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Real measurements and the quantum Zeno effect

Julius Ruseckas and B. Kaulakys
Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania

~Received 24 January 2001; published 8 May 2001!

In 1977, Mishra and Sudarshan@J. Math. Phys.18, 756~1977!# showed that an unstable particle would never
be found decayed while it was continuously observed. They called this effect the quantum Zeno effect~or
paradox!. Later it was realized that the frequent measurements could also accelerate the decay~quantum
anti-Zeno effect!. In this paper, we investigate the quantum Zeno effect using the definite model of the
measurement. We take into account the finite duration and the finite accuracy of the measurement. A general
equation for the jump probability during the measurement is derived. We find that the measurements can cause
inhibition ~quantum Zeno effect! or acceleration~quantum anti-Zeno effect! of the evolution, depending on the
strength of the interaction with the measuring device and on the properties of the system. However, the
evolution cannot be fully stopped.
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I. INTRODUCTION

Theory of measurements has a special status in quan
mechanics. Unlike classical mechanics, in quantum mech
ics it cannot be assumed that the effect of the measurem
on the system can be made arbitrarily small. It is necessa
supplement quantum theory with additional postulates,
scribing the measurement. One such additional postula
von Neumann’s state reduction~or projection! postulate@1#.
The essential peculiarity of this postulate is its nonunit
character. However, this postulate refers only to an id
measurement, which is instantaneous and arbitrarily ac
rate. Real measurements are described by the projection
tulate only roughly.

The important consequence of von Neumann’s projec
postulate is the quantum Zeno effect. In quantum mechan
short-time behavior of the nondecay probability of unsta
particles is not exponential but quadratic@2#. This deviation
from the exponential decay has been observed by Wilkin
et al. @3#. In 1977, Mishra and Sudarshan@4# showed that
this behavior when combined with the quantum theory
measurement, based on the assumption of the collapse o
wave function, led to a very surprising conclusion: freque
observations slowed down the decay. An unstable part
would never decay when continuously observed. Mishra
Sudarshan have called this effect the quantum Zeno para
or effect. The effect is so called in allusion to the parad
stated by the Greek philosopher Zeno~or Zenon! of Elea.
The very first analysis does not take into account the ac
mechanism of the measurement process involved, but
based on an alternating sequence of unitary evolution a
collapse of the wave function. The Zeno effect has be
experimentally proved@5# in a repeatedly measured two
level system undergoing Rabi oscillations. The outcome
this experiment has also been explained without the colla
hypothesis@6–8#.

Later it was realized that the repeated measurem
could not only slow the quantum dynamics, but the quant
process may be accelerated by frequent measuremen
well @9–15#. This effect was called a quantum anti-Zeno e
fect by Kaulakys and Gontis@10#, who argued that frequen
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interrogations may destroy the quantum localization effec
chaotic systems. An effect, analogous to the quantum a
Zeno effect, has been obtained in a computational study
volving barrier penetration, too@16#. Recently, an analysis o
the acceleration of a chemical reaction due to the quan
anti-Zeno effect has been presented in Ref.@17#.

Although great progress in the investigation of the qua
tum Zeno effect has been made, this effect is not comple
understood as yet. In the analysis of the quantum Zeno
fect, the finite duration of the measurement becomes imp
tant, therefore the projection postulate is not sufficient
solve this problem. The complete analysis of the Zeno eff
requires a more precise model of measurement than the
jection postulate.

The purpose of this paper is to consider such a mode
the measurement. The model describes a measurement o
finite duration and finite accuracy. Although the model us
does not describe the irreversible process, it leads, howe
to the correct correlation between the states of the meas
system and the measuring apparatus.

Due to the finite duration of the measurement, it is impo
sible to consider infinitely frequent measurements, as in R
@4#. The highest frequency of the measurements is achie
when the measurements are performed one after ano
without the period of the measurement-free evolution
tween two successive measurements. In this paper, we
sider such a sequence of measurements. Our goal is to c
whether this sequence of measurements can change the
lution of the system and to verify the predictions of the qua
tum Zeno effect.

The work is organized as follows. In Sec. II, we prese
the model of the measurement. A simple case is conside
in Sec. III in order to determine the requirements for t
duration of the measurement. In Sec. IV, we derived a g
eral formula for the probability of the jump into another lev
during the measurement. The effect of repeated meas
ments on the system with a discrete spectrum is investig
in Sec. V. The decaying system is considered in Sec.
Section VII summarizes our findings.

