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Autoregressive model of 1rf noise
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Abstract

ŽAn analytically solvable model is proposed exhibiting 1rf spectrum in any desirably wide range of frequency but
.excluding the point fs0 . The model consists of pulses whose recurrence times obey an autoregressive process with very

small damping. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The puzzle of the origin and omnipresence of 1rf
noise – also known as ’flicker’ or ’pink’ noise – is
one of the oldest unsolved problem of the contempo-
rary physics. Since the first observation of flicker
noise in the currents of electron tubes more than 70

w xyears ago by Johnson 1 , fluctuations of signals and
physical variables exhibiting behavior characterized

Ž .by a power spectral density S f diverging at low
d Ž .frequencies like 1rf d,1 have been discovered

in large diversity of uncorrelated systems. We can
mention here processes in condensed matter, traffic
flow, quasar emissions and music, biological, evolu-
tion and artificial systems and even human cognition
Ž w x .see 2–5 and references herein .

1 E-mail: kaulakys@itpa.lt

1rf noise is an intermediate between the well
understood white noise with no correlation in time

Ž .and the random walk Brownian motion noise with
no correlation between increments. The widespread
occurrence of signals exhibiting power spectral den-
sity with 1rf behavior suggests that a general mathe-
matical explanation of such an effect might exist.
However, except for some formal mathematical de-
scriptions like ‘‘fractional Brownian motion’’ or

w xhalf-integral of a white noise signal 6 no generally
recognized physical explanation of the ubiquity of
1rf noise is still proposed. Models of 1rf noise in

Žsome physical systems are usually specialized see
w x .2–5 and references herein and they do not explain
the omnipresence of the processes with 1rf d spec-

w xtrum 7–9 .
Note also some mathematical algorithms and

models of the generation of the processes with 1rf
w xnoise 10–12 . These models can not, as a rule, be

solved analytically and they do not reveal the origin

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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as well as the necessary and sufficient conditions for
the appearance of 1rf type fluctuations.

History of the progress in different areas of physics
points to the crucial influence of simple models on
the understanding of new phenomena. We note here
only the decisive influence of the Lorenz model as

Ž .well as the logistic and standard Chirikov maps for
understanding of the deterministic chaos and the
quantum kicked rotor for revealing the quantum
localization of classical chaos.

It is the purpose of this letter to present and
analyze the simplest analytically solvable model of
1rf noise which can be relevant for the understand-
ing of the origin, main properties and parameter
dependencies of flicker noise. Our model is a result
of the search for necessary and sufficient conditions
for the appearance of 1rf fluctuations in simple
systems affected by random external perturbations,
originated from the observation of a transition from
chaotic to nonchaotic behavior in an ensemble of

w x w xrandomly driven systems 13 , initiated in Ref. 14
w xand further developed in Ref. 15 .

In the model there are analyzed currents or signals
represented as sequences of random but correlated

Žpulses whose recurrence times intervals between
.transit times of pulses obey an autoregressive pro-

cess with small damping. It is shown that for small
average recurrence time and very small damping,
random increments of the recurrence times lead to
1rf behavior of the power spectrum of the signal or
current in wide range of frequency, however, analyti-
cal at fs0.

2. Model and solution

Let us consider a point process when the intensity
of some signal consisting from a sequence of pulses
Ž .elementary events or current of particles through
some Poincare section L may be expressed as´ m

I t s ad ty t . 1Ž . Ž . Ž .Ý k
k

Ž . � 4Here d t is the Dirac delta function, t is ak

sequence of transit times t at which the particles ork

pulses cross the section L and a is a contribution tom

the signal or current of one pulse or particle when it
crosses the section L .m

Ž .The power spectral density of the current 1 is

2
k2 max2 a

yi 2p f tkS f s lim eŽ . Ý
T− <T™` kskmin

k yk2 max2 a
i2p fD k ;qŽ .s lim e 2Ž .Ý Ý¦ ;TT™` k qsk ykmin

where D k ;q ' t y t is the difference of transitŽ . kqq k

times t and t , T is the whole observation timekqq k

interval, k and k are minimal and maximalmin max

values of index k in the interval of observation and
² :the brackets ... denote the averaging over realiza-

