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Scaling relations for the hydrogen atom in a harmonic field:
classical chaos and quantum suppression of diffusion
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Scale transformations for the classical and quantum dynamics of the hydrogen atom in a harmonic field are introduced which
reduce the number of parameters, simplify the analysis of the chaotic dynamics and reveal the functional dependences of the

classical and quantum processes.

1. Introduction

A highly excited hydrogen atom in a harmonic field
is one of the simplest real non-linear systems with
stochastic behaviour. That is why great attention is
devoted at present to the experimental and theoret-
ical investigation of the dynamics of the electron of
the Rydberg atom in the strong microwave field (for
a review see refs. [1,2], and references therein). In
particular, experimental studies of the microwave
ionization of highly excited hydrogen atoms with
principal quantum numbers ranging to #,=90 have
been performed [3]. One might expect for such
quantum numbers the classical theory to be a good
approximation for the dynamics of the system. How-
ever, quantum analysis [ 1] has suggested that for the
high relative frequency so=wng =1 of the micro-
wave field (with w being the microwave frequency
In atomic units) the classical chaotic diffusion is
suppressed by a quantum interference effect. This
raises the question of the necessary and sufficient
conditions for the applicability of the correspond-
ence principle for chaotic systems [2], no longer dis-

' Alexander von Humboldt Research Fellow 1990/91 at I. Phy-
sikalisches Institut der Universitit Giessen.

cussing the problem of “quantum chaos” in general.
On the other hand, the modelling by maps of the
classical dynamics of a hydrogen atom in a harmonic
field is the object of current studies [4-6].

The aim of the present note is to introduce the ex-
act scaling for the description of the hydrogen atom
in a harmonic field and to investigate the depen-
dences of the classical and quantum dynamics of the
system on the scaled parameters of the problem.

2. Hamiltonian

The Hamiltonian of the hydrogen atom in a lin-
early polarized microwave field of frequency w and
field strength F in atomic units has the form
P 1w

+ > +zFcoswi , (1)

H=2_r 2r?

where r, p and M are the position, momentum and
angular momentum of the electron, respectively.

For the investigation of the ionization process of
the hydrogen atom with the initial principal quan-
tum number ny one commonly introduces the so-
called ‘“scaled field strength and frequency” [1-
3,7,81,
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Fo=niF. wy=njw. (2)

However, these quantities are rather relative than
scaled. The classical dynamics of the one-dimen-
sional hydrogen atom in a harmonic field, as was first
shown in ref. [4], for the definite scaled energy
E,=FE/w*'* depends on a single combination of pa-
rameters, 1.c. the scaled field strength F,=
F/w*3=4FF;, (see also ref. [5]). Introducing the
scale transformation

t=wl. re=w""r, p=plw'?,

M,=w'""*M. F,=F/w*?, (3)
we have from (1)

H=w""H,,

p; L M7
H, = 3 _Z+ 2 +z,F,cost. (4)

Expressions (3) and (4) show that the classical mo-
tion of the electron in the three-dimensional atom
with the definite scaled energy E; and angular mo-
mentum M, depends only on the scaled field strength
F,.

The scaled time-dependent Schrédinger equation
can be expressed as

' V. (5)
oL (), )
Hi= 2 l: ¥ or, "ars * r: v

I =z, F,cost. (6)

The scaled energy spectrum of the unperturbed scaled
hydrogen atom is

1 i

b= 3o =7 3 )
where s=w/( —2E)%? is the ratio of the microwave
frequency w to the Kepler orbital frequency
Q=(—2E)*>

We see that the motion of the quantum hydrogen
atom in a harmonic field is governed in addition to
the scaled field strength by the scaled Planck con-
stant Ai,;=w'/?. The increase of the scaled Planck

constant with increase of the frequency w indicates
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the rise of the quantum properties of the system in
the high frequency region.