II. MODEL OF THE MEASUREMENTS

We consider a system that consists of two parts. The
part of the system has the discrete energy spectrum.
©2001 The American Physical Society03-1
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Hamiltonian of this part isĤ0. The other part of the system
is represented by HamiltonianĤ1. Hamiltonian Ĥ1 com-
mutes withĤ0. In a particular case, the second part can
absent andĤ1 can be zero. The operatorV̂(t) causes the
jumps between different energy levels ofĤ0. Therefore, the
full Hamiltonian of the system is equal toĤS5Ĥ01Ĥ1

1V̂(t). The example of such a system is an atom with
Hamiltonian Ĥ0 interacting with the electromagnetic field
represented byĤ1.

We will measure in which eigenstate of the Hamiltoni
Ĥ0 the system is. The measurement is performed by coup
the system with the detector. The full Hamiltonian of t
system and the detector is equal to

Ĥ5ĤS1ĤD1ĤI , ~1!

whereĤD is the Hamiltonian of the detector andĤI repre-
sents the interaction between the detector and the sys
We choose the operatorĤI in the form

ĤI5lq̂Ĥ0 , ~2!

where q̂ is the operator acting in the Hilbert space of t
detector and the parameterl describes the strength of th
interaction. This system-detector interaction is that cons
ered by von Neumann@1# and in Refs.@18–22#. In order to
obtain a sensible measurement, the parameterl must be
large. We require a continuous spectrum of operatorq̂. For
simplicity, we can consider the quantityq as the coordinate
of the detector.

The measurement begins at time momentt0. At the be-
ginning of the interaction with the detector, the detector is
the pure stateuF&. The full density matrix of the system an
detector isr̂(t0)5 r̂S(t0) ^ uF&^Fu, wherer̂S(t0) is the den-
sity matrix of the system. The duration of the measuremen
t. After the measurement, the density matrix of the system
r̂S(t1t0)5TrD$Û(t1t0)@ r̂S(t0) ^ uF&^Fu#Û†(t1t0)% and
the density matrix of the detector isr̂D(t1t0)5TrS$Û(t
1t0)@ r̂S(t0) ^ uF&^Fu#Û†(t1t0)%, whereÛ(t) is the evolu-
tion operator of the system and detector, obeying the eq
tion

i\
]

]t
Û~ t !5Ĥ~ t !Û~ t ! ~3!

with the initial conditionÛ(t0)51.
Since the initial density matrix is chosen in a factorizab

form, the density matrix of the system after the interact
depends linearly on the density matrix of the system bef
the interaction. We can represent this fact by the equalit

r̂S~t1t0!5S~t,t0!r̂S~ t0!, ~4!
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whereS(t,t0) is the superoperator acting on the density m
trices of the system. If the vectorsun& form the complete
basis in the Hilbert space of the system, we can rewrite
~4! in the form

rS~t1t0!pr5S~t,t0!pr
nmrS~ t0!nm , ~5!

where the sum over the repeating indices is supposed.
matrix elements of the superoperator are

S~t,t0!pr
nm5TrD$^puÛ~t1t0!~ un&^mu ^ uF&^Fu!Û†

3~t1t0!ur &%. ~6!

Due to the finite duration of the measurement, it is impo
sible to realize the infinitely frequent measurements. T
highest frequency of the measurements is achieved when
measurements are performed one after another without
period of the measurement-free evolution between two s
cessive measurements. Therefore, we model a continu
measurement by the subsequent measurements of the
duration and finite accuracy. AfterN measurements, the den
sity matrix of the system is

r̂S~Nt!5S„t,~N21!t…•••S~t,t!S~t,0!r̂S~0!. ~7!

Further, for simplicity we will neglect the Hamiltonian o
the detector. After this assumption, the evolution operato
equal toÛ(t,11lq̂), where the operatorÛ(t,j) obeys the
equation

i\
]

]t
Û~ t,j!5@jĤ01Ĥ11V̂~ t !#Û~ t,j! ~8!

with the initial conditionÛ(t0 ,j)51. Then the superopera
tor S(t,t0) is

S~t,t0!pr
nm5E dqz^quF& z2^puÛ~t1t0,11lq!un&^muÛ†

3~t1t0,11lq!ur &. ~9!

III. MEASUREMENT OF THE UNPERTURBED SYSTEM

In order to estimate the necessary duration of the sin
measurement, it is convenient to consider the case when
operatorV̂50. In such a case, the description of the evo
tion is simpler. The measurement of this kind occurs a
when the influence of the perturbation operatorV̂ is small in
comparison with the interaction between the system and
detector and, therefore, the operatorV̂ can be neglected.