tions of the process.
Let us analyze a process whose recurrence times

Ž .t s t y t follow an autoregressive AR 1 pro-k k ky1

cess with offset t)0, regression coefficient as1
yg and noise variance s 2. So, defining by u stk k

yt a deviation of the recurrence time t from thek

steady state value t , we have autoregressive equa-
tions for the deviations uk

u sau qs´ 3aŽ .k ky1 k

and for the recurrence times t k

t st yg t yt qs´ . 3bŽ .Ž .k ky1 ky1 k

� 4Here ´ denotes a sequence of uncorrelated nor-k

mally distributed random variables with zero expec-
Ž .tation and unit variance the white noise source and

s is the standard deviation of the white noise. Note
Žthat the coefficient g has a sense of damping the

relaxation rate of the recurrence times t to thek
.average value t and we will consider only pro-

cesses with g<1 or gs0.
The recurrence equation for the transit times t isk

t s t qt 4Ž .k ky1 k

Ž .where the recurrence times t is defined by Eq. 3b .k

The simplest interpretation of our model corre-
sponds to one particle moving along some orbit. The

Žperiod of this motion fluctuates due to external
.random perturbations of the system’s parameters

about some average value t . Some generalizations
and extensions of the model and its interpretation
will be discussed below.
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Ž . Ž .From Eqs. 3a and 3b follows explicit expres-
sions for the deviation u and the recurrence timek

t ,k

k
k kyju su a qs a ´ , 5aŽ .Ýk 0 j

js1

k
k kyjt stq t yt a qs a ´ , 5bŽ .Ž . Ýk 0 j

js1

with u and t being the initial values of the0 0

deviation and of the recurrence time, respectively.
The variance of the recurrence time t isk

22 2 2 2 k 2² :s k ' t y t ss 1ya r 1ya² :Ž . Ž . Ž .t k k

6Ž .

After some algebra we can easily obtain from
Ž . Ž .Eqs. 4 and 5b an explicit expression for the

transit times t ,k

k a
kt s t q t st qktq t yt 1yaŽ .Ž .Ýk 0 j 0 0

gjs1

ks
kq1ylq 1ya ´ , 7Ž . Ž .Ý l

g ls1

with t being the initial time.0

The power spectral density of the current accord-
Ž .ing to Eq. 2 depends on the statistics of the transit

Ž .times difference D k ;q which according to Eq. 7Ž .
is

D k ;q ' t y t sqtŽ . kqq k

1
q kq1q t yt 1ya aŽ .Ž .0

g

ks
q kq1ylq 1ya a ´Ž . Ý l

g ls1

kqq
kqqq1ylq 1ya ´ , qG0.Ž .Ý l

lskq1

8Ž .

Random variable D k ;q is a sum of two regularŽ .
terms and kqq uncorrelated Gaussian random vari-
ables with zero expectations and variances

s 2 Ž .2 q 2 kq1y lŽ . 1ya a for l s 1,2, . . . ,k andŽ .g

s 22 kqqq1ylŽ . 1ya for lskq1,kq2, . . . ,kqq,Ž .g

respectively. Therefore, D k ;q is a normally dis-Ž .
tributed random variable with the expectation

² :m k ;q ' D k ;q sqtŽ . Ž .D

1
q kq1q t yt 1ya a 9Ž . Ž .Ž .0

g

22and the variance s k ;q ' D k ;q y² :Ž . Ž .D

² :2
D k ;q , which equals the sum of the variancesŽ .

of the components,

s 2 k ;qŽ .D

2 qks 22q 2 j js 1ya a q 1yaŽ . Ž .Ý Ýž /g js1 js1

q2s 2a 1yaŽ .
s qy 2ž /g 1ya

22 kq2 qa 1yaŽ .
y , qG0. 10Ž .21ya

Here new summation indexes jskq1y l and js
Ž .kqqq1y l of first and second sums in 8 , respec-

tively, have been introduced.
Note that from the definition of the difference of

transit times it follows the symmetry relations

D k ;yq syD kyq ;q ,Ž . Ž .

m k ;yq sym kyq ;q ,Ž . Ž .

s 2 k ;yq ss 2 kyq ;q . 11Ž . Ž . Ž .D D

At k4gy1 or after averaging over t from the0

distribution with the expectation t and variance
2 2Ž . 2 2 2s 's ` ss r 1ya ,s r2g according toŽ .t t

