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Real measurements and the quantum Zeno effect
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In 1977, Mishra and Sudarshfh Math. Phys18, 756(1977] showed that an unstable particle would never
be found decayed while it was continuously observed. They called this effect the quantum Zendoeffect
paradoy. Later it was realized that the frequent measurements could also accelerate theqleraym
anti-Zeno effedt In this paper, we investigate the quantum Zeno effect using the definite model of the
measurement. We take into account the finite duration and the finite accuracy of the measurement. A general
equation for the jump probability during the measurement is derived. We find that the measurements can cause
inhibition (quantum Zeno effegor acceleratioriguantum anti-Zeno effecof the evolution, depending on the
strength of the interaction with the measuring device and on the properties of the system. However, the
evolution cannot be fully stopped.
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[. INTRODUCTION interrogations may destroy the quantum localization effect in
chaotic systems. An effect, analogous to the quantum anti-
Theory of measurements has a special status in quantu#eno effect, has been obtained in a computational study in-
mechanics. Unlike classical mechanics, in quantum mecharYlving barrier penetration, tgd.6]. Recently, an analysis of
ics it cannot be assumed that the effect of the measuremefte acceleration of a chemical reaction due to the quantum
on the system can be made arbitrarily small. It is necessary tgnn-Zeno effect has been presented in RRe].

. . Although great progress in the investigation of the quan-
supplement quantum theory with additional postulates, defum Zenogeff%ct haps b%en made, this effegct is not com[q)letely

scribing the measurement. One suc_h a_ddltlonal postulate {$hderstood as yet. In the analysis of the quantum Zeno ef-
von Neumann’s state reductidor projectior) postulate[1].  fect, the finite duration of the measurement becomes impor-
The essential peculiarity of this postulate is its nonunitarytant, therefore the projection postulate is not sufficient to
character. However, this postulate refers only to an idea$olve this problem. The complete analysis of the Zeno effect
measurement, which is instantaneous and arbitrarily accuequires a more precise model of measurement than the pro-
rate. Real measurements are described by the projection pgection postulate.
tulate only roughly. The purpose of this paper is to consider such a model of
The important consequence of von Neumann’s projectioﬁhe measurement. The model describes a measurement of the

postulate is the quantum Zeno effect. In quantum mechanicdinite duration and finite accuracy. Although the model used

short-time behavior of the nondecay probability of unstabled’oes not describe the irreversible process, it leads, however,

particles is not exponential but quadrai. This deviation to the correct correlation between the states of the measured

X -~ _system and the measuring apparatus.
from the exponential decay has been observed by Wilkinson Due to the finite duration of the measurement, it is impos-

et_al. 3] In 1977, Mlshra.and S.udarsh@fl] showed that sible to consider infinitely frequent measurements, as in Ref.
this behavior when combined with the quantum theory off4] The highest frequency of the measurements is achieved
measurement, based on the assumption of the collapse of thghen the measurements are performed one after another,
wave function, led to a very surprising conclusion: frequentyithout the period of the measurement-free evolution be-
observations slowed down the decay. An unstable parthlgNeen two successive measurements. In this paper, we con-
would never decay when continuously observed. Mishra andider such a sequence of measurements. Our goal is to check
Sudarshan have called this effect the quantum Zeno paradahether this sequence of measurements can change the evo-
or effect. The effect is so called in allusion to the paradoxiution of the system and to verify the predictions of the quan-
stated by the Greek philosopher Zetmr Zenon of Elea. tum Zeno effect.

The very first analysis does not take into account the actual The work is organized as follows. In Sec. Il, we present
mechanism of the measurement process involved, but it ihe model of the measurement. A simple case is considered
based on an alternating sequence of unitary evolution andi Sec. lll in order to determine the requirements for the
collapse of the wave function. The Zeno effect has beefluration of the measurement. In Sec. IV, we derived a gen-
experimenta”y prove({S] in a repeated|y measured two- el’a! formula for the prObablllty of the Jump Into anothel’ |eVe|
level system undergoing Rabi oscillations. The outcome ofluring the measurement. The effect of repeated measure-

this experiment has also been explained without the collaps®€nts on the system with a discrete spectrum is investigated
hypothesig6—8]. in Sec. V. The decaying system is considered in Sec. VI.