We can choose the basisuna& common for the operators
Ĥ0 and Ĥ1,

Ĥ0una&5Enuna&, ~10!

Ĥ1una&5E1~n,a!una&, ~11!

wheren is the number of eigenvalues of the HamiltonianĤ0
anda represents the remaining quantum numbers. Since
3-2
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Hamiltonian of the system does not depend ont, we will
omit the parametert0 in this section. From Eq.~9!, we obtain
the superoperatorS(t) in the basisuna&,

S~t!pa3 ,ra4

na1 ,ma25dnpdmrd~a1 ,a3!d~a2 ,a4!exp~ ivma2 ,na1
t!

3E dqz^quF& z2 exp~ ilvmntq!, ~12!

where

vmn5
1

\
~Em2En!, ~13!

vma2 ,na1
5vmn1

E1~m,a2!2E1~n,a1!

\
, ~14!

andd(•,•) represent Kronecker’s delta in a discrete case
Dirac’s delta in a continuous case. Equation~12! can be re-
written using the correlation function

F~n!5^Fuexp~ inq̂!uF&. ~15!

We can express this function as F(n)
5*dqz^quF& z2 exp(inq)5*dp̂ Fup&^p2(n/\)uF&. Since vec-
tor uF& is normalized, the functionF(n) tends to zero when
unu increases. There exists a constantC such that the corre
lation functionuF(n)u is small if the variableunu.C.

The equation for the superoperatorS(t) is

S~t!pa3 ,ra4

na1 ,ma25dnpdmrd~a1 ,a3!d~a2 ,a4!

3exp~ ivma2 ,na1
t!F~ltvmn!. ~16!

Using Eqs.~5! and~16!, we find that after the measuremen
the nondiagonal elements of the density matrix of the sys
become small, sinceF(ltvmn) is small fornÞm whenlt
is large.

The density matrix of the detector is

^qur̂D~t!uq1&5^quF&^Fuq1&Tr$Û~t,11lq!

3 r̂S~0!Û†~t,11lq1!%. ~17!

From Eqs.~8! and ~17!, we obtain

^qur̂D~t!uq1&5^quF&^Fuq1&(
n

exp„iltvn~q12q!…

3(
a

^n,aur̂S~0!un,a&, ~18!

where

vn5
1

\
En . ~19!

The probability that the system is in the energy leveln may
be expressed as
06210
d

m

P~n!5(
a

^n,aur̂S~0!un,a&. ~20!

Introducing the state vectors of the detector

uFE&5expS 2
i

\
ltEq̂D uF&, ~21!

we can express the density operator of the detector as

r̂D~t!5(
n

uFEn
&^FEn

uP~n!. ~22!

The measurement is complete when the statesuFE& are
almost orthogonal. The different energies can be separ
only when the overlap between the corresponding sta
uFE& is almost zero. The scalar product of the statesuFE&
with different energiesE1 andE2 is

^FE1
uFE2

&5F~ltv12!. ~23!

The correlation functionuF(n)u is small when unu.C.
Therefore, we have the estimation for the error of the ene
measurementDE as

ltDE*\C ~24!

and we obtain the expression for the necessary duratio
the measurement

t*
\

LDE
, ~25!

where

L5
l

C
. ~26!

Since in our model the measurements are performed im
diately one after the other, from Eq.~25! it follows that the
rate of measurements is proportional to the strength of
interactionl between the system and the measuring dev

IV. MEASUREMENT OF THE PERTURBED SYSTEM

The operatorV̂(t) represents the perturbation of the u
perturbed HamiltonianĤ01Ĥ1. We will take into account
the influence of the operatorV̂ by the perturbation method
assuming that the strength of the interactionl between the
system and detector is large.

The operatorV̂(t) in the interaction picture is

Ṽ~ t,t0 ,j!5expS i

\
~jĤ01Ĥ1!t D V̂~ t1t0!

3expS 2
i

\
~jĤ01Ĥ1!t D . ~27!

In the second-order approximation, the evolution operato
equal to
3-3
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Û~t,t0 ,j!'expS 2
i

\
~jĤ01Ĥ1!t D H 11

1

i\E0

t

dt Ṽ~ t,t0 ,j!

2
1

\2E0

t

dt1E
0

t

dt2Ṽ~ t1 ,t0 ,j!Ṽ~ t2 ,t0j!J . ~28!