3. Scaled dynamics

The comparison of the theory with the experi-
mental measurements of microwave ionization shows
that a simplified one-dimensional model, in which
the electron moves along a straight line in the direc-
tion of the field, provides a correct description of the
excitation of the real three-dimensional hydrogen
atom [1-4]. Therefore, we mainly restrict our sub-
sequent consideration to this model. The scaled
Hamiltonian of this model is

Ho=ip:—1/x,+x,F,cost. x,20. (8)

The classical dynamics of the model (8) may be de-
scribed by a map rather than by the Hamilton equa-
tions (sce refs. [1,2,4-6]),

E =E +AE(E,. D). (9)
O=0+2ns+ AS(E,. D) . (9)

The energy change AE, of the electron during the pe-
riod of intrinsic motion depends on the initial co-
ordinate of the electron [4,6]. For motion between
two subsequent passages at the aphelion

AE? =21F 5?3 J.(s) sin ¥ .

s=(=2E) %7, (10)
while at the perihelion
AE? =27F 523 (s) sin(ns+0) , (1)

where J;(z) is the derivative of the Anger function
[4,6]. The phase change A can be obtained from
the requirement for the area-preserving map (9) [4].

The map at the aphelion, (9), (10), mostly rep-
resented for the number of absorbed photons N=
E/w and called the ““Kepler map”, is widely used for
the analysis of chaotic processes for relatively high
frequencies s 1 [1,2,4] while the map at the peri-
helion, (9), (11), stronger reveals the resonance
structure of the chaotic dynamics at low frequencies
§<1 [4]. In general, the dynamics of the model (8)
is governed by the superposition of both maps and
may be described more accurately by the improved
mapping equations for the energy changes during the
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halves of the intrinsic period [6] (see also ref. [5]
for a discussion of the canonical Kepler map).

One can add that the transition to chaos in the low
frequency region may be investigated on the basis of
the adiabatic map for the phase [4]. The scaled
expression of this map has the form

J=0+2ns+qgcos ¥, g=15rs"/3F,,
0.3<5<0.7, (12)

which is the map of the circle onto itself.

Expressions (9)-(12) show that the classical mo-
tion of the one-dimensional hydrogen atom in a har-
monic field in fact depends on a single parameter —
the scaled field strength F,. The transition between
a regular and stochastic motion may be character-
ized by a scaled threshold field strength as a function
of a scaled energy or scaled frequency: FS=f(s).
Note that F,, according to (2) is related to F; by vir-
tue of Fy =s8/3F,. Thus, in the high scaled frequency
limit the threshold field strengths for the onset of
classical chaos can be estimated from the map (9),
(10) [4],

1 1 1

Fé~ ~ ¢
ST 12m2s73T(s) T 12m2bs>73”

0™ T5.1/3
4953

Ji(s) =

pEvER b~0.411, s>1. (13)

For low scaled frequency s < 1 the detailed resonance
structure of the chaotic dynamics follows from the
numerical analysis of the maps (9)-(12) and the
improved mapping equations [6].

Considerably more complicated 1s the quantum
dvnamics of the model (8) which, besides the scaled
field strength F,, depends on the scaled Planck con-
stant i,=w!/?, Moreover, the quantum localization
phenomenon that limits the diffusive process is es-
sential and may determine the ionization probability
[1].

The energy spectrum of the unperturbed one-
dimensional hydrogen atom is given also by expres-
sion (7). The transition n—n’ frequency is found to
be AE,/#,=An/s and the equations of motion are
then
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da, )
T —1fF, cost
X 2 (n'|x;|n) exp[i(An/s)t]a,, (14)

where the wavefunction is given in terms of the un-
perturbed states |#) of system (8) by

w(t)= Y |n>exp(—iEt/w'?)a,(1) (15)

and the quantum scaled field strength F =
F. /w3 =F/w?>’* was introduced. Since the matrix
element {(n'|x;|n)> for |An| << n, n’ in accordance
with refs. [4,6] depends only on s and Ax for [An| =1
can be written as
sl/} S?_/S

<ﬂ'|XsIﬂ>=—Kn— Q\,I(A")Z—Minkls/}, (16)
eq. (14) shows that the transition probabilities with
definite An and s depend only on the quantum scaled
field strength F,.

