m. We have proposed possible solution
of this problem in our previous publications [9,11] deriving PDF for the trading activity N:

PðNÞ�

1

N3þa; N5g�1;

1

N5þ2a; Nbg�1:

8>><
>>:

(11)

When Nbg�1 this yields exactly the required value of l ¼ 5þ 2a ¼ 4:4 and b ¼ 0:7 for gs ¼ 0:85.
Nevertheless, we cannot accept this as the sufficiently accurate model of the trading activity since the

empirical power law distribution is achieved only for very high values of the trading activity. Probably this
reveals the mechanism how the power-law distribution converges to normal distribution through the growing
values of the exponent, but empirically observed power-law distribution in wide area of N values cannot be
reproduced. Let us notice here that the desirable power-law distribution of the trading activity with the
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exponent l ¼ 4:4 may be generated by the model (4) with Z ¼ 5
2
and gs ¼ 0:7. Moreover, only the smallest

values of t or high values of n contribute to the power spectral density of trading activity [10]. This suggests us
to combine the stochastic process with two values of m: (i) m ’ 0 for the main area of t and n diffusion and (ii)
m ¼ 1 for the lowest values of t or highest values of n. Therefore, we introduce a new stochastic differential
equation for n combining two powers of the multiplicative noise,

dn ¼ s2 ð1� gsÞ þ
m

2

n0

n

� �mh i n4

ðn�þ 1Þ2
dtþ

sn5=2

ðn�þ 1Þ
dW , (12)

where a new parameter � defines crossover between two areas of n diffusion. The corresponding iterative
equation for tk in such a case is

tkþ1 ¼ tk þ g�
m

2
s2

t
t0

� �m� �
tk

ð�þ tkÞ
2
þ s

tk

�þ tk

ek, (13)

where ek denotes uncorrelated normally distributed random variable with the zero expectation and unit
variance.

Eqs. (12) and (13) define related stochastic variables n and t, respectively, and they should reproduce the
long-range statistical properties of the trading activity and of waiting time in the financial markets. We verify
this by the numerical calculations. In Fig. 1 we present the power spectral density calculated for the equivalent
processes (12) and (13) (see Ref. [9] for details of calculations). This approach reveals the structure of the
power spectral density in wide range of frequencies and shows that the model exhibits not one but rather two
separate power laws with the exponents b1 ¼ 0:33 and b2 ¼ 0:72. From many numerical calculations
performed with the multiplicative point processes we can conclude that combination of two power laws of
spectral density arises only when the multiplicative noise is a crossover of two power laws as in Eqs. (12) and
(13). Let us choose the value of crossover parameter � ¼ 0:07 to balance the influence of two rather different
market behaviors. We will show in the next section that this may serve as an explanation of two exponents of
the power spectrum in the empirical data of volatility for S&P 500 companies [15].

Empirical data of the trading activity statistics should be modeled by the integrated flow of events N defined
in the time interval tdbt0. In Fig. 2 we demonstrate the probability distribution functions PðNÞ and its
cumulative form P4ðNÞ calculated from the histogram of N generated by Eq. (13) with the selected time
interval td ¼ 100. This illustrates that the model distribution of the integrated signal N has the power-law
form with the same exponent l ¼ 4:4 as observed in empirical data [4,5].

The power spectrum of the trading activity N has the same exponent b ¼ 0:7 as power spectrum of n in the
low frequency area for all values of td.
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Fig. 1. Power spectral density Sðf Þ averaged over 100 realizations of series with 1 000 000 iterations and parameters g ¼ 0:0004; s ¼ 0:025;
� ¼ 0:07; t0 ¼ 1; m ¼ 6. Straight lines approximate power spectrum S�1=f b1;2 with b1 ¼ 0:33 and b2 ¼ 0:72: (a) Sðf Þ of the flow IðtÞ ¼P

kdðt� tkÞ with the interevent time tk ¼ tkþ1 � tk generated by Eq. (13), (b) Sðf Þ calculated by the Fast Fourier Transform of n series

generated by Eq. (12).
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Fig. 2. (a) PDF PðNÞ calculated from the histogram of N generated by Eq. (13) with the selected time interval td ¼ 100. (b) Cumulative

distribution P4ðNÞ. Other parameters are as in Fig. 1.
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Fig. 3. PDF of interevent time PðtÞ: open circles, calculated from the histogram of tp generated by Eq. (7) with the mean interevent time

calculated from Eq. (14); open squares, calculated from the iterative equation (13). Used parameters are as in Fig. 1. Solid line represents

the scaling function (3) of Ref. [16] with d ¼ 0:72, adapted to the empirical data of Fig. 2(c) in Ref. [16].
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The same numerical results can be reproduced by continuous stochastic differential equation (12) or
iteration equation (13). One can consider the discrete iterative equation for the interevent time tk (13) as a
method to solve numerically continuous equation

dt ¼ g�
m

2
s2

t
t0

� �m� �
1

ð�þ tÞ2
dtþ s

ffiffiffi
t
p

�þ t
dW . (14)