Ž . Ž . Ž .Eq. 6 , expressions 7 and 8 generate a stationary
time series. The expectation and the variance of the
difference D k ;q of transit times of the stationaryŽ .
time series are

² :m q ' m `;q sqt , 12Ž . Ž . Ž .D D

q2s 2a 1yaŽ .
2 2s q 's `;q s qy .Ž . Ž .D D 2ž /g 1ya

13Ž .
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The power spectral density of the current according
Ž .to Eq. 2 is

2 a2
i2p fD k ;qŽ .² :S f s lim eŽ . Ý

TT™` k ,q

2 a2

s lim x 2p f 14Ž . Ž .Ý DŽk ;q .TT™` k ,q

Ž .where x 2p f is the characteristic function ofD k ;qŽ .
the distribution of the transit times difference
D k ;q . For the normal distribution of D k ;q theŽ . Ž .

Ž .characteristic function takes the form x 2p fD k ;qŽ .
2 2 2s exp i2p fm k ;q y2p f s k ;q and theŽ . Ž .D D

power spectral density equals
22 a

S f s lim exp i2p fm k ;qŽ . Ž .Ý DTT™` k ,q

2 2 2y2p f s k ;q . 15Ž . Ž .D

y1 Ž . Ž .For q<g we have from Eqs. 9 and 10
expansions of the expectation m k ;q and of theŽ .D

variance s 2 k ;q in powers of g q<1Ž .D

kq1m k ;q st k q , t k stq t yt a ,Ž . Ž . Ž . Ž .D 0

16Ž .
2 2 ks 2 1yaŽ .

2 2 k 2s k ;q s qa qŽ .D 2½2 1ya

1 1
2 k 3q a y q q q . 17Ž .ž / 53 3

Ž .The leading term of the expansion 17 may be
written as

s 2 k ;q ss 2 k q2 , g q<1 18Ž . Ž . Ž .D t

2Ž .where the variance s k of the recurrence time tt k
Ž . Ž .is defined by Eq. 6 . Therefore, Eq. 15 takes the

form
22 a

S f s lim exp i2p ft k qŽ . Ž .Ý
TT™` k ,q

2 2 2 2y2p f s k q . 19Ž . Ž .t

Ž .Here the mean recurrence time t k is defined in Eq.
Ž .16 .

Ž . 2 2 2Ž . 2
y1Eq. 19 is valid if 2p f s k q N 41,t qsg

Ž .i.e., for f ) f s grps k . When f < f s1 t ty1y12pt k and f- f s ps k we can re-Ž . Ž .2 t

Ž .place the summation over q in Eq. 19 by the
integration. The integration yields to the 1rf spec-
trum

2a 2 1 1
S f s limŽ . ( Ý

f p T s kT™` Ž .tk

=

2
t kŽ .

� 4exp y , f - f-min f , f .1 2 t22s kŽ .t

20Ž .
Ž .Eq. 20 is valid for the stationary as well as for

the non-stationary process with slowly changing of
the expectation and variance of the recurrence time.

At k4gy1 or after averaging over t from the0
2distribution with the expectation t and variance st

ss 2r 1ya 2 ,s 2r2g we have the stationaryŽ .
process: the expectation and the variance of the
recurrence time do not depend on the parameter k,

Ž . Ž .i.e., t k st and s k ss . For the stationaryt t

Ž .process Eq. 20 takes the form
aH2S f s I . 21Ž . Ž .
f

Here I s lim a k yk q1 rT s art isŽ .T ™` max min

the average current and a is a dimensionless con-H
Ž .stant the Hooge parameter

2 t2yKa s Ke , Ks . 22Ž .H ' 'p 2 st

Therefore, the power of 1rf noise except of the
squared average current strongly depends on the
ratio of the average recurrence time to the standard
deviation of the recurrence time.