Later it was realized that the repeated measurement3€Ction VIl summarizes our findings.

could not only slow the quantum dynamics, but the quantum Il. MODEL OF THE MEASUREMENTS

process may be accelerated by frequent measurements as

well [9—15]. This effect was called a quantum anti-Zeno ef- We consider a system that consists of two parts. The first
fect by Kaulakys and Gontigl0], who argued that frequent part of the system has the discrete energy spectrum. The
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Hamiltonian of this part if1,. The other part of the system WhereS(r,to) is the superoperator acting on the density ma-

is represented by Hamiltoniai ;. Hamiltonian A, com- trices of the system. If the vectots) form the complete

o~ . basis in the Hilbert space of the system, we can rewrite Eq.
mutes withH,. In a particular case, the second part can be(4) in the form

absent andd, can be zero. The operat®(t) causes the
jumps between different energy levelstaf. Therefore, the Ps(7+1t0)pr=S(7,t0)pr Ps(to) nm: 5

fu”A Hamiltonian of the system is equal tlls=Ho+H1 \yhere the sum over the repeating indices is supposed. The
+V(t) The example of such a system is an atom with thQ'natriX elements of the Superopera’[or are
Hamiltonian H, interacting with the electromagnetic field, R R
represented by, . S(7.to)pr'=Tro{(p|U(7+to) (In)(m[|®)(P|) U

We will measure in which eigenstate of the Hamiltonian X (r+t) |1} ®)

H, the system is. The measurement is performed by coupling
the system with the detector. The full Hamiltonian of the Due to the finite duration of the measurement, it is impos-
system and the detector is equal to sible to realize the infinitely frequent measurements. The

highest frequency of the measurements is achieved when the

A=t Bt A ) measurements are performed one aft(_ar another without the

STUID T period of the measurement-free evolution between two suc-

cessive measurements. Therefore, we model a continuous

whereHp, is the Hamiltonian of the detector art} repre- measurement by the subsequent measurements of the finite

sents the interaction between the detector and the systemuration and finite accuracy. Aftéf measurements, the den-

We choose the operatét, in the form sity matrix of the system is

A ps(N7)=S(7,(N=1)7)- - - S(7,7)S(7,0ps(0).  (7)

H,=\gHo, 2 o _ -
Further, for simplicity we will neglect the Hamiltonian of

the detector. After this assumption, the evolution operator is

where& is the operator acting in the Hilbert space of the ~ I -
detector and the parametgrdescribes the strength of the ggagltict)%U(t,lJr)\q), where the operatod(t,¢) obeys the

interaction. This system-detector interaction is that consid-
ered by von Neumanfi] and in Refs[18-22. In order to E o
obtain a sensible measurement, the parametenust be iﬁﬁU(t,§)=[§H0+ H,+V(1)JU(t,¢) 8
large. We require a continuous spectrum of opergtofor
simplicity, we can consider the quantigyas the coordinate jth the initial conditionJ(to,£)=1. Then the superopera-
of the detector. tor S(7,to) is

The measurement begins at time momgptAt the be-
ginning of the interaction with the detector, the detector is in nm_ 2 e ~t
the pure statéd). The full density matrix of the system and ~ S(7:to)pr _f dal(q|®)|*(p|U(7+1to,1+Aq@)[n)(m|U

detector isp(to) = ps(to) ® | D) P|, wherepg(to) is the den-

sity matrix of the system. The duration of the measurement is X(1+1to,1+Ng)Ir). ©)