It has been shown in ref. [4] that the one-photon
transitions in the strongly perturbed spectrum of the
atom result in the diffusion coefficient of the elec-
tron in energy space being identical to the diffusion
coefficient due to the stochastic classical motion.
Later analysis revealed the importance and conve-
nience of the photonic basis for the quantum dy-
namics of the model (8) [1,2,7-9]. The correspond-
ing equations for the transition amplitudes between
the photonic states may be approximated by

dby. F,cost
a L 5mAN

Jian(SAN) exp(1AN t) by .

(17)
The transition probabilities Py ». between the pho-
tonic states during the period of intrinsic motion for

high frequencies s 1 may be evaluated by means of
Presnyakov and Urnov’s model [10],

Pynr=J% pMK) . K=2rF s*3T(s) . (18)

Using the expression >, n2/2(K) =} K? we may for-
mally evaluate the local diffusion coefficient of the
electron in the scaled energy space,

= r __F 2 . ars
B(Es) = ZTS /\Z’ (Es bs) Pl\,/\
=3nFIs I3 (s) (19)
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where 7, =2ms is the scaled period of the electron in-
trinsic motion and the approximation of uncorre-
lated transitions was used. Therefore, the local quan-
tum diffusion coefficient depends only on the scaled
field strength and scaled frequency and agrees with
the classical diffusion coefficient [4].

However, in order to be a quantal transition pro-
cess similar to the classical one it has to include at
least a few quantum states. In our case this corre-
sponds to the condition Kz 1, i.e.

Fiz(2rnb) '~04,
F3204s33/ny. sz . (20)

On the other hand, condition (20) coincides with
the requirement for the classical energy change (10)
to be larger than the photon energy, AE2 > w'/? (see
also ref. [7] for comparison of the classical and
quantum dynamics of system (8)).

For high scaled frequencies s> 1, K=2nbF, in
(18) 1s a constant and the transition probabilities
(18) coincide with the probabilities for the kicked
rotator model [11]. The same result (18) may also
be obtained from the quasiclassical approximation
for the map (9), (10) based on the appropriate
kicked model Hamiltonian [12]. In addition, the
structure (18) for transition probabilities is com-
mon for all kicked models and for the non-linear
Hamiltonians H"(N) results in the quantum local-
ization of classical chaos with localization length
Iv=AN=1K? [1,11-13]. Thus, for the diffusive
achievement of a given distance /y the quantum
scaled field strength

Flv=/20/2nb, s31 . (21)

is needed. A comparison of the localization length
with the ionization bound distance N,=FE/w=
E,/w"'/? yields the following critical value of the field
strength for quantal diffusive ionization,

Fi=1/2nbnw'’?, Fi=s§°/(6.6n,)""*, (22)

which is the well known result of Casati et al. [13].

Thus, our scaled analysis enables one to clarify “the
not clear relation between the two conditions™ (20)
and (22) [14]. Of course, the detailed investigation
of the quantum chaos needs numerical analysis, but
the scale transformations (3)-(7) reduce the space
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of parameters and reveal the functional dependences.

4. Conclusions

Introduction of the scale transformation for the
description of the hydrogen atom in a harmonic field
enables one to maximally simplify the analysis of the
dynamical processes and to reduce the number of
parameters of the problem. The classical motion de-
pends only on the scaled field strength F,=F/w*/*
while the quantum dynamics depends in addition on
the scaled Planck constant i,=w'/?. However, the
transition amplitudes between the states of the un-
perturbed hydrogen atom as well as between the
“photonic states” depend also only on one param-
eter — the quantum scaled field strength [ =
F/w*. Note that Fy = Fs§/°@'/? and, therefore, the
relative (see (2)) quenching field strength F 3" de-
pends not only on the relative frequency s, but also
on the absolute field frequency w. This is in agree-
ment with the experimental results [3].

The quantal diffusive ionization is a result of the
kinetical delocalization of the quantum localization
of chaotic diffusion and depends on both scaled pa-
rameters. The application of the scaling for the sta-
bilization of atoms in the problem of superintense
laser fields (see e.g. ref. [15]) is also relevant and,
in our opinion, useful.
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