The continuous equation (12) follows from the Eq. (14) after change of variables n ¼ 1=t.
We can conclude that the long-range memory properties of the trading activity in the financial markets as

well as the PDF can be modeled by the continuous stochastic differential equation (12). In this model the
exponents of the power spectral density, b, and of PDF, l, are defined by one parameter gs ¼ g=s2. We
consider the continuous equation of the mean interevent time t as a model of slowly varying stochastic rate
1=t in the modulated Poisson process (7). In Fig. 3, we demonstrate the probability distribution functions
PðtpÞ calculated from the histogram of tp generated by Eq. (7) with the diffusing mean interevent time
calculated from Eq. (14), open circles. The curve of open squares demonstrates different areas of t diffusion
depending on crossover parameter � ¼ 0:07. In the modulated Poisson process, represented by open circles,
and the empirical data, represented by solid curve, the histograms are flattened by Poisson nature of the
process.
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Numerical results show good qualitative agreement with the empirical data of interevent time probability
distribution measured from few years series of U.S. stock data [16]. This enables us to conclude that the
proposed stochastic model captures the main statistical properties including PDF and the long-range
correlation of the trading activity in the financial markets. Furthermore, in the next section we will show that
this may serve as a background statistical model responsible for the statistics of return volatility in widely
accepted geometric Brownian motion (GBM) of the financial asset prices.
4. Modeling long-range memory volatility

The basic quantities studied for the individual stocks are price pðtÞ and return

xðt; tdÞ ¼ ln pðtþ tdÞ � ln pðtÞ. (15)

Let us express return xðt; tdÞ over a time interval td through the subsequent changes dxi due to the trades
i ¼ 1; 2; . . . ;Nðt; tdÞ in the time interval ½t; tþ td�,

xðt; tdÞ ¼
XNðt;tdÞ
i¼1

dxi. (16)

We denote the variance of dxi calculated over the time interval td as W 2ðt; tdÞ. If dxi are mutually
independent one can apply the central limit theorem to sum (16). This implies that for the fixed variance
W 2ðt; tdÞ return xðt; tdÞ is a normally distributed random variable with the variance W 2ðt; tdÞNðt; tdÞ

xðt; tdÞ ¼W ðt; tdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðt; tdÞ

p
et, (17)

where et is the normally distributed random variable with the zero expectation and unit variance.
Empirical test of conditional probability Pðxðt; tdÞjW ðt; tdÞÞ [4] confirms its Gaussian form, and the

unconditional distribution Pðxðt; tdÞÞ is a power law with the cumulative exponent 3. This implies that the
power-law tails of returns are largely due to those of W ðt; tdÞ. Here we refer to the theory of price diffusion as
a mechanistic random process [17,18]. For this idealized model the short-term price diffusion depends on the
limit order removal and this way is related to the market order flow. Furthermore, the empirical analysis
confirms that the volatility calculated for the fixed number of transactions has the long memory properties as
well and it is correlated with real time volatility [19]. We accumulate all these results into the assumption that
standard deviation W ðt; tdÞ may be proportional to the square root of the trading activity, i.e.,
W ðt; tdÞ�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðt; tdÞ

p
. This enables us to propose a simple model of return

xðt; tdÞ�kNðt; tdÞet (18)

and related model of volatility v ¼ jxðt; tdÞj based on the proposed model of trading activity (12). We generate
series of trade flow nðtÞ numerically solving Eq. (12) with variable steps of time Dti ¼ hi ¼ n0=ni and calculate
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Fig. 4. (a) Cumulative probability distribution function of the volatility, P4ðvÞ, averaged over 10 intervals calculated from the series of

nðtÞ generated by Eqs. (12) and (18), all parameters are the same as in previous calculations. Dashed line approximates the power law

PðvÞ�1=v2:8. (b) Power spectral density Sðf Þ of v calculated from FFT of the same series nðtÞ. Straight lines approximate the empirical

power spectral density S�1=f b1;2 with b1 ¼ 0:5 and b2 ¼ 0:2 presented in Fig. 10a of Ref. [15].
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the trading activity in subsequent time intervals td as Nðt; tdÞ ¼
R tþtd

t
nðt0Þdt0. This enables us to generate series

of return xðt; tdÞ, of volatility vðt; tdÞ ¼ jxðt; tdÞj and of the averaged volatility v ¼ ð1=mÞ
Pi¼m

i¼1 vðti; tdÞ.
In Fig. 4 we demonstrate cumulative distribution of v and the power spectral density of vðt; tdÞ calculated

from FFT. We see that proposed model enables us to catch up the main features of the volatility: the power-
law distribution with exponent 2:8 and power spectral density with two exponents b1 ¼ 0:5 and b2 ¼ 0:2. This
is in a good agreement with the empirical data [15,19].

5. Conclusions

Starting from the concept of the fractal point processes [12] we proposed process driven by the nonlinear
stochastic differential equation and based on the earlier introduced stochastic point process model [8–11]. This
may serve as a possible model of the flow of points or events in the physical, biological and social systems
when their statistics exhibit power-law scaling indicating that the represented phenomena contains clusters of
events over all scales. First of all, we analyze the statistical properties of trading activity and waiting time in
financial markets by the proposed Poisson process with the stochastic rate defined as a stand-alone stochastic
variable. We consider the stochastic rate as continuous one and model it by the stochastic differential
equation, exhibiting long-range memory properties [10]. Further we propose a new form of the stochastic
differential equation combining two powers of multiplicative noise: one responsible for the probability
distribution function and another responsible for the power spectral density. The proposed new form of the
continuous stochastic differential equation enabled us to reproduce the main statistical properties of the
trading activity and waiting time, observable in the financial markets. In the new model the power spectral
density with two different scaling exponents arise. This is in agreement with the empirical power spectrum of
volatility and implies that the market behavior may be dependant on the level of activity. One can observe at
least two stages in market behavior: calm and excited. Finally, we propose a very simple stochastic relation
between trading activity and return to reproduce the statistical properties of volatility. This enabled us to
model empirical distribution and long-range memory of volatility.
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