7. After the measurement, the density matrix of the system is

ps(7+10)=Trp{U(7+1o)[ ps(te) ® |®>§®|]UT(T+ to)} f;lnd I1l. MEASUREMENT OF THE UNPERTURBED SYSTEM

the density matrix of the detector jso(7+1y)=Tr{U(7 In order to estimate the necessary duration of the single

+to)[l}s(t0)®|(1>><<1>|]0T(7-+t0)}, Whereﬁ(t) is the evolu- Measurement, it is convenient to consider the case when the
t?on operator of the system and detector, obeying the equasperator/=0. In such a case, the description of the evolu-
tion tion is simpler. The measurement of this kind occurs also
when the influence of the perturbation operafois small in
comparison with the interaction between the system and the
detector and, therefore, the operatocan be neglected.

We can choose the badisa) common for the operators

H, andH;,

Ca. ..
IhEU(t)=H(t)U(t) 3

with the initial conditionU(ty)=1.

Since the initial density matrix is chosen in a factorizable
form, the density matrix of the system after the interaction
depends linearly on the density matrix of the system before
the interaction. We can represent this fact by the equality

Holna)=E,|na), (10)
Hilna)=E;(n,a)|na), (11

A . wheren is the number of eigenvalues of the Hamiltonldp
ps(T+1tg)=S(7,t9)ps(to), (4) and a represents the remaining quantum numbers. Since the
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Hamiltonian of the system does not depend tpmve will
omit the parametdr, in this section. From E(9), we obtain
the superoperatds(7) in the basigna),

X T)nal’m%: 5np5mr5(a1 y@3) 0@y, ay)exi Oma, ,nalT)

pag.ra,
« [ daltal@)P epinonsa), 12
where
1
wmn:g(Em_ En, (13
Ei(m,ay)—Eq(n,aq)
®ma,,na; ™ @Pmn : 2 4 : : ) (14

PHYSICAL REVIEW /43 062103

P(n)=2 (n,alpg(0)[n,a). (20
Introducing the state vectors of the detector
i -
|<I)E>=exp<—%)qu)|<D>, (21)

we can express the density operator of the detector as

po(7)=2 | P (P [P(n). (22)

The measurement is complete when the stadgs are
almost orthogonal. The different energies can be separated
only when the overlap between the corresponding states
|®g) is almost zero. The scalar product of the stdtbg)

ands(-,-) represent Kronecker’s delta in a discrete case and/ith different energied; andE; is

Dirac’s delta in a continuous case. Equatid®) can be re-
written using the correlation function

F(v)=(®|expiva)|®). (15)

We can express this function as F(v)
= [dql(q|®)[? exp(ra)=dp(®|p)p—(v/h)|®). Since vec-
tor |®) is normalized, the functiof (v) tends to zero when
|v| increases. There exists a const@nsuch that the corre-
lation function|F(v)| is small if the variabld v|>C.

The equation for the superoperatg(r) is

(Pe |Pe)=F(\7w1)). (23
The correlation function|F(v)| is small when |v|>C.
Therefore, we have the estimation for the error of the energy

measuremenAE as
NTAE=A/C (24

and we obtain the expression for the necessary duration of
the measurement

h
S(PILT 5SSy ) Sy ctg) ™ AAE’ @9
Xexqiwmazynalr)F()\ﬂumn). (16 where
Using Egs.(5) and(16), we find that after the measurement, A= l (26)
the nondiagonal elements of the density matrix of the system C

become small, sincE(\ 7@, is small forn#m when\r
is large.
The density matrix of the detector is

(alpo(D]ar)=(al®)P|q) Tr{U(7,1+rq)
X pg(0)0T(7,14+\qy)}. (17)

From Egs.(8) and(17), we obtain

(alpo(n)]az)=(a|®)(®lay) 2 expliXron(ds—a)

x% (n,a|ps(0)|n,a), (18)
where
1
wn:%En (19)

The probability that the system is in the energy lewehay
be expressed as

Since in our model the measurements are performed imme-
diately one after the other, from E@5) it follows that the

rate of measurements is proportional to the strength of the
interaction\ between the system and the measuring device.

