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Abstract

An analytically solvable model is proposed exhibiting 1/f spectrum in any desirably wide range of frequency (but
excluding the point f=0). The model consists of pulses whose recurrence times obey an autoregressive process with very
small damping. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The puzzle of the origin and omnipresence of 1 /f
noise — also known as ’flicker’ or 'pink’ noise — is
one of the oldest unsolved problem of the contempo-
rary physics. Since the first observation of flicker
noise in the currents of electron tubes more than 70
years ago by Johnson [1], fluctuations of signals and
physica variables exhibiting behavior characterized
by a power spectrd density S(f) diverging at low
frequencies like 1/f° (8§ = 1) have been discovered
in large diversity of uncorrelated systems. We can
mention here processes in condensed matter, traffic
flow, quasar emissions and music, biological, evolu-
tion and artificial systems and even human cognition
(see [2-5] and references herein).
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1/f noise is an intermediate between the well
understood white noise with no correlation in time
and the random walk (Brownian motion) noise with
no correlation between increments. The widespread
occurrence of signals exhibiting power spectral den-
sity with 1 /f behavior suggests that a general mathe-
matical explanation of such an effect might exist.
However, except for some formal mathematical de-
scriptions like ‘‘fractional Brownian motion’’ or
half-integral of a white noise signal [6] no generally
recognized physical explanation of the ubiquity of
1/f noise is still proposed. Models of 1/f noise in
some physical systems are usually speciaized (see
[2-5] and references herein) and they do not explain
the omnipresence of the processes with 1/f° spec-
trum [7-9].

Note also some mathematical agorithms and
models of the generation of the processes with 1 /f
noise [10—12]. These models can not, as a rule, be
solved analytically and they do not reveal the origin
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as well as the necessary and sufficient conditions for
the appearance of 1/f type fluctuations.

History of the progressin different areas of physics
points to the crucial influence of simple models on
the understanding of new phenomena. We note here
only the decisive influence of the Lorenz model as
well as the logistic and standard (Chirikov) maps for
understanding of the deterministic chaos and the
gquantum kicked rotor for revealing the quantum
localization of classical chaos.

It is the purpose of this letter to present and
analyze the simplest analytically solvable model of
1/f noise which can be relevant for the understand-
ing of the origin, main properties and parameter
dependencies of flicker noise. Our model is a result
of the search for necessary and sufficient conditions
for the appearance of 1/f fluctuations in simple
systems affected by random externa perturbations,
originated from the observation of a transition from
chaotic to nonchaotic behavior in an ensemble of
randomly driven systems [13], initiated in Ref. [14]
and further developed in Ref. [15].

In the moddl there are analyzed currents or signals
represented as sequences of random but correlated
pulses whose recurrence times (intervals between
transit times of pulses) obey an autoregressive pro-
cess with small damping. It is shown that for small
average recurrence time and very small damping,
random increments of the recurrence times lead to
1/f behavior of the power spectrum of the signa or
current in wide range of frequency, however, analyti-
ca a f=0.

2. Model and solution

Let us consider a point process when the intensity
of some signal consisting from a segquence of pulses
(elementary events) or current of particles through
some Poincaré section L, may be expressed as

I(t) = 2 ad(t—t). (€3]
K

Here §(t) is the Dirac ddta function, {t,} is a
sequence of transit times t, at which the particles or
pulses cross the section L, and a is a contribution to
the signal or current of one pulse or particle when it
crosses the section L,

The power spectral density of the current (1) is

3.2 Kmex _
S(f)=lim({—| ) e "2
Toe k=Kmin
2a? Kma =k
= lim <TZ Z e|277fA(k;q) (2)
Toe k q=kmin_k

where A(K;q) =t,. 4 — t, is the difference of transit
times t,, 4 and t,, T is the whole observation time
interval, k., and K, ae minimal and maximal
values of index k in the interval of observation and
the brackets (...) denote the averaging over rediza-
tions of the process.

Let us analyze a process whose recurrence times
7 =1, — 1, follow an autoregressive AR(1) pro-
cess with offset 7> 0, regression coefficient o =1
— v and noise variance o 2. So, defining by 6, = 7,
— 7 adeviation of the recurrence time 7, from the
steady state value 7, we have autoregressive equa
tions for the deviations 6,

0,=ab,_,+ oe, (3a)
and for the recurrence times 7,
= Teer~ W7oy — 7) + o8y (3b)

Here {&,} denotes a sequence of uncorrelated nor-
mally distributed random variables with zero expec-
tation and unit variance (the white noise source) and
o isthe standard deviation of the white noise. Note
that the coefficient y has a sense of damping (the
relaxation rate of the recurrence times 7, to the
average vaue 7) and we will consider only pro-
cesses with y <1 or y=0.

The recurrence eguation for the transit times t, is

L=t + 7 (4)

where the recurrence times 7, is defined by Eq. (3b).