Using Eqs.~9! and~28!, we can obtain the superoperatorS in
the second-order approximation, too. The expression for
matrix elements of the superoperatorS is given in the Ap-
pendix @Eqs.~A1!, ~A2!, and~A3!#.

The probability of the jump from the levelu ia& to the
level u f a1& during the measurement isW( ia→ f a1)
5S(t,t0) f a1 , f a1

ia,ia . Using Eqs.~A1!, ~A2!, and ~A3!, we ob-

tain

W~ ia→ f a1!5
1

\2E0

t

dt1E
0

t

dt2F„lv i f ~ t22t1!…

3V~ t11t0! f a1 ,iaV~ t21t0! ia, f a1

3exp„iv ia, f a1
~ t22t1!…. ~29!

The expression for the jump probability can be furth
simplified if the operatorV̂ does not depend ont. We intro-
duce the function

F~ t ! f a1 ,ia5uVf a1 ,iau2 expS i

\
@E1~ f ,a1!2E1~ i ,a!#t D .

~30!

Changing variables, we can rewrite the jump probability

W~ ia→ f a1!5
2

\2
ReE

0

t

dtF~lv f i t !exp~ iv f i t !

3~t2t !F~ t ! f a1 ,ia . ~31!

Introducing the Fourier transformation ofF(t) f a1 ,ia ,

G~v! f a1 ,ia5
1

2pE2`

`

dt F~ t ! f a1 ,ia exp~2 ivt !, ~32!

and using Eq.~31!, we obtain the equality

W~ ia→ f a1!5
2pt

\2 E
2`

`

dv G~v! f a1 ,iaP~v! i f , ~33!

where

P~v! i f 5
1

p
ReE

0

t

dtF~lv i f t !exp„i ~v2v i f !t…S 12
t

t D .

~34!

From Eq.~34!, using the equalityF(0)51, we obtain

E dvP~v! i f 51. ~35!
06210
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The quantityG is equal to

G~v! f a1 ,ia5\uVf a1 ,iau2d„E1~ f ,a1!2E1~ i ,a!2\v….
~36!

We see that the quantityG(v) characterizes the perturba
tion.

V. DISCRETE SPECTRUM

Let us consider the measurement effect on the sys
with the discrete spectrum. The HamiltonianĤ0 of the sys-
tem has a discrete spectrum, the operatorĤ150, and the
operatorV̂(t) represents a perturbation resulting in the qua
tum jumps between the discrete states of the systemĤ0.

For the separation of the energy levels, the error in
measurement should be smaller than the distance betw
the nearest energy levels of the system. It follows from t
requirement and Eq.~25! that the measurement timet
*1/Lvmin , wherevmin is the smallest of the transition fre
quenciesuv i f u.

When l is large, thenuF(lx)u is not very small only in
the regionuxu,L21. We can estimate the probability of th
jump to the other energy level during the measurement,
placingF(n) by 2Cd(n) in Eq. ~29!. Then from Eq.~29! we
obtain

W~ ia→ f a1!'
2

\2Luv i f u
E

0

t

dtuV~ t1t0! ia , f a1
u2. ~37!

We see that the probability of the jump is proportional
L21. Consequently, for largeL, i.e., for the strong interac
tion with the detector, the jump probability is small. This fa
represents the quantum Zeno effect. However, due to
finiteness of the interaction strength, the jump probability
not zero. After a sufficiently large number of measuremen
the jump occurs. We can estimate the number of meas
ments N after which the system jumps into other ener
levels from the equality (2t/\2Luvminu)uVmaxu2N;1, where
uVmaxu is the largest matrix element of the perturbation o
eratorV. This estimation allows us to introduce the chara
teristic time, during which the evolution of the system
inhibited,

t inh[tN5L
\2uvminu

2uVmaxu2
. ~38!

We call this duration the inhibition time~it is natural to call
this duration the Zeno time, but this term already has a
ferent meaning!.

The full probability of the jump from levelu ia& to other
levels isW( ia)5( f ,a1

W( ia→ f a1). From Eq.~37!, we ob-
tain

W~ ia!5
2

\2L
(
f ,a1

1

uv i f u
E

0

t

dtuV~ t1t0! f a1 ,iau2. ~39!
3-4
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If the matrix elements of the perturbationV between differ-
ent levels are of the same size, then the jump probab
increases linearly with the number of energy levels. T
behavior has been observed in Ref.@23#.