IV. MEASUREMENT OF THE PERTURBED SYSTEM

The operatolV/(t) represents the perturbation of the un-
perturbed HamiltoniarH,+H;. We will take into account

the influence of the operatdf by the perturbation method,
assuming that the strength of the interactiobbetween the
system and detector is large.

The operatol/(t) in the interaction picture is

V(t+ty)

T/(t,to,g)zexp(;,l—(gﬂoJr Ho)t

. (27)

xexp{ — ;,L—(§I:|O+ Ho)t

In the second-order approximation, the evolution operator is
equal to
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. i . 1~ -

U(T.toig)“ex%_%(5H0+H1)T){1"' EJ dt V(t,tp,¢)
0

1 (r t _
_ﬁfodtlfodtZV(tl,to,§)V(t2,t0§) . (29

Using Eqgs{(9) and(28), we can obtain the superopera®in

the second-order approximation, too. The expression for the
matrix elements of the superopera®is given in the Ap-

pendix[Egs.(Al), (A2), and(A3)].

The probability of the jump from the levela) to the

level [fa;) during the measurement i8V(ia— fa;)
:S(T!tO)lfC:y’ifyfal‘
tain
Wia—faq))=— J dt1J dt,F(\wi(to—1ty))
XV(t1+tO)fal,iaV(t2+tO)ia,fal

Xexqiwia,fal(IZ_tl))' (29)

The expression for the jump probability can be further.

simplified if the operatoV does not depend on We intro-
duce the function

(I)(t)fal,ia: |Vfa1,ia|2 eXF{%[El(fral)_ El(l ,a)]t) .
(30)

Using Egs.(Al), (A2), and(A3), we ob-

PHYSICAL REVIEW A63 062103

The quantityG is equal to

G(w)fal,ia:ﬁ|vfal,ia|25(El(fual)_El(i 1a)_hw)-
(36)

We see that the quantit$s(w) characterizes the perturba-
tion.

V. DISCRETE SPECTRUM

Let us consider the measurement effect on the system
with the discrete spectrum. The Hamiltoniﬁla of the sys-
tem has a discrete spectrum, the operaigr=0, and the
operator’\?(t) represents a perturbation resulting in the quan-

tum jumps between the discrete states of the systgm

For the separation of the energy levels, the error in the
measurement should be smaller than the distance between
the nearest energy levels of the system. It follows from this
requirement and Eq(25) that the measurement time
=1/A wpin, Wherew,,, is the smallest of the transition fre-
quencies wjg|.

When\ is large, thenF(\x)| is not very small only in
the region|x|<A 1. We can estimate the probability of the
jump to the other energy level during the measurement, re-
placingF(v) by 2C5(v) in Eq.(29). Then from Eq(29) we
obtain

W(I a—>fal)~ﬁ
wif

f dt|v(t+t0)la fa1| . (37)

Changing variables, we can rewrite the jump probability as\ye see that the probability of the jump is proportional to

2 T
W(iaﬂfa1)=ﬁRef th()\wfit)eXF(iwﬁt)
0
X(T=0)® (V)4 ia- (3D)
Introducing the Fourier transformation dlf(t)falyia,
1 (= .
G(0)tay ia= gf_md@(t)fal,mexp(—uwt>, (32

and using Eq(31), we obtain the equality

_ 27T [
Wiia—fan =7 [ doGlo)iPl@hr, (33

where

P(w)ifziRe Ofth()\w”t)exp(i (w— wif)t)< 1- ;) .
(34)

From Eq.(34), using the equality=(0)=1, we obtain

f de(w)ifIl. (35)

A1 Consequently, for largd, i.e., for the strong interac-
tion with the detector, the jump probability is small. This fact
represents the quantum Zeno effect. However, due to the
finiteness of the interaction strength, the jump probability is
not zero. After a sufficiently large number of measurements,
the jump occurs. We can estimate the number of measure-
ments N after which the system jumps into other energy
levels from the equality (2/%2A|®min)|Vimad?N~1, where
[Vimad is the largest matrix element of the perturbation op-
eratorV. This estimation allows us to introduce the charac-
teristic time, during which the evolution of the system is
inhibited,