The simplest interpretation of our model corre-
sponds to one particle moving along some orbit. The
period of this motion fluctuates (due to externa
random perturbations of the system’'s parameters)
about some average value 7. Some generalizations
and extensions of the model and its interpretation
will be discussed below.
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From Egs. (3a) and (3b) follows explicit expres-
sions for the deviation 6, and the recurrence time
Ty»

k .
0= Opa*+ o), a g, (5a)
j=1

k

Tk=?+(70—?)ak+a'z ak_jsj, (5b)
j=1

with 68, and 7, being the initid values of the

deviation and of the recurrence time, respectively.
The variance of the recurrence time 7, is

a2(K) = (r2)— (1Y = o1 - a?) /(1 - a?)
(6)

After some algebra we can easily obtain from
Egs. (4) and (5b) an explicit expression for the
transit times t,,

k
t,=t,+ ZT—to+kT+—(TO—7)(1—a )
j=1

+EZ(1—

y e e, (7)

with t, being the initia time.

The power spectral density of the current accord-
ing to Eqg. (2) depends on the statistics of the transit
times difference A(k;q) which according to Eq. (7)
is
A(k;q) =t q—te=0a7

1
+—(TO—?)(1—aq)ak+l
Y

o k
+—1(1-a%) Z aHl*'a,
Y =1

k+q

+ ) (1-

ak+q+1|)gll, G]ZO
I=k+1

)

Random variable A(k;q) is asum of two regular
terms and k + g uncorrelated Gaussian random vari-
ables with zero expectations and variances
(2 )2(1—aq)2a2(k+1 D ofor 1=12,..., k and

y)2(1 akt At N2 for | =k+ 1,k +2,...,k+0q,

respectively. Therefore, A(k;q) is a normaly dis-
tributed random variable with the expectation

ma(k;q) =(A(k;q))=0o7

+E -7)(1-a%ak? 9
(o= T)(1-afa (9)

and the variance o,2(k;q)=(A(k;q)’) —
{A(k;q) ), which equals the sum of the variances
of the components,

o (k:q)

=(i')2 (1-ah’ Y al+ Z(l—al)l

Y i=1 i=1
o [ 2a(1—a)
_(§) L
0[2k+2(1— aq)z
-—— 1|, g=0. (10)
1-«

Here new summation indexes j=k+1—Iland j=
k+q+1—1 of first and second sumsin (8), respec-
tively, have been introduced.

Note that from the definition of the difference of
transit times it follows the symmetry relations

A(k;—q) = —A(k—q;q),
m(ki—d) = —u(k—a;q),
ol(k;=q) = gf(k—0a;q). (11)

At k> y~! or after averaging over 7, from the
distri bution with the expectation 7 and variance
2= g?(o) = 02/(1 — a?)=g?/2y according to
Eq (6), expressions (7) and (8) generate a stationary
time series. The expectation and the variance of the
difference A(k;q) of transit times of the stationary
time series are

= (uy(;9) )= o7, (12)
2a(1—a?) }

ma(d)

1—a?

02(a) = o(=50) = (%)[q—
(13)
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The power spectral density of the current according
to Eq. (2) is

S( f) = lim 2_32 Z<ei27-rm(k;q)>
Tow T K
q
- 2a?
= JL”; T Y Xakig (27 T) (14)
k.q
where x,x.q)(27f) is the characteristic function of
the distribution of the transit times difference
A(k;q). For the normal distribution of A(k;q) the
characteristic function takes the form y, y.q,(27f)
= exp|i2mfu,(k;q) — 2m%f%02(k;q)] and the
power spectral density equals
2

S(f) = lim 2—aZexp[i27rfp,A(k;q)
Too T K,q
— 272t %2(k;q)]. (15)

For gq< y ! we have from Egs. (9) and (10)

expansions of the expectation u,(k;q) and of the
variance o2(k;q) in powers of yq< 1

pa(kiq) = 7(k)a, 7(K) =7+ (1o—7)a""",

(16)
o? [l 2(1— a?¢
1 1
+(C¥2k—§)q3+ EQ} (17)

The leading term of the expansion (17) may be
written as

af(kiq) = *(k)a®, ya<1 (18)
where the variance o,2(k) of the recurrence time 7,
is defined by Eqg. (6). Therefore, Eq. (15) takes the
form

2

2a
S(f) = lim — Y exp[i2mfr(k)q
To T k,q

—272f%:2(k)q?]. (19)

Here the mean recurrence time 7(k) is defined in Eq.
(16).

Eq. (19) is valid if 2m2f%,2(K)q?] 4. 1> 1,

i.e, for f>f =y/mo (k). When f<f =

[277(k)] " and f<f,=[mo (k)] " we can re

place the summation over q in Eq. (19) by the
integration. The integration yields to the 1/f spec-
trum

. a® [2 y 1 1
= — —_— m_
=5V 7 M 3L o0

r(k)?
202(K)

xexp[— ] f, < f<min{f,,f}.

(20)

Eq. (20) is valid for the stationary as well as for
the non-stationary process with slowly changing of
the expectation and variance of the recurrence time.