Due to the unitarity of the operatorÛ(t,j), it follows
from Eq.~9! that the superoperatorS(t,t0) obeys the equali-
ties

(
p,a

S~t,t0!pa,pa
na1 ,ma25dnmda1 ,a2

, ~40a!

(
n,a

S~t,t0!pa1 ,ra2

na,na 5dprda1 ,a2
. ~40b!

If the system has a finite number of energy levels, the den
matrix of the system is diagonal, and all states are equ
occupied @i.e., r(t0)na1 ,ma2

5(1/K)dnmda1 ,a2
, where K is

the number of the energy levels#, then from Eq.~40b! it
follows that S(t,t0)r(t0)5r(t0). Such a density matrix is
the stable point of the mapr→Sr. Therefore, we can expec
that after a large number of measurements, the density
trix of the system tends to this density matrix.

WhenL is large and the duration of the measuremen
small, we can neglect the nondiagonal elements in the d
sity matrix of the system, since they are always of ord
L21. ReplacingF(n) by 2Cd(n) in Eqs. ~A1!, ~A2!, and
~A3! and neglecting the elements of the superoperatorS that
cause the arising of the nondiagonal elements of the den
matrix, we can write the equation for the superoperatorS as

S~t,t0!pa3 ,ra4

na1 ,ma2'dpnd~a3 ,a1!d rmd~a4 ,a2!dpr

1
1

L
A~t,t0!p,a3 ,a4

n,a1 ,a2dprdnm , ~41!

where

A~t,t0!p,a3 ,a4

n,a1 ,a25
2

\2uvnpu
E

0

t

dt V~ t1t0!pa3 ,na1

3V~ t1t0!na2 ,pa4
2dpnd~a4 ,a2!

3(
s,a

1

\2uvsnu
E

0

t

dt V~ t1t0!na3 ,sa

3V~ t1t0!sa,na1
2dpnd~a3 ,a1!

3(
s,a

1

\2uvnsu
E

0

t

dtV~ t1t0!sa,na4

3V~ t1t0!na2 ,sa . ~42!

Then for the diagonal elements of the density matrix,
haver(t1t0)'r(t0)1(1/L)A(t,t0)r(t0), or

d

dt
r̂~ t !'

1

Lt
A~t,t !r̂~ t !. ~43!
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If the perturbationV does not depend ont, then it follows
from Eq. ~43! that the diagonal elements of the density m
trix evolve exponentially.

A. Example

As an example, we will consider the evolution of the me
sured two-level system. The system is forced by the per
bationV, which induces the jumps from one state to anoth
The Hamiltonian of this system is

Ĥ5Ĥ01V̂, ~44!

where

Ĥ05
\v

2
ŝ3 , ~45!

V̂5vŝ11v* ŝ2 . ~46!

Here s1 ,s2 ,s3 are Pauli matrices ands65 1
2 (s16 is2).

The HamiltonianĤ0 has two eigenfunctionsu0& andu1& with
the eigenvalues2\(v/2) and \(v/2), respectively. The
evolution operator of the unmeasured system is

Û~ t !5cosS V

2
t D2

2i

\V
Ĥ sinS V

2
t D , ~47!

where

V5Av214
uvu2

\2
. ~48!

If the initial density matrix isr(0)5u1&^1u, then the evolu-
tion of the diagonal elements of the unmeasured syste
density matrix is given by the equations

r11~ t !5cos2S V

2
t D1S v

V D 2

sin2S V

2
t D , ~49a!

r00~ t !5F12S v

V D 2Gsin2S V

2
t D . ~49b!

Let us consider now the dynamics of the measured s
tem. The equations for the diagonal elements of the den
matrix @Eq. ~43!# for the system under consideration are

d

dt
r11'2

1

t inh
~r112r00!, ~50a!

d

dt
r00'2

1

t inh
~r002r11!, ~50b!

where the inhibition time, according to Eq.~38!, is

t inh5
L

2v U\v

v U2

. ~51!

The solution of Eqs.~50! with the initial condition r(0)
5u1&^1u is
3-5
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JULIUS RUSECKAS AND B. KAULAKYS PHYSICAL REVIEW A63 062103
r11~ t !5
1

2 F11expS 2
2

t inh
t D G , ~52a!

r00~ t !5
1

2 F12expS 2
2

t inh
t D G . ~52b!

From Eq.~40b!, it follows that if the density matrix of the
system is

r̂ f5
1

2
~ u0&^0u1u1&^1u!, ~53!

thenS(t) r̂ f5 r̂ f . Hence, when the number of measureme
tends to infinity, the density matrix of the system approac
r̂ f .