(39

We call this duration the inhibition timét is natural to call
this duration the Zeno time, but this term already has a dif-
ferent meaning

The full probability of the jump from levelia) to other
levels isW(ia) =2+ , W(ia— fa,). From Eq.(37), we ob-
tain

>

W(i
(o) = o & Tanl

f dt|v(t+t0)fuzl Iz1/|2 (39)
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If the matrix elements of the perturbatidhbetween differ-  If the perturbationV does not depend ofj then it follows
ent levels are of the same size, then the jump probabilitfrom Eg. (43) that the diagonal elements of the density ma-
increases linearly with the number of energy levels. Thistrix evolve exponentially.

behavior has been observed in Ref3].

Due to the unitarity of the operatdﬁ(t,g), it follows A. Example
from Eq.(9) that the superoperat&(7,to) obeys the equali- As an example, we will consider the evolution of the mea-
ties sured two-level system. The system is forced by the pertur-
bationV, which induces the jumps from one state to another.
% S( T,to)gZ}ﬁS“ZZ SmOay ay (409  The Hamiltonian of this system is
H=Hq+V, (44)
g,l S(7.t0) e, = BprOay vy (400 where
. . . 7 ﬁwA
If the system has a finite number of energy levels, the density Ho=703, (49

matrix of the system is diagonal, and all states are equally

occupied|[i.e., P(to)na; ma,= (1K) Snmba, a, WhereK is Voo 4v* o (46)
the number of the energy levélshen from Eq.(40b) it " o

follows that S(7,to) p(to) = p(to). Such a density matrix is Here o;,0,,05 are Pauli matrices and.=3%(o;*+io>).
the stable point of the map— Sp. Therefore, we can expect the HamiItoniari:IO has two eigenfunction®) and|1) with
that after a large number of measurements, the density mggq eigenvalues—7%(w/2) and #(w/2), respectively. The

trix of the system tends to this density matrix. _evolution operator of the unmeasured system is
When A is large and the duration of the measurement is

small, we can neglect the nondiagonal elements in the den- . Q 2i . Q

sity matrix of the system, since they are always of order U(t)2005<§t)—mH sin(it), (47
A~L. ReplacingF(v) by 2C8(v) in Egs. (Al), (A2), and

(A3) and neglecting the elements of the superoper@that  where

cause the arising of the nondiagonal elements of the density

matrix, we can write the equation for the superoper&as lv|?
Q= w2+4?. (48)
S(T-to);Zi::na?“ Spnd(asz,a1) Simd(ay,az) Sy
1 If the initial density matrix isp(0)=|1){(1], then the evolu-
+ AT )25 s 41 tion of the diagonal elements of the unmeasured system’s
A AT 0] gy Opr O “1 density matrix is given by the equations
where Q w\? [Q
p1(t)=cog gt +(5 Sln2<§t>, (499
2 T
A(T,tg) 012 = JdtV(t-l—tO)pa e w2 QO
Pe3:% 1% wnpl Jo o poo(t) = 1—<5> sin2<§t>. (49b)

XV(t+1o)na, pa,~ Spndl s, az) . _
Let us consider now the dynamics of the measured sys-