At k> y~1 or after averaging over 7, from the
distribution with the expectation 7 and variance o.?
=0?/(l—a?)=0?/2y we have the stationary
process. the expectation and the variance of the
recurrence time do not depend on the parameter Kk,
i.e, 7(k)=7 and o¢(k)=0.. For the stationary
process Eq. (20) takes the form

S(f)=|'2a—:. (21)

Here | =Ilim;_  a(Kyy — Kmin+1)/T=2a/7 is
the average current and «y, is a dimensionless con-
stant (the Hooge parameter)

2

= —Ke*', K=—. 22

ay = (22)
Therefore, the power of 1/f noise except of the

squared average current strongly depends on the

ratio of the average recurrence time to the standard

deviation of the recurrence time.

3. Discussion and generalizations

The point process containing only one relaxation
time y~! can for sufficiently small damping y and
average recurrence time 7 < o/ ﬁ (with o being
the standard deviation of the white noise source)
produce an exact 1 /f-like spectrum in wide range of
frequency ( f,,f,), with f,/f, =y~1. Furthermore,
due to the contribution to the transit times t, of the
large number of the random variables ¢ (I =
1,2,...k), our model represents a’long-memory’ ran-
dom process. As a result of the nonzero relaxation
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rate (y+# 0) and, consequently, due to the finite
variance, o.> = o?/2y, of the recurrence time the
model is free from the unphysical divergency of the
spectrum at f — 0. So, using an expansion of expres-
sion (13) at yq>> 1, a,(q) = (o/v)°q, we obtain
from Eq. (15) the spectrum density S(f) =
1%(202/7y?) for f< min{f,,f,=7y2/mo?}.
Thisis in agreement with the statement [16] that the
power spectrum of any pulse sequence is white at
low enough frequencies.

This simple, consistent and exactly solvable model
can easily be generalized in different directions. for
large number of particles moving in similar orbits
with coherent (identical for all particles) or indepen-
dent (uncorrelated for different particles) fluctuations
of the periods, for non-Gaussian or continuous per-
turbations of the systems' parameters, for nonlinear
relaxation and for spatially extended systems. So,
when an ensemble of N particles moves on closed
orbits and the period of each particle fluctuates
independently (due to the perturbations by uncorre-
lated sequences of random variables {g}}, different
for each particle v) the power spectral density of the
collective current | of al particles can be calculated
by the above method too and is expressed as the
Hooge formula[2]

S(f)=l_2%. (23)

The model may be used for evaluation of the
power spectral density of the non-stationary process
as well. So, at k< y ! or for y=0 we have a
process with the constant averaged recurrence time
7(k) = 74, from Eg. (16), and linearly increasing
variance of the recurrence time ¢,2(k) = o 2k, ac-
cording to Eq. (6), i.e, a process similar to the
Brownian motion without relaxation. For k> |q| it
is valid expansion (18) and the power spectral den-
sity of such process for finite observation time inter-
val T may be evaluated according to Eq. (20)

f 1 [2 a2 kfx 1 2
S(f) = fVaoT k:kmm\/EEXp 202k |
f, < f<Hf,. (24)

Here

1:1 = (Ukmax I(min )71

, f2=(770' kmax)il. (25)

The process with random increments of the recur-
rence time and without relaxation is, however, very
unstable and strongly depending on the realization.
Really, the averaged number, (K., — Kpin ), Of tran-
sition times t, for the given observation time inter-
va T is (Kyax — Kmin)=T/7, but the standard
deviation o of the time interval for given K,
and k., according to Eq. (10) equas o;=
0 (Kmax — Kmnin) V( Kmax + 2Kpnin) /3 . Therefore, for
(Koew + 2Kenin) > 3(7o/ )’ the standard deviation
exceeds the expectation value {T)= (Kmax — Kmin) 7o
of the time interval. The power spectrum of any
realization is, however, of 1/f type for large fre-
quency interval (f,,f,), with f,/f; = /K. Kmin -

It should be noticed in conclusion that in many
cases the intensity of signals or currents can be
expressed in the form (1). This expression represent
exactly the flow of identica point objects. More
generally, in Eq. (1) instead of the Dirac delta func-
tion one should introduce time dependent pulse am-
plitudes A (t—t,). However, the low frequency
power spectral density depends weakly on the shapes
of the pulses [16], while fluctuations of the pulses
amplitudes result, as a rule, in white or Lorentzian,
but not 1/f, noise. The model (2)—(5) in such cases
represents fluctuations of the averaged period 7,
between the subsequent transition times of the pulses.
Therefore, the model may be easily generalized and
applied for the explanation of 1/f noise in different
systems. Furthermore, it reveals the possible origin
of 1/f noise, i.e. random increments of the time
intervals between the pulses or elementary events.

Summarizing, asimple analytically solvable model
of 1/f noise is presented and analyzed. The model
reveals main features and parameter dependences of
the power spectral density of the noise. The model
and its generalizations may essentially influence the
understanding of the origin and main properties of
the flicker noise.
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