We have performed the numerical analysis of the dyna
ics of the measured two-level system~44!–~46! using Eqs.
~5!, ~9!, and~47! with the Gaussian correlation function~15!,

F~n!5expS 2
n2

2s2D . ~54!

From the condition*2`
` F(n)dn52C, we haveC5sAp/2.

The initial state of the system isu1&. The matrix elements o
the density matrixr(t)11 andr(t)10 are represented in Fig.
and Fig. 2, respectively. In Fig. 1, the approximation~52a! is
also shown. This approach is close to the exact evolut
The matrix elementr(t)11 for two different values ofl is
shown in Fig. 3. We see that for largerl, the evolution of the
system is slower.

The influence of the repeated nonideal measurement
the two-level system driven by the periodic perturbation h
also been considered in Refs.@23–26#. Similar results have
been found: the occupation of the energy levels changes
ponentially with time, approaching the limit1

2 .

FIG. 1. The occupation of the initial level 1 of the measur
two-level system calculated according to Eqs.~5!, ~9!, ~47!, and
~54!. The used parameters are\51, s251, v52, v51. In this
system of units, time is dimensionless. The strength of the meas
ment l550 and the duration of the measurementt50.1. The ex-
ponential approximation~52a! is shown as a dotted line. For com
parison, the occupation of the level 1 of the unmeasured syste
also shown~dashed line!.
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VI. DECAYING SYSTEM

We consider a system that consists of two parts. We
treat the first part as an atom and the second part as the
~reservoir!. The energy spectrum of the atom is discrete a
the spectrum of the field is continuous. The Hamiltonians
these parts areĤ0 and Ĥ1, respectively, and the eigenfunc
tions areun& and ua&,

Ĥ0un&5Enun&, ~55a!

Ĥ1ua&5Eaua&. ~55b!

There is the interaction between the atom and the field r
resented by the operatorV̂. So the Hamiltonian of the system
is

ĤS5Ĥ01Ĥ11V̂. ~56!

The basis for the full system isuna&5un& ^ ua&.
When the measurement is not performed, such a sys

exhibits exponential decay, valid for the intermediate tim
The decay rate is given according to Fermi’s Golden Ru

R~ ia1→ f a2!5
2p

\
uVf a2 ,ia1

u2r~\v i f !, ~57!

where

re-

is

FIG. 2. The nondiagonal element of the density matrix of t
measured two-level system. Used parameters are the same
Fig. 1.

FIG. 3. The occupation of the initial level 1 of the measur
two-level system for different strengths of the measurementl
550, t50.1 ~dashed line! and l55, t50.2 ~solid line!. Other
parameters are the same as in Fig. 1.
3-6
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1

\
~Ea2

2Ea1
!5v i f ~58!

andr(E) is the density of the reservoir’s states.
When the energy level of the atom is measured, we

use the perturbation theory, as it is in the discrete case.
initial state of the field is a vacuum stateu0& with energy
E050. Then the density matrix of the atom isr̂0(t)
5Tr1$r̂(t)%5Tr1$S(t) r̂(0)% or r̂0(t)5Sef(t) r̂0(0), where
Sef is an effective superoperator,

Sef~t!pr
nm5(

a
S~t!pa,ra

n0,m0 . ~59!

When the states of the atom are weakly coupled to a bro
band of states~continuum!, the transitions back to the ex
cited state of the atom can be neglected~i.e., we neglect the
influence of emitted photons on the atom!. Therefore, we can
use the superoperatorSef for a determination of the evolution
of the atom.

Since the states in the reservoir are very dense, one
replace the sum overa by an integral overEa ,

(
a

•••5E dEar~Ea!•••,

wherer(Ea) is the density of the states in the reservoir.

A. The spectrum

The density matrix of the field isr̂1(t)5Tr0$r̂(t)%
5Tr0$S(t) r̂(0)%. The diagonal elements of the field’s de
sity matrix give the spectrum. If the initial state of the ato
is u i &, then the distribution of the field’s energy isW(Ea)
5r1(t)aa5( fS(t) f a, f a

i0,i0 . From Eqs.~A1!, ~A2!, and ~A3!,
we obtain

W~Ea!5(
f

2p

\2
uVf a,i0u2tPS Ea

\ D
i f

, ~60!

whereP(v) i f is given by Eq.~34!. From Eq.~60!, we see
that P(v) is the measurement-modified shape of the spec
line.