3. Discussion and generalizations

The point process containing only one relaxation
time gy1 can for sufficiently small damping g and

Ž'average recurrence time t<sr g with s being
.the standard deviation of the white noise source

produce an exact 1rf-like spectrum in wide range of
frequency f , f , with f rf ,gy1. Furthermore,Ž .1 2 2 1

due to the contribution to the transit times t of thek
Žlarge number of the random variables ´ lsl

.1,2,...k , our model represents a ’long-memory’ ran-
dom process. As a result of the nonzero relaxation
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Ž .rate g/0 and, consequently, due to the finite
variance, s 2 ss 2r2g , of the recurrence time thet

model is free from the unphysical divergency of the
spectrum at f™0. So, using an expansion of expres-

Ž . Ž . 2sion 13 at g q41, s q s srg q, we obtainŽ .D

Ž . Ž .from Eq. 15 the spectrum density S f s
2 2 2 2 2I 2s rtg for f < min f , f stg rps .� 4Ž . 1 0

w xThis is in agreement with the statement 16 that the
power spectrum of any pulse sequence is white at
low enough frequencies.

This simple, consistent and exactly solvable model
can easily be generalized in different directions: for
large number of particles moving in similar orbits

Ž .with coherent identical for all particles or indepen-
Ž .dent uncorrelated for different particles fluctuations

of the periods, for non-Gaussian or continuous per-
turbations of the systems’ parameters, for nonlinear
relaxation and for spatially extended systems. So,
when an ensemble of N particles moves on closed
orbits and the period of each particle fluctuates

Žindependently due to the perturbations by uncorre-
� y4lated sequences of random variables ´ , differentk

.for each particle y the power spectral density of the
collective current I of all particles can be calculated
by the above method too and is expressed as the

w xHooge formula 2
aH2S f s I . 23Ž . Ž .
Nf

The model may be used for evaluation of the
power spectral density of the non-stationary process
as well. So, at k<gy1 or for gs0 we have a
process with the constant averaged recurrence time
Ž . Ž .t k st , from Eq. 16 , and linearly increasing0

2Ž . 2variance of the recurrence time s k ss k, ac-t

Ž .cording to Eq. 6 , i.e., a process similar to the
Brownian motion without relaxation. For k4 q it

Ž .is valid expansion 18 and the power spectral den-
sity of such process for finite observation time inter-

Ž .val T may be evaluated according to Eq. 20
k2 2max1 2 a 1 t 0

S f s exp y ,Ž . ( Ý 2'f p s T 2s kkkskmin

f < f- f . 24Ž .1 2

Here
y1 y1

f s s k k , f s ps k . 25Ž .( (ž / ž /1 max min 2 max

The process with random increments of the recur-
rence time and without relaxation is, however, very
unstable and strongly depending on the realization.

² :Really, the averaged number, k yk , of tran-max min

sition times t for the given observation time inter-k

² :val T is k yk sTrt but the standardmax min 0

deviation s of the time interval for given kT min
Ž .and k according to Eq. 10 equals s smax T

s k y k k q2k r3 . Therefore, for(Ž . Ž .max min max min

k q2k )3 t rs
2 the standard deviationŽ . Ž .max min 0

² :exceeds the expectation value T s k yk tŽ .max min 0

of the time interval. The power spectrum of any
realization is, however, of 1rf type for large fre-
quency interval f , f , with f rf , k k .Ž . (1 2 2 1 max min

It should be noticed in conclusion that in many
cases the intensity of signals or currents can be

Ž .expressed in the form 1 . This expression represent
exactly the flow of identical point objects. More

Ž .generally, in Eq. 1 instead of the Dirac delta func-
tion one should introduce time dependent pulse am-
plitudes A ty t . However, the low frequencyŽ .k k

power spectral density depends weakly on the shapes
w xof the pulses 16 , while fluctuations of the pulses

amplitudes result, as a rule, in white or Lorentzian,
Ž . Ž .but not 1rf, noise. The model 2 – 5 in such cases

represents fluctuations of the averaged period t k

between the subsequent transition times of the pulses.
Therefore, the model may be easily generalized and
applied for the explanation of 1rf noise in different
systems. Furthermore, it reveals the possible origin
of 1rf noise, i.e. random increments of the time
intervals between the pulses or elementary events.

Summarizing, a simple analytically solvable model
of 1rf noise is presented and analyzed. The model
reveals main features and parameter dependences of
the power spectral density of the noise. The model
and its generalizations may essentially influence the
understanding of the origin and main properties of
the flicker noise.
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