1 7 tem. The equations for the diagonal elements of the density
x> mfo dt V(t+1to)nay sa matrix [Eq. (43)] for the system under consideration are
Sa Wgn
d 1
XV(t+1o)sa,na, ~ pndlas,ay) P11~ — (P11~ Poo), (503
dt tinh
NP v+t d 1
s h?|w,gJo T giPoo~ ~ 1 (Poop1v), (50b)
inh
><V(Ht")”az’sa' (42 where the inhibition time, according to ES8), is
Then for the diagonal elements of the density matrix, we A |hw|?
havep(7+to)=~p(to) + (L/A)A(,to) p(to), or tinh =51~ (51
~ 1 - The solution of Egs(50) with the initial condition p(0)
ap(t)NEA(T,t)P(t)- (43 :|1><1| is
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FIG. 1. The occupation of the initial level 1 of the measured FIG. 2. The nondiagonal element of the density matrix of the
two-level system calculated according to E€S), (9), (47), and measured two-level system. Used parameters are the same as in
(54). The used parameters ate=1, 02=1, w=2, v=1. In this  F19- 1.
system of units, time is dimensionless. The strength of the measure-
mentA =50 and the duration of the measurement0.1. The ex- VI. DECAYING SYSTEM
ponential approximatio52a is shown as a dotted line. For com-
parison, the occupation of the level 1 of the unmeasured system
also shown(dashed ling

_ We consider a system that consists of two parts. We can
feat the first part as an atom and the second part as the field
(reservoij. The energy spectrum of the atom is discrete and
the spectrum of the field is continuous. The Hamiltonians of

p1(t)= 1 1+exp( _ it” (528 these parts arél, andH,, respectively, and the eigenfunc-
2 inh tions are|n) and|a),
1 2 Holn)=Eq[n), (553
poo(t) =—=|1l—-expg ——t]|. (52b)
2 tinh

Hyla)=E,|a). (55b)

From Eq.(40b), it follows that if the density matrix of the

. There is the interaction between the atom and the field rep-
system is

resented by the operatdt So the Hamiltonian of the system
is

~ 1
= Z(10Y(0] +|1)(1]), 53 A,
Ps 2(| (O] +[1)(1]) (53 Hg=Ho+H,+V. (56)

thenS(r)p;=p; . Hence, when the number of measurements' N€ basis for the full system isia) =|n)®|a).

tends to infinity, the density matrix of the system approaches When the measurement is not performed, such a system
P exhibits exponential decay, valid for the intermediate times.
f .

We have performed the numerical analysis of the dynam:l'he decay rate is given according to Fermi’'s Golden Rule,

ics of the measured two-level systddd)—(46) using Egs.

. . . : 2
(5), (9), and(47) with the Gaussian correlation functigh), Riia;—fay)= %|Vfa2’ial|2p(ﬁw”), (57)
V2 h
F(v)=exg — —|. (54 Where
20?

From the condition/” . F(v)dv=2C, we haveC= o/7/2.
The initial state of the system j&). The matrix elements of
the density matrixp(t),; andp(t) o are represented in Fig. 1
and Fig. 2, respectively. In Fig. 1, the approximat{62a) is
also shown. This approach is close to the exact evolution.
The matrix elemenp(t),, for two different values ofx is
shown in Fig. 3. We see that for larger the evolution of the L
system is slower. 0 1 2 3 4 5 6 7 8
The influence of the repeated nonideal measurements on
the two-level system driven by the periodic perturbation has F|G. 3. The occupation of the initial level 1 of the measured
also been considered in Ref23-2@. Similar results have two-level system for different strengths of the measuremant:
been found: the occupation of the energy levels changes ex50, r=0.1 (dashed ling and A=5, 7=0.2 (solid line). Other
ponentially with time, approaching the limjt parameters are the same as in Fig. 1.
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1 B. The decay rate
7 (B~ Ba)) =it (58) The probability of the jump from the stateio the statef
is W(i —f;7)=S( 7). From Eq.(59), it follows that
and p(E) is the density of the reservoir’s states.