The integral in Eq.~34! is small when the exponent osci
lates more rapidly than the functionF. This condition is ful-
filled when (E/\)2v i f *lv i f /C. Consequently, the width
of the spectral line is

DEi f 5L\v i f . ~61!

The width of the spectral line is proportional to the streng
of the measurement~this equation is obtained using the a
sumption that the strength of the interaction with the m
suring devicel is large and, therefore, the natural width
the spectral line can be neglected!. The broadening of the
spectrum of the measured system is also reported in Ref.@12#
for the case of an electron tunneling out of a quantum d
06210
n
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B. The decay rate

The probability of the jump from the statei to the statef
is W( i→ f ;t)5Sef(t) f f

i i . From Eq.~59!, it follows that

W~ i→ f ;t!5(
a

W~ i0,→ f a,t!. ~62!

Using Eq.~33!, we obtain the equality

W~ i→ f ;t!5
2pt

\2 E
2`

1`

dv G~v! f i P~v! i f , ~63!

where

G~v! f i5E dEar~Ea!G~v! f a,i0 . ~64!

The expression forG(v) according to Eq.~36! is

G~v! f i5\r~\v!uVf Ea5\v,i0u2. ~65!

The quantityG(v) is the reservoir coupling spectrum.
The measurement-modified decay rate isR( i→ f )

5(1/t)W( i→ f ;t). From Eq.~63!, we have

R~ i→ f !5
2p

\2 E2`

`

dv G~v! f i P~v! i f . ~66!

Equation~66! represents a universal result: the decay rate
the frequently measured decaying system is determined
the overlap of the reservoir coupling spectrum and
measurement-modified level width. This equation was
rived by Kofman and Kurizki@14#, assuming the ideal in-
stantaneous projections. We show that Eq.~66! is valid for
the more realistic model of the measurement as well.
equation similar to Eq.~66! has been obtained in Ref.@27#,
considering a destruction of the final decay state.

Depending on the reservoir spectrumG(v) and the
strength of the measurement, the inhibition or acceleratio
the decay can be obtained. If the interaction with the m
suring device is weak and, consequently, the width of
spectral line is much smaller than the width of the reserv
spectrum, then the decay rate equals the decay rate o
unmeasured system, given by Fermi’s Golden Rule~57!. In
the intermediate region, when the width of the spectral line
rather small compared with the distance betweenv i f and the
nearest maximum in the reservoir spectrum, the decay
grows with an increase ofL. This results in the anti-Zeno
effect.

If the width of the spectral line is much greater compar
both with the width of the reservoir spectrum and the d
tance betweenv i , f and the centrum of the reservoir spe
trum, then the decay rate decreases whenL increases. This
results in the quantum Zeno effect. In such a case, we
use the approximation

G~v! f i'\Bf id~v2vR!, ~67!
3-7
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whereBf i is defined by the equalityBf i5(1/\)*G(v) f idv
and vR is the centrum ofG(v). Then from Eq.~66! we
obtain the decay rateR( i→ f )'(2p/\)Bf i P(v i f ) i f . From
Eq. ~34!, using the conditionLtuv i f u@1 and the equality
*2`

` F(n)dn52C, we obtain

P~v i f ! i f 5
1

pLv i f
. ~68!

Therefore, the decay rate is equal to

R~ i→ f !'
2Bf i

L\v i f
. ~69!

The obtained decay rate is insensitive to the spectral shap
the reservoir and is inversely proportional to the measu
ment strengthL.

VII. SUMMARY

In this work, we investigate the quantum Zeno effect u
ing the definite model of the measurement. We take i
account the finite duration and the finite accuracy of the m
surement. The general equation for the probability of
jump during the measurement is derived@Eq. ~33!#. The be-
havior of the system under the repeated measurements
pends on the strength of measurement and on the prope
of the system.

When the strength of the interaction with the measur
device is sufficiently large, the frequent measurements of
system with a discrete spectrum slow down the evoluti
However, the evolution cannot be fully stopped. Under
repeated measurements, the occupation of the energy le
changes exponentially with time, approaching the limit of t
equal occupation of the levels. The jump probability is
versely proportional to the strength of the interaction w
the measuring device.