When the energy level of the atom is measured, we can L feo)— 0
use the perturbation theory, as it is in the discrete case. The W(i—T:7) Ea: W(i0—~Ta,7). (62

initial state of the field is a vacuum stat@) with energy
Eo,=0. Then the density matrix of the atom iso(7)  Using Eq.(33), we obtain the equality

=Tri{p(7)}=Try{S(n)p(0)} or po(7) =ScA7)po(0), where

St is an effective superoperator, +

) 27T [+

W(I*)f,T):?J‘ de(w)fiP(w)if, (63)
— 0,m0

Sel i = 2 S(7)pate- (59 o

When the states of the atom are weakly coupled to a broad- B

band of stategcontinuum, the transitions back to the ex- G("))fi_f dEap(Ea)G(@)1q,i0- (64)

cited state of the atom can be neglected., we neglect the

influence of emitted photons on the atpherefore, we can  The expression fo6(w) according to Eq(36) is

use the superoperat8g; for a determination of the evolution

of the atom. _ _ G(w)i=fip(fio)|Vig, ~pa,iol* (65)
Since the states in the reservoir are very dense, one can
replace the sum over by an integral oveEg,, The quantityG(w) is the reservoir coupling spectrum.
The measurement-modified decay rate R(i—f)
s :J dE.p(E,) -, = (Un)W(i—f;7). From Eq.(63), we have
. . . . . 2W *
wherep(E,) is the density of the states in the reservoir. R(i—f)= ?J do G(w)P(w)if . (66)

A. The spectrum Equation(66) represents a universal result: the decay rate of

The density matrix of the field isgl(T):Tro{;,(T)} the frequently measured decaying system is determined by

=Tr0{S(7);3(0)}. The diagonal elements of the field's den- the overlap of the reservoir coupling spectrum and the

sity matrix give the spectrum. If the initial state of the atom Measurement-modified level width. This equation was de-

is i), then the distribution of the field's energy W(E,,) rived by Kofman and Kurizki14], assuming the ideal in-

_ _ i0,j0 stantaneous projections. We show that E&§) is valid for
Wé)%(k;-t):;i?w Z8(7) fe e - FrOm EGs.(AL), (A2), and (A3), the more realistic model of the measurement as well. An

equation similar to Eq(66) has been obtained in R¢R7],
on E considering a destruction of the final decay state.

W(Ea)=2 —|Vta i0|27p(_") , (60) Depending on the reservoir spectru@®(w) and the
T h? ’ i)y strength of the measurement, the inhibition or acceleration of
the decay can be obtained. If the interaction with the mea-
where P(w);; is given by Eq.(34). From EQ.(60), we see suring device is weak and, consequently, the width of the
thatP(w) is the measurement-modified shape of the spectradpectral line is much smaller than the width of the reservoir

line. spectrum, then the decay rate equals the decay rate of the

The integral in Eq(34) is small when the exponent oscil- unmeasured system, given by Fermi’s Golden R&I®. In
lates more rapidly than the functidh This condition is ful-  the intermediate region, when the width of the spectral line is

filled when E/%) — wj;=\w;; /C. Consequently, the width rather small compared with the distance betwegnand the

of the spectral line is nearest maximum in the reservoir spectrum, the decay rate
grows with an increase of. This results in the anti-Zeno
AE” :Afl(x)if . (61) effect.

If the width of the spectral line is much greater compared
The width of the spectral line is proportional to the strengthboth with the width of the reservoir spectrum and the dis-
of the measuremerithis equation is obtained using the as- tance betweenw; ; and the centrum of the reservoir spec-
sumption that the strength of the interaction with the meatrum, then the decay rate decreases wheimcreases. This
suring device is large and, therefore, the natural width of results in the quantum Zeno effect. In such a case, we can
the spectral line can be neglectedhe broadening of the use the approximation
spectrum of the measured system is also reported in R&f.
for the case of an electron tunneling out of a quantum dot. G(w)fi=hB¢id(w— wg), (67)
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whereB;; is defined by the equalitB;; = (1/4) [G(w)idw the strength of the interaction with the measuring device.
and wg is the centrum ofG(w). Then from Eq.(66) we  When this width is much greater than the width of the res-
obtain the decay rat&(i — f)~(2/%)B;P(wi;)if . From  ervoir, the quantum Zeno effect takes place. Under these
Eq. (34), using the condition\ 7|w;;|>1 and the equality ~conditions, the decay rate is inversely proportional to the
[, F(v)dv=2C, we obtain strength of the interaction with the measuring device. In a

number of decaying systems, however, the reservoir spec-

Plwif)if=——. (68)  trum G(w) grows with frequency almost up to the relativis-
mA wjf tic cutoff, and the strength of the interaction required for the
Therefore, the decay rate is equal to appearance of the quantum Zeno effect is so high that the
_ 2By, initial system is significantly modified. When the spectral
R(i—f)~ Aoy (69 line is not very broad, the decay rate may be increased by the
I

) o ! measurements more often than it may be decreased and the
The obtained decay rate is insensitive to the spectral shape gf,antum anti-Zeno effect can be obtained.

the reservoir and is inversely proportional to the measure-
ment strength\.. APPENDIX: THE SUPEROPERATOR

VIl. SUMMARY We obtain the_superoperatﬂin _the second-or_der ap-
proximation substituting the approximate expression for the
In this work, we investigate the quantum Zeno effect us-evolution operatof28) into Eq. (9). Thus we have
ing the definite model of the measurement. We take into _ 0 1) )
account the finite duration and the finite accuracy of the mea- S(1,t0) =S(7)+8V(7,t0) + P (7,t), (A1)

surement. The general equatipn for_ the probability of the\NhereS(O)(r) is the superoperator of the unperturbed mea-
jump during the measurement is deriiégl). (33)]. The be-  gyrement given by Eq16), SV(r,t,) is the first-order cor-
havior of the system under the repeated measurements dgsction

pends on the strength of measurement and on the properties 1
of the system. (1) najma;_ * .
When the strength of the interaction with the measuring ST 0)pa ra, i Orm e, x2) XM 01, )
device is sufficiently large, the frequent measurements of the ;
system with a discrete spectrum slow down the evolution. xJ dtv(tﬂo)p%nal
However, the evolution cannot be fully stopped. Under the 0
repeated measurements, the occupation of the energy levels
changes exponentially with time, approaching the limit of the
equal occupation of the levels. The jump probability is in- 1
versely proportional to the strength of the interaction with — — Opnd(az,ar)expiw,, pa.T)
the measuring device. P 4Pt
In the case of a continuous spectrum, the measurements

X exp(i wpaa,nalt)F()\(wrpT+ wpnt))

T
can cause inhibition or acceleration of the evolution. Our XJ dt V(t+to)ma, ra,
model of the continuous measurement gives the same result 0
as the appr_oach based on the projection postilate The XexXpi 0mq, ra,HHF\(@rp 7+ wmt)),
decay rate is equal to the convolution of the reservoir cou- 2774
pling spectrum with the measurement-modified shape of the (A2)

spectral line. The width of the spectral line is proportional toand S®)(7,t,) is the second-order correction,

1 ) T T
S(z)(T:tO)gZ;:n;:Z: ﬁequ wra4,pa37) fo dty fo dtZV(tl+t0)pa3,nalv(t2+t0) maz,ra4F()\(wrpT+ wpplyt omit2))
X exp(i wpa3,nalt1+ [ “)maz,ra4t2) - ﬁ Ormo(ay, az)eXF(i wra4,pa37)
T ty
X 32 o dtlJ'O dtpV(ty+ tO)pa3 saV(t2t tO)Sa,nalFO\(wrp Tt wpdst wsnt2))
L

. . 1 . T ty
X expi wpaB,Satl_l_ I wsa,naltZ) - ﬁ 5pn5( asval)equ wra4,pa37')sz fo dtljo dtZV(t2+t0)ma2,Sa
><V(tl'i'tO)Sa,roz4|:()\(a’rp7"" gty + onds))expi wSa,ra4t1+ [ wmaz,satZ)v (A3)
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where

Ei(n,a;)—Ej(m,ay)

PHYSICAL REVIEW /43 062103

w =w
Naq,Ma, nm
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