In the case of a continuous spectrum, the measurem
can cause inhibition or acceleration of the evolution. O
model of the continuous measurement gives the same r
as the approach based on the projection postulate@14#. The
decay rate is equal to the convolution of the reservoir c
pling spectrum with the measurement-modified shape of
spectral line. The width of the spectral line is proportional
06210
of
-

-
o
a-
e

de-
ies

g
e
.

e
els
e
-

nts
r
ult

-
e

the strength of the interaction with the measuring devi
When this width is much greater than the width of the re
ervoir, the quantum Zeno effect takes place. Under th
conditions, the decay rate is inversely proportional to
strength of the interaction with the measuring device. In
number of decaying systems, however, the reservoir sp
trum G(v) grows with frequency almost up to the relativi
tic cutoff, and the strength of the interaction required for t
appearance of the quantum Zeno effect is so high that
initial system is significantly modified. When the spectr
line is not very broad, the decay rate may be increased by
measurements more often than it may be decreased an
quantum anti-Zeno effect can be obtained.

APPENDIX: THE SUPEROPERATOR

We obtain the superoperatorS in the second-order ap
proximation substituting the approximate expression for
evolution operator~28! into Eq. ~9!. Thus we have

S~t,t0!5S(0)~t!1S(1)~t,t0!1S(2)~t,t0!, ~A1!

whereS(0)(t) is the superoperator of the unperturbed me
surement given by Eq.~16!, S(1)(t,t0) is the first-order cor-
rection,

S(1)~t,t0!pa3 ,ra4

na1 ,ma25
1

i\
d rmd~a4 ,a2!exp~ iv ra4 ,pa3

t!

3E
0

t

dt V~ t1t0!pa3 ,na1

3exp~ ivpa3 ,na1
t !F„l~v rpt1vpnt !…

2
1

i\
dpnd~a3 ,a1!exp~ iv ra4 ,pa3

t!

3E
0

t

dt V~ t1t0!ma2 ,ra4

3exp~ ivma2 ,ra4
t !F„l~v rpt1vmrt !…,

~A2!
andS(2)(t,t0) is the second-order correction,
S(2)~t,t0!pa3 ,ra4

na1 ,ma25
1

\2
exp~ iv ra4 ,pa3

t!E
0

t

dt1E
0

t

dt2V~ t11t0!pa3 ,na1
V~ t21t0!ma2 ,ra4

F„l~v rpt1vpnt11vmrt2!…

3exp~ ivpa3 ,na1
t11 ivma2 ,ra4

t2!2
1

\2
d rmd~a4 ,a2!exp~ iv ra4 ,pa3

t!

3(
s,a

E
0

t

dt1E
0

t1
dt2V~ t11t0!pa3 ,saV~ t21t0!sa,na1

F„l~v rpt1vpst11vsnt2!…

3exp~ ivpa3 ,sat11 ivsa,na1
t2!2

1

\2
dpnd~a3 ,a1!exp~ iv ra4 ,pa3

t!(
s,a

E
0

t

dt1E
0

t1
dt2V~ t21t0!ma2 ,sa

3V~ t11t0!sa,ra4
F„l~v rpt1vsrt11vmst2!…exp~ ivsa,ra4

t11 ivma2 ,sat2!, ~A3!
3-8
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where

vna1 ,ma2
5vnm1

E1~n,a1!2E1~m,a2!

\
. ~A4!
n-

,

n,
re

d,

rint
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@15# M. Lewenstein and K. Rza¸žewski, Phys. Rev. A61, 022105

~2000!.
@16# H. Fearn and W.E. Lamb, Jr., Phys. Rev. A46, 1199~1992!.
@17# O.V. Prezhdo, Phys. Rev. Lett.85, 4413~2000!.
@18# E. Joos, Phys. Rev. D29, 1626~1984!.
@19# C.M. Caves and G.J. Milburn, Phys. Rev. A36, 5548~1987!.
@20# G.J. Milburn, J. Opt. Soc. Am. B5, 1317~1988!.
@21# M.J. Gagen, H.M. Wiseman, and G.J. Milburn, Phys. Rev.

48, 132 ~1993!.
@22# J. Ruseckas, Phys. Rev. A~to be published!.
@23# M.J. Gagen and G.J. Milburn, Phys. Rev. A45, 5228~1992!.
@24# A. Peres and A. Ron, Phys. Rev. A42, 5720~1990!.
@25# T.F. Jordan, E.C.G. Sudarshan, and P. Valanju, Phys. Re

44, 3340~1991!.
@26# A. Venugoplan and R. Ghosh, Phys. Lett. A204, 11 ~1995!.
@27# A.D. Panov, Phys. Lett. A260, 441 ~1999!.
3-9


